triviaqa.py 5.63 KB
Newer Older
Jonathan Tow's avatar
Jonathan Tow committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Custom TriviaQA because HF version sanitizes the dataset differently.
jon-tow's avatar
jon-tow committed
16
# https://github.com/huggingface/datasets/blob/9977ade72191ff0b6907ec63935448c6269a91a1/datasets/trivia_qa/trivia_qa.py#L285
Jon Tow's avatar
Jon Tow committed
17
"""TriviaQA (Unfiltered Raw) dataset."""
Jonathan Tow's avatar
Jonathan Tow committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46


import json
import os

import datasets


_CITATION = """\
@InProceedings{JoshiTriviaQA2017,
    author = {Joshi, Mandar and Choi, Eunsol and Weld, Daniel S. and Zettlemoyer, Luke},
    title = {TriviaQA: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension},
    booktitle = {Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics},
    month = {July},
    year = {2017},
    address = {Vancouver, Canada},
    publisher = {Association for Computational Linguistics},
}
"""

_DESCRIPTION = """\
TriviaQA is a reading comprehension dataset containing over 650K question-answer-evidence
triples. TriviaQA includes 95K question-answer pairs authored by trivia enthusiasts
and independently gathered evidence documents, six per question on average, that provide
high quality distant supervision for answering the questions.
"""

_HOMEPAGE = "https://nlp.cs.washington.edu/triviaqa/"

jon-tow's avatar
jon-tow committed
47
_LICENSE = "Apache License 2.0"
Jonathan Tow's avatar
Jonathan Tow committed
48
49
50
51

_URLS = "http://eaidata.bmk.sh/data/triviaqa-unfiltered.tar.gz"


jon-tow's avatar
jon-tow committed
52
class Triviaqa(datasets.GeneratorBasedBuilder):
Jonathan Tow's avatar
Jonathan Tow committed
53
54
55
56
57
58
59
60
61
62
63
64
    """ TriviaQA is a reading comprehension dataset containing over 650K question-answer-evidence triples """

    VERSION = datasets.Version("0.0.1")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="triviaqa", version=VERSION, description="The TriviaQA dataset"),
    ]

    def _info(self):
        features = datasets.Features(
            {
jon-tow's avatar
jon-tow committed
65
66
                "question_id": datasets.Value("string"),
                "question_source": datasets.Value("string"),
Jonathan Tow's avatar
Jonathan Tow committed
67
68
69
70
71
                "question": datasets.Value("string"),
                "answer": {
                    "aliases":  datasets.features.Sequence(
                        datasets.Value("string"),
                    ),
Jon Tow's avatar
Jon Tow committed
72
                    "value": datasets.Value("string")
jon-tow's avatar
jon-tow committed
73
74
75
76
77
78
79
80
81
82
83
                },
                "search_results": datasets.features.Sequence(
                    {
                        "description": datasets.Value("string"),
                        "filename": datasets.Value("string"),
                        "rank": datasets.Value("int32"),
                        "title": datasets.Value("string"),
                        "url": datasets.Value("string"),
                        "search_context": datasets.Value("string"),
                    }
                ),
Jonathan Tow's avatar
Jonathan Tow committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        urls = _URLS
        data_dir = dl_manager.download_and_extract(urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(data_dir, "unfiltered-web-train.jsonl"),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(data_dir, "unfiltered-web-dev.jsonl"),
                },
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
jon-tow's avatar
jon-tow committed
115
    def _generate_examples(self, filepath):
Jonathan Tow's avatar
Jonathan Tow committed
116
117
118
        with open(filepath, encoding="utf-8") as f:
            for key, row in enumerate(f):
                data = json.loads(row)
jon-tow's avatar
jon-tow committed
119
120
121
122
123
124
125
126
127
128
129
130
                search_results = []
                for search_result in data["SearchResults"]:
                    search_results.append(
                        {
                            "description": search_result["Description"] if "Description" in search_result else "",
                            "filename": search_result["Filename"] if "Filename" in search_result else "",
                            "rank": search_result["Rank"] if "Rank" in search_result else -1,
                            "title": search_result["Title"] if "Title" in search_result else "",
                            "url": search_result["Url"] if "Url" in search_result else "",
                            "search_context": search_result["SearchContext"] if "SearchContext" in search_result else "",
                        }
                    )
Jonathan Tow's avatar
Jonathan Tow committed
131
                yield key, {
jon-tow's avatar
jon-tow committed
132
133
                    "question_id": data["QuestionId"],
                    "question_source": data["QuestionSource"],
Jonathan Tow's avatar
Jonathan Tow committed
134
135
136
                    "question": data["Question"],
                    "answer": {
                        "aliases": data["Answer"]["Aliases"],
Jon Tow's avatar
Jon Tow committed
137
                        "value": data["Answer"]["Value"],
jon-tow's avatar
jon-tow committed
138
139
                    },
                    "search_results": search_results,
Jonathan Tow's avatar
Jonathan Tow committed
140
                }