openai_completions.py 9.59 KB
Newer Older
Lintang Sutawika's avatar
Lintang Sutawika committed
1
import logging
Jason Phang's avatar
gpt3  
Jason Phang committed
2
import os
Baber Abbasi's avatar
Baber Abbasi committed
3
from functools import cached_property
4
from operator import itemgetter
Baber Abbasi's avatar
Baber Abbasi committed
5
from typing import Any, Dict, List, Optional, Tuple, Union
6

7
from lm_eval.api.registry import register_model
Baber Abbasi's avatar
Baber Abbasi committed
8
from lm_eval.models.api_models import TemplateAPI
9
from lm_eval.models.utils import handle_stop_sequences
Lintang Sutawika's avatar
Lintang Sutawika committed
10
11
12


eval_logger = logging.getLogger(__name__)
Leo Gao's avatar
Leo Gao committed
13

lintangsutawika's avatar
update  
lintangsutawika committed
14

Baber Abbasi's avatar
Baber Abbasi committed
15
16
@register_model("local-completions")
class LocalCompletionsAPI(TemplateAPI):
lintangsutawika's avatar
lintangsutawika committed
17
18
    def __init__(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
19
20
21
22
23
24
25
        base_url=None,
        tokenizer_backend="huggingface",
        **kwargs,
    ):
        super().__init__(
            base_url=base_url, tokenizer_backend=tokenizer_backend, **kwargs
        )
lintangsutawika's avatar
lintangsutawika committed
26

Baber Abbasi's avatar
Baber Abbasi committed
27
28
29
30
31
    def _create_payload(
        self,
        messages: Union[List[List[int]], List[dict], List[str], str],
        generate=False,
        gen_kwargs: Optional[dict] = None,
32
        seed: int = 1234,
33
        eos=None,
Baber Abbasi's avatar
Baber Abbasi committed
34
35
36
37
        **kwargs,
    ) -> dict:
        if generate:
            gen_kwargs.pop("do_sample", False)
38
39
40
41
            if "max_tokens" in gen_kwargs:
                max_tokens = gen_kwargs.pop("max_tokens")
            else:
                max_tokens = gen_kwargs.pop("max_gen_toks", self._max_gen_toks)
Baber Abbasi's avatar
Baber Abbasi committed
42
            temperature = gen_kwargs.pop("temperature", 0)
43
            stop = handle_stop_sequences(gen_kwargs.pop("until", None), eos)
Baber Abbasi's avatar
Baber Abbasi committed
44
45
46
47
48
49
            return {
                "prompt": messages,
                "model": self.model,
                "max_tokens": max_tokens,
                "temperature": temperature,
                "stop": stop,
50
                "seed": seed,
Baber Abbasi's avatar
Baber Abbasi committed
51
52
                **gen_kwargs,
            }
Baber Abbasi's avatar
Baber Abbasi committed
53
        else:
Baber Abbasi's avatar
Baber Abbasi committed
54
55
56
            return {
                "model": self.model,
                "prompt": messages,
57
                "temperature": 0,
Baber Abbasi's avatar
Baber Abbasi committed
58
59
                "max_tokens": 1,
                "logprobs": 1,
60
                "seed": seed,
Baber Abbasi's avatar
Baber Abbasi committed
61
62
63
64
65
66
67
68
69
                "echo": True,
            }

    @staticmethod
    def parse_logprobs(
        outputs: Union[Dict, List[Dict]],
        tokens: List[List[int]] = None,
        ctxlens: List[int] = None,
        **kwargs,
lintangsutawika's avatar
lintangsutawika committed
70
71
    ) -> List[Tuple[float, bool]]:
        res = []
Baber Abbasi's avatar
Baber Abbasi committed
72
73
74
        if not isinstance(outputs, list):
            outputs = [outputs]
        for out in outputs:
75
76
77
            for choice, ctxlen in zip(
                sorted(out["choices"], key=itemgetter("index")), ctxlens
            ):
Baber Abbasi's avatar
Baber Abbasi committed
78
79
                assert ctxlen > 0, "Context length must be greater than 0"
                logprobs = sum(choice["logprobs"]["token_logprobs"][ctxlen:-1])
80
                tokens_logprobs = choice["logprobs"]["token_logprobs"][ctxlen:-1]
Baber Abbasi's avatar
Baber Abbasi committed
81
82
                top_logprobs = choice["logprobs"]["top_logprobs"][ctxlen:-1]
                is_greedy = True
83
84
                for tok, top in zip(tokens_logprobs, top_logprobs):
                    if tok != max(top.values()):
Baber Abbasi's avatar
Baber Abbasi committed
85
86
87
88
89
90
91
                        is_greedy = False
                        break
                res.append((logprobs, is_greedy))
        return res

    @staticmethod
    def parse_generations(outputs: Union[Dict, List[Dict]], **kwargs) -> List[str]:
lintangsutawika's avatar
lintangsutawika committed
92
        res = []
Baber Abbasi's avatar
Baber Abbasi committed
93
94
95
        if not isinstance(outputs, list):
            outputs = [outputs]
        for out in outputs:
96
            tmp = [None] * len(out["choices"])
Baber Abbasi's avatar
Baber Abbasi committed
97
            for choices in out["choices"]:
98
99
                tmp[choices["index"]] = choices["text"]
            res = res + tmp
Baber Abbasi's avatar
Baber Abbasi committed
100
        return res
lintangsutawika's avatar
lintangsutawika committed
101

Baber Abbasi's avatar
Baber Abbasi committed
102
103
104
    @property
    def api_key(self):
        return os.environ.get("OPENAI_API_KEY", "")
lintangsutawika's avatar
lintangsutawika committed
105
106


Baber Abbasi's avatar
Baber Abbasi committed
107
108
109
110
111
112
113
114
115
@register_model("local-chat-completions")
class LocalChatCompletion(LocalCompletionsAPI):
    def __init__(
        self,
        base_url=None,
        tokenizer_backend=None,
        tokenized_requests=False,
        **kwargs,
    ):
116
117
118
        eval_logger.warning(
            "chat-completions endpoint requires the `--apply_chat_template` flag."
        )
Baber Abbasi's avatar
Baber Abbasi committed
119
120
121
122
123
124
125
126
127
        super().__init__(
            base_url=base_url,
            tokenizer_backend=tokenizer_backend,
            tokenized_requests=tokenized_requests,
            **kwargs,
        )
        if self._batch_size > 1:
            eval_logger.warning(
                "Chat completions does not support batching. Defaulting to batch size 1."
lintangsutawika's avatar
lintangsutawika committed
128
            )
Baber Abbasi's avatar
Baber Abbasi committed
129
130
131
            self._batch_size = 1

    def _create_payload(
132
133
134
135
136
        self,
        messages: List[Dict],
        generate=False,
        gen_kwargs: dict = None,
        seed=1234,
137
        eos=None,
138
        **kwargs,
Baber Abbasi's avatar
Baber Abbasi committed
139
    ) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
140
141
142
        assert type(messages) is not str, (
            "chat-completions require the --apply_chat_template flag."
        )
Baber Abbasi's avatar
Baber Abbasi committed
143
        gen_kwargs.pop("do_sample", False)
144
145
146
147
        if "max_tokens" in gen_kwargs:
            max_tokens = gen_kwargs.pop("max_tokens")
        else:
            max_tokens = gen_kwargs.pop("max_gen_toks", self._max_gen_toks)
Baber Abbasi's avatar
Baber Abbasi committed
148
        temperature = gen_kwargs.pop("temperature", 0)
149
        stop = handle_stop_sequences(gen_kwargs.pop("until", None), eos)
Baber Abbasi's avatar
Baber Abbasi committed
150
151
152
153
154
155
156
157
        if not isinstance(stop, (list, tuple)):
            stop = [stop]
        return {
            "messages": messages,
            "model": self.model,
            "max_tokens": max_tokens,
            "temperature": temperature,
            "stop": stop[:4],
158
            "seed": seed,
Baber Abbasi's avatar
Baber Abbasi committed
159
160
161
162
163
164
165
166
167
            **gen_kwargs,
        }

    @staticmethod
    def parse_generations(outputs: Union[Dict, List[Dict]], **kwargs) -> List[str]:
        res = []
        if not isinstance(outputs, list):
            outputs = [outputs]
        for out in outputs:
168
            tmp = [None] * len(out["choices"])
Baber Abbasi's avatar
Baber Abbasi committed
169
            for choices in out["choices"]:
170
171
                tmp[choices["index"]] = choices["message"]["content"]
            res = res + tmp
Baber Abbasi's avatar
Baber Abbasi committed
172
173
174
175
176
177
178
179
180
181
        return res

    def tok_encode(
        self,
        string: Union[str, Any],
        left_truncate_len=None,
        add_special_tokens=None,
        **kwargs,
    ) -> Union[List[str], List[int], Any]:
        return string
lintangsutawika's avatar
lintangsutawika committed
182

Baber Abbasi's avatar
Baber Abbasi committed
183
    def loglikelihood(self, requests, **kwargs):
Baber Abbasi's avatar
Baber Abbasi committed
184
185
186
        raise NotImplementedError(
            "Loglikelihood is not supported for chat completions. Consider using the completions API instead."
        )
lintangsutawika's avatar
lintangsutawika committed
187
188


Baber Abbasi's avatar
Baber Abbasi committed
189
190
191
192
@register_model(
    "openai-completions",
)
class OpenAICompletionsAPI(LocalCompletionsAPI):
193
    def __init__(
194
        self,
Baber Abbasi's avatar
Baber Abbasi committed
195
196
        base_url="https://api.openai.com/v1/completions",
        tokenizer_backend="tiktoken",
197
        **kwargs,
Baber Abbasi's avatar
Baber Abbasi committed
198
199
200
201
    ):
        super().__init__(
            base_url=base_url, tokenizer_backend=tokenizer_backend, **kwargs
        )
202

Baber Abbasi's avatar
Baber Abbasi committed
203
204
205
206
207
208
    @cached_property
    def api_key(self):
        """Override this property to return the API key for the API request."""
        key = os.environ.get("OPENAI_API_KEY", None)
        if key is None:
            raise ValueError(
209
                "API key not found. Please set the `OPENAI_API_KEY` environment variable."
210
            )
Baber Abbasi's avatar
Baber Abbasi committed
211
        return key
212

Baber Abbasi's avatar
Baber Abbasi committed
213
    def loglikelihood(self, requests, **kwargs):
Baber Abbasi's avatar
Baber Abbasi committed
214
215
216
217
218
219
        assert self.model in [
            "babbage-002",
            "davinci-002",
        ], (
            f"Prompt loglikelihoods are only supported by OpenAI's API for {['babbage-002', 'davinci-002']}."
        )
Baber Abbasi's avatar
Baber Abbasi committed
220
        return super().loglikelihood(requests, **kwargs)
221

222
223
224
    def chat_template(self, chat_template: Union[bool, str] = False) -> Optional[str]:
        return ""

225

Baber Abbasi's avatar
Baber Abbasi committed
226
@register_model("openai-chat-completions")
Baber Abbasi's avatar
Baber Abbasi committed
227
228
229
230
231
232
233
234
class OpenAIChatCompletion(LocalChatCompletion):
    def __init__(
        self,
        base_url="https://api.openai.com/v1/chat/completions",
        tokenizer_backend=None,
        tokenized_requests=False,
        **kwargs,
    ):
235
236
237
238
        if "o1" in kwargs.get("model", ""):
            eval_logger.warning(
                "o1 models do not support `stop` and only support temperature=1"
            )
Baber Abbasi's avatar
Baber Abbasi committed
239
240
241
242
243
244
        super().__init__(
            base_url=base_url,
            tokenizer_backend=tokenizer_backend,
            tokenized_requests=tokenized_requests,
            **kwargs,
        )
245

Baber Abbasi's avatar
Baber Abbasi committed
246
247
248
249
250
251
    @cached_property
    def api_key(self):
        """Override this property to return the API key for the API request."""
        key = os.environ.get("OPENAI_API_KEY", None)
        if key is None:
            raise ValueError(
252
                "API key not found. Please set the `OPENAI_API_KEY` environment variable."
253
            )
Baber Abbasi's avatar
Baber Abbasi committed
254
        return key
255
256
257
258
259

    def loglikelihood(self, requests, **kwargs):
        raise NotImplementedError(
            "Loglikelihood (and therefore `multiple_choice`-type tasks) is not supported for chat completions as OpenAI does not provide prompt logprobs. See https://github.com/EleutherAI/lm-evaluation-harness/issues/942#issuecomment-1777836312 or https://github.com/EleutherAI/lm-evaluation-harness/issues/1196 for more background on this limitation."
        )
260
261
262
263
264
265
266

    def _create_payload(
        self,
        messages: List[Dict],
        generate=False,
        gen_kwargs: dict = None,
        seed=1234,
267
        eos="<|endoftext|>",
268
269
        **kwargs,
    ) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
270
271
272
        assert type(messages) is not str, (
            "chat-completions require the --apply_chat_template flag."
        )
273
274
275
276
277
278
        gen_kwargs.pop("do_sample", False)
        if "max_tokens" in gen_kwargs:
            max_tokens = gen_kwargs.pop("max_tokens")
        else:
            max_tokens = gen_kwargs.pop("max_gen_toks", self._max_gen_toks)
        temperature = gen_kwargs.pop("temperature", 0)
279
        stop = handle_stop_sequences(gen_kwargs.pop("until", ["<|endoftext|>"]), eos)
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
        if not isinstance(stop, (list, tuple)):
            stop = [stop]
        output = {
            "messages": messages,
            "model": self.model,
            "max_completion_tokens": max_tokens,
            "temperature": temperature,
            "stop": stop[:4],
            "seed": seed,
            **gen_kwargs,
        }
        if "o1" in self.model:
            output.pop("stop")
            output["temperature"] = 1
        return output