nemo_lm.py 18.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2024, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import importlib
Lintang Sutawika's avatar
Lintang Sutawika committed
16
import logging
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import pathlib
from copy import deepcopy
from typing import List, Literal

import filelock
import numpy as np
import torch
from tqdm import tqdm

from lm_eval.api.instance import Instance
from lm_eval.api.model import LM
from lm_eval.api.registry import register_model
from lm_eval.models.utils import Collator
from lm_eval.utils import (
    get_rolling_token_windows,
    make_disjoint_window,
    simple_parse_args_string,
)


Lintang Sutawika's avatar
Lintang Sutawika committed
37
38
39
eval_logger = logging.getLogger(__name__)


40
41
42
def _patch_pretrained_cfg(
    pretrained_cfg, trainer, tensor_model_parallel_size, pipeline_model_parallel_size
):
43
44
    try:
        import omegaconf
45
46
    except ModuleNotFoundError as exception:
        raise type(exception)(
47
48
49
50
            "Attempted to use 'nemo_lm' model type, but package `nemo` is not installed"
            "Please install nemo following the instructions in the README: either with a NVIDIA PyTorch or NeMo container, "
            "or installing nemo following https://github.com/NVIDIA/NeMo.",
        )
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

    omegaconf.OmegaConf.set_struct(pretrained_cfg, True)
    with omegaconf.open_dict(pretrained_cfg):
        attributes_to_update = {
            "sequence_parallel": False,
            "activations_checkpoint_granularity": None,
            "activations_checkpoint_method": None,
            "precision": trainer.precision,
            "global_batch_size": None,
            "tensor_model_parallel_size": tensor_model_parallel_size,
            "pipeline_model_parallel_size": pipeline_model_parallel_size,
            "apply_rope_fusion": False,
        }
        for name, value in attributes_to_update.items():
            if hasattr(pretrained_cfg, name):
                pretrained_cfg[name] = value
    return pretrained_cfg


def _get_target_from_class(target_class) -> str:
    return f"{target_class.__module__}.{target_class.__name__}"


def load_model(
    model_path: str,
    trainer,
    tensor_model_parallel_size: int,
    pipeline_model_parallel_size: int,
) -> torch.nn.Module:
80
81
82
83
84
    try:
        from nemo.collections.nlp.models.language_modeling.megatron_gpt_model import (
            MegatronGPTModel,
        )
        from nemo.collections.nlp.parts.nlp_overrides import NLPSaveRestoreConnector
85
86
    except ModuleNotFoundError as exception:
        raise type(exception)(
87
88
89
90
            "Attempted to use 'nemo_lm' model type, but package `nemo` is not installed"
            "Please install nemo following the instructions in the README: either with a NVIDIA PyTorch or NeMo container, "
            "or installing nemo following https://github.com/NVIDIA/NeMo.",
        )
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
    model_path = pathlib.Path(model_path)

    save_restore_connector = NLPSaveRestoreConnector()
    if model_path.is_dir():
        save_restore_connector.model_extracted_dir = model_path.as_posix()
    pretrained_cfg = save_restore_connector.restore_from(
        None, model_path.as_posix(), return_config=True, trainer=trainer
    )
    if not hasattr(pretrained_cfg, "target"):
        pretrained_cfg["target"] = _get_target_from_class(MegatronGPTModel)

    pretrained_cfg = _patch_pretrained_cfg(
        pretrained_cfg,
        trainer,
        tensor_model_parallel_size=tensor_model_parallel_size,
        pipeline_model_parallel_size=pipeline_model_parallel_size,
    )

    model_to_load_path = model_path
    override_config = pretrained_cfg

    module_name, class_name = override_config.target.rsplit(".", 1)
    model_class = getattr(importlib.import_module(module_name), class_name)

    # monkeypatch _build_tokenizer method to be process-safe
    tokenizer_lock = filelock.FileLock(f"/tmp/{model_path.name}.tokenizer.lock")

    def _synced_build_tokenizer(self):
        with tokenizer_lock:
            self._original_build_tokenizer()

    model_class._original_build_tokenizer = model_class._build_tokenizer
    model_class._build_tokenizer = _synced_build_tokenizer

    model = model_class.restore_from(
        restore_path=model_to_load_path.as_posix(),
        trainer=trainer,
        override_config_path=override_config,
        save_restore_connector=save_restore_connector,
        map_location=f"cuda:{trainer.local_rank}",
    )

    model.freeze()
    model.training = False
    try:
        # Have to turn off activations_checkpoint_method for inference
        model.model.language_model.encoder.activations_checkpoint_method = None
    except AttributeError:
        pass
    return model


def setup_distributed_environment(trainer):
144
145
    try:
        from nemo.utils.app_state import AppState
146
147
    except ModuleNotFoundError as exception:
        raise type(exception)(
148
149
150
151
152
            "Attempted to use 'nemo_lm' model type, but package `nemo` is not installed"
            "Please install nemo following the instructions in the README: either with a NVIDIA PyTorch or NeMo container, "
            "or installing nemo following https://github.com/NVIDIA/NeMo.",
        )

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
    def dummy():
        return

    if trainer.strategy.launcher is not None:
        trainer.strategy.launcher.launch(dummy, trainer=trainer)
    trainer.strategy.setup_environment()

    app_state = AppState()

    return app_state


@register_model("nemo_lm")
class NeMoLM(LM):
    def __init__(
        self,
        path: str,
        max_length: int = 4096,
        batch_size: int = 1,
        max_gen_toks: int = 256,
        devices: int = 1,
        num_nodes: int = 1,
        tensor_model_parallel_size: int = 1,
        pipeline_model_parallel_size: int = 1,
        precision: Literal[
            "16-mixed",
            "bf16-mixed",
            "32-true",
            "64-true",
            64,
            32,
            16,
            "64",
            "32",
            "16",
            "bf16",
        ] = "bf16",
        **kwargs,
    ):
192
        try:
Maanu Grover's avatar
Maanu Grover committed
193
            from lightning.pytorch.trainer.trainer import Trainer
194
195
196
197
198
199
            from nemo.collections.nlp.modules.common.text_generation_utils import (
                generate,
            )
            from nemo.collections.nlp.parts.nlp_overrides import NLPDDPStrategy

            self.generate = generate
200
201
        except ModuleNotFoundError as exception:
            raise type(exception)(
202
203
204
205
206
                "Attempted to use 'nemo_lm' model type, but package `nemo` is not installed"
                "Please install nemo following the instructions in the README: either with a NVIDIA PyTorch or NeMo container, "
                "or installing nemo following https://github.com/NVIDIA/NeMo.",
            )

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
        super().__init__()

        if (
            tensor_model_parallel_size == 1
            and pipeline_model_parallel_size == 1
            and devices > 1
        ):
            eval_logger.info(
                f"The number of data replicas for evaluation is {devices}."
            )
            eval_logger.info(f"The total number of devices is {devices}.")
            eval_logger.info(
                "No tensor parallelism or pipeline parallelism is applied."
            )

        elif tensor_model_parallel_size * pipeline_model_parallel_size == devices:
            eval_logger.info(
                f"Setting tensor parallelism to {tensor_model_parallel_size} and pipeline parallelism to {pipeline_model_parallel_size}."
            )
            eval_logger.info(f"The total number of devices is {devices}.")
            eval_logger.info("No data parallelism is applied.")

        else:
            raise ValueError(
                "Please set the product of tensor_model_parallel_size and pipeline_model_parallel_size"
                "equal to the specified number of devices."
            )

        if num_nodes > 1:
            raise ValueError(
                "A number of nodes greater than 1 is not supported yet. Please set num_nodes as 1."
            )

        trainer = Trainer(
            strategy=NLPDDPStrategy(),
            devices=devices,
            accelerator="gpu",
            num_nodes=num_nodes,
            precision=precision,
            logger=False,
            enable_checkpointing=False,
            use_distributed_sampler=False,
        )
        # Modify the following flags only for data replication
        if (
            tensor_model_parallel_size == 1
            and pipeline_model_parallel_size == 1
            and devices > 1
        ):
            self._device = torch.device(f"cuda:{trainer.global_rank}")
            self._rank = trainer.global_rank
            self._world_size = trainer.world_size
        self.model = load_model(
            path,
            trainer,
            tensor_model_parallel_size=tensor_model_parallel_size,
            pipeline_model_parallel_size=pipeline_model_parallel_size,
        ).cuda()
        self.tokenizer = self.model.tokenizer
        self.app_state = setup_distributed_environment(trainer)

        self._max_length = max_length
        self._batch_size = int(batch_size)
        self._max_gen_toks = max_gen_toks

    @classmethod
    def create_from_arg_string(cls, arg_string, additional_config=None):
        args = simple_parse_args_string(arg_string)
        if additional_config:
            args["batch_size"] = additional_config.get("batch_size", 1)

        return cls(**args)

    @property
    def eot_token_id(self):
        try:
            return self.tokenizer.eos_id
        except AttributeError:
            return None

    @property
    def max_length(self):
        return self._max_length

    @property
    def max_gen_toks(self):
        return self._max_gen_toks

    @property
    def batch_size(self):
        return self._batch_size

    @property
    def device(self):
        return self._device

    @property
    def rank(self):
        return self._rank

    @property
    def world_size(self):
        return self._world_size

    @property
    def accelerator(self):
        return self._Accelerator(self.world_size)

    class _Accelerator:
        def __init__(self, world_size):
            self.world_size = world_size

        def wait_for_everyone(self):
            torch.distributed.barrier()

        def gather(self, local_tensor):
            gathered_tensors = [
                torch.zeros(1, dtype=local_tensor.dtype).cuda()
                for _ in range(self.world_size)
            ]
            torch.distributed.all_gather(gathered_tensors, local_tensor)
            return torch.cat(gathered_tensors)

    def tok_encode(self, string: str):
        return self.tokenizer.text_to_ids(string)

    def tok_decode(self, tokens):
        return self.tokenizer.ids_to_text(tokens)

    def _encode_pair(self, context, continuation):
        n_spaces = len(context) - len(context.rstrip())
        if n_spaces > 0:
            continuation = context[-n_spaces:] + continuation
            context = context[:-n_spaces]
        whole_enc = self.tok_encode(context + continuation)
        context_enc = self.tok_encode(context)
        context_enc_len = len(context_enc)
        continuation_enc = whole_enc[context_enc_len:]
        return context_enc, continuation_enc

    def loglikelihood(self, requests):
        new_reqs = []
        for context, continuation in [req.args for req in requests]:
            if context == "":
                # end of text as context
                context_enc, continuation_enc = (
                    [self.eot_token_id],
                    self.tok_encode(continuation),
                )
            else:
                context_enc, continuation_enc = self._encode_pair(context, continuation)

            new_reqs.append(((context, continuation), context_enc, continuation_enc))

        return self._loglikelihood_tokens(new_reqs)

    def loglikelihood_rolling(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[float]:
        loglikelihoods = []

        for (string,) in tqdm([req.args for req in requests], disable=disable_tqdm):
            rolling_token_windows = list(
                map(
                    make_disjoint_window,
                    get_rolling_token_windows(
                        token_list=self.tok_encode(string),
                        prefix_token=self.eot_token_id,
                        max_seq_len=self.max_length - 1,
                        context_len=1,
                    ),
                )
            )

            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

            string_nll = self._loglikelihood_tokens(
                rolling_token_windows,
            )

            # discard is_greedy
            string_nll = [x[0] for x in string_nll]

            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)
392
393
394

            # cache this loglikelihood_rolling request
            self.cache_hook.add_partial("loglikelihood_rolling", (string,), string_nll)
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
        return loglikelihoods

    def _loglikelihood_tokens(self, requests, disable_tqdm=False):
        res = []

        def _collate(x):
            toks = x[1] + x[2]
            return -len(toks), tuple(toks)

        re_ord = Collator(requests, sort_fn=_collate)
        chunks = re_ord.get_batched(n=self.batch_size, batch_fn=None)
        pbar = tqdm(
            total=len(requests),
            disable=(disable_tqdm or (self.rank != 0)),
            desc="Running loglikelihood requests",
        )
        for chunk in chunks:
            inps = []
            ctxlens = []
            contlens = []

            for _, context_enc, continuation_enc in chunk:
                # Leave one token for generation. Tokens_to_generate = 0 breaks NeMo.
                inp = (context_enc + continuation_enc)[-(self.max_length - 1) :]

                ctxlen = len(context_enc) - max(
                    0, len(context_enc) + len(continuation_enc) - (self.max_length - 1)
                )
                ctxlens.append(ctxlen)
                contlens.append(len(continuation_enc))

                inps.append(self.tok_decode(inp))

428
            output = self.generate(
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
                self.model,
                inputs=inps,
                tokens_to_generate=1,
                min_tokens_to_generate=1,
                compute_logprob=True,
                all_probs=True,
            )

            batch_token_ids = np.asarray(output["token_ids"])[:, :-1]
            batch_logprobs = output["logprob"][:, :-1]
            batch_full_logprob = output["full_logprob"][:, :-1, :]

            # Compute greedy tokens for entire batch rather than calling it with proper ctxlen for each sample.
            # Additional tokens for each sample will be trimmed later.
            min_ctxlen = min(ctxlens)

            # Use min_ctxlen-1 instead of min_ctxlen since full_logprobs are not returns for the first token.
            batch_greedy_tokens = (
                torch.argmax(batch_full_logprob[:, min_ctxlen - 1 :, :], -1)
                .cpu()
                .numpy()
            )

            for token_ids, greedy_tokens, logprobs, ctxlen, contlen, (
                cache_key,
                _,
                _,
            ) in zip(
                batch_token_ids,
                batch_greedy_tokens,
                batch_logprobs,
                ctxlens,
                contlens,
                chunk,
            ):
                # Trim at contlen since shorter contexts in a batch will have more than one token generated.
                # Use ctxlen-1 instead of ctxlen same as for full_logprob in batch_greedy_tokens calculation
                logprobs = (logprobs[ctxlen - 1 :])[:contlen]
                logprob = sum(logprobs).tolist()

                continuation_tokens = (token_ids[ctxlen:])[:contlen]
                len_diff = ctxlen - min_ctxlen
                is_greedy = continuation_tokens == (greedy_tokens[len_diff:])[:contlen]
                if not isinstance(is_greedy, bool):
                    is_greedy = is_greedy.all()
                answer = (logprob, is_greedy)

                if cache_key is not None:
477
478
479
                    # special case: loglikelihood_rolling produces a number of loglikelihood requests
                    # all with cache key None. instead do add_partial on the per-example level
                    # in the loglikelihood_rolling() function for those.
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
                    self.cache_hook.add_partial("loglikelihood", cache_key, answer)

                res.append(answer)
                pbar.update(1)

        pbar.close()

        return re_ord.get_original(res)

    def generate_until(self, requests):
        if not requests:
            return []
        res = []

        def get_until(req_args):
            until = req_args.get("until", [])
            until = deepcopy(until)  # prevent from modifying req_args for cache_key
497
498
            if self.tokenizer.ids_to_tokens([self.eot_token_id])[0] not in until:
                until.append(self.tokenizer.ids_to_tokens([self.eot_token_id])[0])
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
            return until

        def _collate(x):
            toks = self.tok_encode(x[0])
            return len(toks), x[0]

        re_ords = Collator(
            [reg.args for reg in requests], sort_fn=_collate, group_by="gen_kwargs"
        )
        chunks = re_ords.get_batched(n=self.batch_size, batch_fn=None)
        for chunk in chunks:
            contexts, all_gen_kwargs = zip(*chunk)
            # we assume all gen kwargs in the batch are the same
            # this is safe to assume because the `grouper` object ensures it.
            req_args = all_gen_kwargs[0]
            # unpack our keyword arguments.
            until = get_until(req_args)
            max_gen_toks = req_args.get("max_gen_toks", self.max_gen_toks)

            remaining_length = self.max_length - max_gen_toks
            contexts = []
            for context, _ in chunk:
                encoded_context = self.tok_encode(context)
                encoded_context = encoded_context[-remaining_length:]
                contexts.append(self.tok_decode(encoded_context))

525
            output = self.generate(
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
                self.model,
                inputs=contexts,
                tokens_to_generate=max_gen_toks,
                end_strings=until,
                greedy=True,
            )

            answers = output["sentences"]

            continuations = []
            for context, answer in zip(contexts, answers):
                continuations.append(answer[len(context) :])

            for term in until:
                continuations = [answer.split(term)[0] for answer in continuations]

            for request, answer in zip(chunk, continuations):
                self.cache_hook.add_partial("greedy_until", request, answer)
                res.append(answer)

        return re_ords.get_original(res)