ibm_watsonx_ai.py 15.7 KB
Newer Older
1
import copy
2
import json
Lintang Sutawika's avatar
Lintang Sutawika committed
3
import logging
4
5
6
7
8
9
10
11
12
import os
from functools import lru_cache
from typing import Any, Dict, List, NamedTuple, Optional, Tuple, Type, cast

from tqdm import tqdm

from lm_eval.api.instance import Instance
from lm_eval.api.model import LM
from lm_eval.api.registry import register_model
13
from lm_eval.models.api_models import JsonChatStr
Lintang Sutawika's avatar
Lintang Sutawika committed
14
15
16
17
from lm_eval.utils import simple_parse_args_string


eval_logger = logging.getLogger(__name__)
18
19
20
21
22
23
24


class LogLikelihoodResult(NamedTuple):
    log_likelihood: float
    is_greedy: bool


25
def _verify_credentials(creds: Any) -> None:
26
    """
27
    Verifies that all required keys are present in the credentials dictionary.
28
    Args:
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
        creds (Any): A dictionary containing the credentials.
    Raises:
        ValueError: If any of the necessary credentials are missing, with guidance on which environment variables need to be set.
    """
    required_keys = ["apikey", "url", "project_id"]
    env_var_mapping = {
        "apikey": "WATSONX_API_KEY",
        "url": "WATSONX_URL",
        "project_id": "WATSONX_PROJECT_ID",
    }
    missing_keys = [key for key in required_keys if key not in creds or not creds[key]]

    if missing_keys:
        missing_env_vars = [env_var_mapping[key] for key in missing_keys]
        raise ValueError(
            f"Missing required credentials: {', '.join(missing_keys)}. Please set the following environment variables: {', '.join(missing_env_vars)}"
        )


@lru_cache(maxsize=None)
def get_watsonx_credentials() -> Dict[str, str]:
    """
    Retrieves Watsonx API credentials from environmental variables.
52
    Returns:
53
        Dict[str, str]: A dictionary containing the credentials necessary for authentication, including
54
55
                        keys such as `apikey`, `url`, and `project_id`.
    Raises:
56
        AssertionError: If the credentials format is invalid or any of the necessary credentials are missing.
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
    """

    credentials = {
        "apikey": os.getenv("WATSONX_API_KEY", None),
        "url": os.getenv("WATSONX_URL", None),
        "project_id": os.getenv("WATSONX_PROJECT_ID", None),
    }

    _verify_credentials(credentials)
    return credentials


@register_model("watsonx_llm")
class WatsonxLLM(LM):
    """
    Implementation of LM model interface for evaluating Watsonx model with the lm_eval framework.
    See https://github.com/EleutherAI/lm-evaluation-harness/blob/main/docs/model_guide.md for reference.
    """

    @classmethod
    def create_from_arg_string(
        cls: Type["WatsonxLLM"],
        arg_string: str,
80
        additional_config: Optional[Dict] = None,
81
82
83
84
85
86
87
88
89
90
91
92
    ) -> "WatsonxLLM":
        """
        Allow the user to specify model parameters (TextGenerationParameters) in CLI arguments.
        """
        try:
            from ibm_watsonx_ai.metanames import GenTextParamsMetaNames as GenParams
        except ImportError:
            raise ImportError(
                "Could not import ibm_watsonx_ai: Please install lm_eval[ibm_watsonx_ai] package."
            )

        args = simple_parse_args_string(arg_string)
93
94
        args.update(additional_config)

95
96
97
98
99
100
101
102
103
104
        model_id = args.pop("model_id", None)
        if model_id is None:
            raise ValueError("'model_id' is required, please pass it in 'model_args'")

        if not args.get("do_sample", None):
            args["temperature"] = None
            args["top_p"] = None
            args["top_k"] = None
            args["seed"] = None

105
        generate_params = {
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
            GenParams.DECODING_METHOD: (
                "greedy" if not args.get("do_sample", None) else "sample"
            ),
            GenParams.LENGTH_PENALTY: args.get("length_penalty", None),
            GenParams.TEMPERATURE: args.get("temperature", None),
            GenParams.TOP_P: args.get("top_p", None),
            GenParams.TOP_K: args.get("top_k", None),
            GenParams.RANDOM_SEED: args.get("seed", None),
            GenParams.REPETITION_PENALTY: args.get("repetition_penalty", None),
            GenParams.MIN_NEW_TOKENS: args.get("min_new_tokens", None),
            GenParams.MAX_NEW_TOKENS: args.get("max_new_tokens", 256),
            GenParams.STOP_SEQUENCES: args.get("stop_sequences", None),
            GenParams.TIME_LIMIT: args.get("time_limit", None),
            GenParams.TRUNCATE_INPUT_TOKENS: args.get("truncate_input_tokens", None),
            GenParams.RETURN_OPTIONS: {
                "generated_tokens": True,
                "input_tokens": True,
                "token_logprobs": True,
                "token_ranks": True,
            },
        }

128
        generate_params = {k: v for k, v in generate_params.items() if v is not None}
129
130

        return cls(
131
            watsonx_credentials=get_watsonx_credentials(),
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
            model_id=model_id,
            generate_params=generate_params,
        )

    def __init__(
        self,
        watsonx_credentials: Dict,
        model_id,
        generate_params: Optional[Dict[Any, Any]] = None,
    ) -> None:
        try:
            from ibm_watsonx_ai import APIClient
            from ibm_watsonx_ai.foundation_models import ModelInference
        except ImportError:
            raise ImportError(
                "Could not import ibm_watsonx_ai: Please install lm_eval[ibm_watsonx_ai] package."
            )
        super().__init__()
        client = APIClient(watsonx_credentials)
        project_id = watsonx_credentials.get("project_id", None)
        deployment_id = watsonx_credentials.get("deployment_id", None)
        client.set.default_project(project_id)
154
        self.generate_params = generate_params
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
        self.model = ModelInference(
            model_id=model_id,
            deployment_id=deployment_id,
            api_client=client,
            project_id=project_id,
        )
        self._model_id = model_id

    @staticmethod
    def _has_stop_token(response_tokens: List[str], context_tokens: List[str]) -> bool:
        """
        Determines whether a stop token has been generated in the `response_tokens` compared to the `context_tokens`.
        If the tokens do not match as expected, the function raises a RuntimeError, indicating a possible
        misalignment between the tokens generated by the tokenizer and the model.
        Args:
            response_tokens (List[str]): The List of tokens generated as a response by the model.
            context_tokens (List[str]): The List of tokens representing the input context.
        Returns:
            bool: True if the `response_tokens` likely contain a stop token that terminates the sequence,
                  otherwise raises an exception.
        Raises:
            RuntimeError: If there is an unexpected mismatch between the `response_tokens` and the `context_tokens`.
        """
        context_length = len(context_tokens)
        if response_tokens[: context_length - 1] == context_tokens[:-1]:
            return (
                response_tokens[-1] != context_tokens[-1]
            )  # only last token differs, probably stop sequence (</s>)
        raise RuntimeError(
            f"There is an unexpected difference between tokenizer and model tokens:\n"
            f"context_tokens={context_tokens}\n"
            f"response_tokens={response_tokens[:context_length]}"
        )

    def _check_model_logprobs_support(self):
        """
        Verifies if the model supports returning log probabilities for input tokens.
        This function sends a prompt to the model and checks whether the model's response
        includes log probabilities for the input tokens. If log probabilities are not present,
        it raises a `RuntimeError`, indicating that the model is not supported.
        Raises:
            RuntimeError: If the model does not return log probabilities for input tokens.
        """
        tokens = self.model.generate_text(
            prompt=["The best ice cream flavor is:"],
            params=self.generate_params,
            raw_response=True,
        )[0]["results"][0]
        if all(token.get("logprob", None) is None for token in tokens["input_tokens"]):
            raise RuntimeError(
                f"Model {self._model_id} is not supported: does not return logprobs for input tokens"
            )

    def _get_log_likelihood(
        self,
        input_tokens: List[Dict[str, float]],
        context_tokens: List[Dict[str, float]],
    ) -> LogLikelihoodResult:
        """
        Calculates the log likelihood of the generated tokens compared to the context tokens.
        Args:
216
            input_tokens (List[Dict[str, float]]): A List of token dictionaries, each containing
217
                token information like `text` and `logprob`.
218
            context_tokens (List[Dict[str, float]]): A List of token dictionaries representing
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
                the input context.
        Returns:
            LogLikelihoodResult: An object containing the calculated log likelihood and a boolean
            flag indicating if the tokens were generated greedily.
        """

        response_tokens = [token["text"] for token in input_tokens]
        context_length = len(context_tokens)

        if self._has_stop_token(response_tokens, context_tokens):
            context_length -= 1

        return LogLikelihoodResult(
            log_likelihood=sum(
                token.get("logprob", 0) for token in input_tokens[context_length:]
            ),
            is_greedy=all(
                token["rank"] == 1 for token in input_tokens[context_length:]
            ),
        )

    def generate_until(self, requests: List[Instance]) -> List[str]:
        """
        Generates text responses for a List of requests, with progress tracking and caching.
        Args:
            requests (List[Instance]): A List of instances, each containing a text input to be processed.
        Returns:
            List[str]: A List of generated responses.
        """
248
        requests = [request.args for request in requests]
249
250
        results = []

251
252
253
        for request in tqdm(
            requests,
            desc="Running generate_until function ...",
254
        ):
255
            context, continuation = request
256
            try:
257
258
259
260
261
262
                if isinstance(context, JsonChatStr):
                    context = json.loads(context.prompt)
                    response = self.model.chat(context, self.generate_params)
                    response = response["choices"][0]["message"]["content"]
                else:
                    response = self.model.generate_text(context, self.generate_params)
263
            except Exception as exp:
264
265
                eval_logger.error("Error while generating text.")
                raise exp
266

267
268
269
270
            results.append(response)
            self.cache_hook.add_partial(
                "generate_until", (context, continuation), response
            )
271
272
273
274
275
276
277
278
279
280
281

        return results

    def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]:
        """
        Args:
            requests: Each request contains Instance.args : Tuple[str, str] containing:
                1. an input string to the LM and
                2. a target string on which the loglikelihood of the LM producing this target,
                   conditioned on the input, will be returned.
        Returns:
282
            Tuple (loglikelihood, is_greedy) for each request according to the input order:
283
284
285
286
287
288
289
290
291
292
                loglikelihood: probability of generating the target string conditioned on the input
                is_greedy: True if and only if the target string would be generated by greedy sampling from the LM
        """
        try:
            from ibm_watsonx_ai.metanames import GenTextParamsMetaNames as GenParams
        except ImportError:
            raise ImportError(
                "Could not import ibm_watsonx_ai: Please install lm_eval[ibm_watsonx_ai] package."
            )
        self._check_model_logprobs_support()
293
294
        generate_params = copy.copy(self.generate_params)
        generate_params[GenParams.MAX_NEW_TOKENS] = 1
295
296
297
298

        requests = [request.args for request in requests]
        results: List[LogLikelihoodResult] = []

299
300
301
302
        # Note: We're not using batching due to (current) indeterminism of loglikelihood values when sending batch of requests
        for request in tqdm(
            requests,
            desc="Running loglikelihood function ...",
303
        ):
304
            context, continuation = request
305
            try:
306
307
308
                tokenized_context = self.model.tokenize(
                    prompt=context, return_tokens=True
                )["result"]["tokens"]
309
            except Exception as exp:
310
311
                eval_logger.error("Error while model tokenize.")
                raise exp
312

313
            input_prompt = context + continuation
314
315

            try:
316
317
                response = self.model.generate_text(
                    prompt=input_prompt, params=generate_params, raw_response=True
318
319
                )
            except Exception as exp:
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
                eval_logger.error("Error while model generate text.")
                raise exp

            log_likelihood_response = self._get_log_likelihood(
                response["results"][0]["input_tokens"], tokenized_context
            )
            results.append(log_likelihood_response)
            self.cache_hook.add_partial(
                "loglikelihood",
                (context, continuation),
                (
                    log_likelihood_response.log_likelihood,
                    log_likelihood_response.is_greedy,
                ),
            )
335
336
337
338
339
340
341

        return cast(List[Tuple[float, bool]], results)

    def loglikelihood_rolling(self, requests) -> List[Tuple[float, bool]]:
        """
        Used to evaluate perplexity on a data distribution.
        Args:
342
            requests: Each request contains Instance.args : Tuple[str] containing an input string to the model whose
343
344
                entire loglikelihood, conditioned on purely the EOT token, will be calculated.
        Returns:
345
            Tuple (loglikelihood,) for each request according to the input order:
346
347
348
349
350
351
352
353
354
                loglikelihood: solely the probability of producing each piece of text given no starting input.
        """
        try:
            from ibm_watsonx_ai.metanames import GenTextParamsMetaNames as GenParams
        except ImportError:
            raise ImportError(
                "Could not import ibm_watsonx_ai: Please install lm_eval[ibm_watsonx_ai] package."
            )
        self._check_model_logprobs_support()
355
356
        generate_params = copy.deepcopy(self.generate_params)
        generate_params[GenParams.MAX_NEW_TOKENS] = 1
357

358
        requests = [request.args for request in requests]
359
360
        results: List[LogLikelihoodResult] = []

361
362
363
364
        # Note: We're not using batching due to (current) indeterminism of loglikelihood values when sending batch of requests
        for request in tqdm(
            requests,
            desc="Running loglikelihood_rolling function ...",
365
        ):
366
            context, continuation = request
367
            try:
368
369
                response = self.model.generate_text(
                    prompt=context, params=generate_params, raw_response=True
370
371
                )
            except Exception as exp:
372
373
374
375
376
377
378
379
380
381
382
383
                eval_logger.error("Error while model generate text.")
                raise exp

            log_likelihood_response = self._get_log_likelihood(
                response["results"][0]["input_tokens"], []
            )
            results.append(log_likelihood_response)
            self.cache_hook.add_partial(
                "loglikelihood_rolling",
                (context, continuation),
                log_likelihood_response.log_likelihood,
            )
384
385

        return cast(List[Tuple[float, bool]], results)
386
387
388
389
390
391
392
393
394
395

    @property
    def tokenizer_name(self) -> str:
        return ""

    def apply_chat_template(
        self, chat_history: List[Dict[str, str]]
    ) -> List[Dict[str, str]]:
        # A hack similar from api_model to allow encoding for cache
        return JsonChatStr(json.dumps(chat_history))