ibm_watsonx_ai.py 15.7 KB
Newer Older
1
import copy
2
import json
3
4
5
6
7
8
9
10
11
import os
from functools import lru_cache
from typing import Any, Dict, List, NamedTuple, Optional, Tuple, Type, cast

from tqdm import tqdm

from lm_eval.api.instance import Instance
from lm_eval.api.model import LM
from lm_eval.api.registry import register_model
12
from lm_eval.models.api_models import JsonChatStr
13
14
15
16
17
18
19
20
from lm_eval.utils import eval_logger, simple_parse_args_string


class LogLikelihoodResult(NamedTuple):
    log_likelihood: float
    is_greedy: bool


21
def _verify_credentials(creds: Any) -> None:
22
    """
23
    Verifies that all required keys are present in the credentials dictionary.
24
    Args:
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
        creds (Any): A dictionary containing the credentials.
    Raises:
        ValueError: If any of the necessary credentials are missing, with guidance on which environment variables need to be set.
    """
    required_keys = ["apikey", "url", "project_id"]
    env_var_mapping = {
        "apikey": "WATSONX_API_KEY",
        "url": "WATSONX_URL",
        "project_id": "WATSONX_PROJECT_ID",
    }
    missing_keys = [key for key in required_keys if key not in creds or not creds[key]]

    if missing_keys:
        missing_env_vars = [env_var_mapping[key] for key in missing_keys]
        raise ValueError(
            f"Missing required credentials: {', '.join(missing_keys)}. Please set the following environment variables: {', '.join(missing_env_vars)}"
        )


@lru_cache(maxsize=None)
def get_watsonx_credentials() -> Dict[str, str]:
    """
    Retrieves Watsonx API credentials from environmental variables.
48
    Returns:
49
        Dict[str, str]: A dictionary containing the credentials necessary for authentication, including
50
51
                        keys such as `apikey`, `url`, and `project_id`.
    Raises:
52
        AssertionError: If the credentials format is invalid or any of the necessary credentials are missing.
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
    """

    credentials = {
        "apikey": os.getenv("WATSONX_API_KEY", None),
        "url": os.getenv("WATSONX_URL", None),
        "project_id": os.getenv("WATSONX_PROJECT_ID", None),
    }

    _verify_credentials(credentials)
    return credentials


@register_model("watsonx_llm")
class WatsonxLLM(LM):
    """
    Implementation of LM model interface for evaluating Watsonx model with the lm_eval framework.
    See https://github.com/EleutherAI/lm-evaluation-harness/blob/main/docs/model_guide.md for reference.
    """

    @classmethod
    def create_from_arg_string(
        cls: Type["WatsonxLLM"],
        arg_string: str,
76
        additional_config: Optional[Dict] = None,
77
78
79
80
81
82
83
84
85
86
87
88
    ) -> "WatsonxLLM":
        """
        Allow the user to specify model parameters (TextGenerationParameters) in CLI arguments.
        """
        try:
            from ibm_watsonx_ai.metanames import GenTextParamsMetaNames as GenParams
        except ImportError:
            raise ImportError(
                "Could not import ibm_watsonx_ai: Please install lm_eval[ibm_watsonx_ai] package."
            )

        args = simple_parse_args_string(arg_string)
89
90
        args.update(additional_config)

91
92
93
94
95
96
97
98
99
100
        model_id = args.pop("model_id", None)
        if model_id is None:
            raise ValueError("'model_id' is required, please pass it in 'model_args'")

        if not args.get("do_sample", None):
            args["temperature"] = None
            args["top_p"] = None
            args["top_k"] = None
            args["seed"] = None

101
        generate_params = {
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
            GenParams.DECODING_METHOD: (
                "greedy" if not args.get("do_sample", None) else "sample"
            ),
            GenParams.LENGTH_PENALTY: args.get("length_penalty", None),
            GenParams.TEMPERATURE: args.get("temperature", None),
            GenParams.TOP_P: args.get("top_p", None),
            GenParams.TOP_K: args.get("top_k", None),
            GenParams.RANDOM_SEED: args.get("seed", None),
            GenParams.REPETITION_PENALTY: args.get("repetition_penalty", None),
            GenParams.MIN_NEW_TOKENS: args.get("min_new_tokens", None),
            GenParams.MAX_NEW_TOKENS: args.get("max_new_tokens", 256),
            GenParams.STOP_SEQUENCES: args.get("stop_sequences", None),
            GenParams.TIME_LIMIT: args.get("time_limit", None),
            GenParams.TRUNCATE_INPUT_TOKENS: args.get("truncate_input_tokens", None),
            GenParams.RETURN_OPTIONS: {
                "generated_tokens": True,
                "input_tokens": True,
                "token_logprobs": True,
                "token_ranks": True,
            },
        }

124
        generate_params = {k: v for k, v in generate_params.items() if v is not None}
125
126

        return cls(
127
            watsonx_credentials=get_watsonx_credentials(),
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
            model_id=model_id,
            generate_params=generate_params,
        )

    def __init__(
        self,
        watsonx_credentials: Dict,
        model_id,
        generate_params: Optional[Dict[Any, Any]] = None,
    ) -> None:
        try:
            from ibm_watsonx_ai import APIClient
            from ibm_watsonx_ai.foundation_models import ModelInference
        except ImportError:
            raise ImportError(
                "Could not import ibm_watsonx_ai: Please install lm_eval[ibm_watsonx_ai] package."
            )
        super().__init__()
        client = APIClient(watsonx_credentials)
        project_id = watsonx_credentials.get("project_id", None)
        deployment_id = watsonx_credentials.get("deployment_id", None)
        client.set.default_project(project_id)
150
        self.generate_params = generate_params
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
        self.model = ModelInference(
            model_id=model_id,
            deployment_id=deployment_id,
            api_client=client,
            project_id=project_id,
        )
        self._model_id = model_id

    @staticmethod
    def _has_stop_token(response_tokens: List[str], context_tokens: List[str]) -> bool:
        """
        Determines whether a stop token has been generated in the `response_tokens` compared to the `context_tokens`.
        If the tokens do not match as expected, the function raises a RuntimeError, indicating a possible
        misalignment between the tokens generated by the tokenizer and the model.
        Args:
            response_tokens (List[str]): The List of tokens generated as a response by the model.
            context_tokens (List[str]): The List of tokens representing the input context.
        Returns:
            bool: True if the `response_tokens` likely contain a stop token that terminates the sequence,
                  otherwise raises an exception.
        Raises:
            RuntimeError: If there is an unexpected mismatch between the `response_tokens` and the `context_tokens`.
        """
        context_length = len(context_tokens)
        if response_tokens[: context_length - 1] == context_tokens[:-1]:
            return (
                response_tokens[-1] != context_tokens[-1]
            )  # only last token differs, probably stop sequence (</s>)
        raise RuntimeError(
            f"There is an unexpected difference between tokenizer and model tokens:\n"
            f"context_tokens={context_tokens}\n"
            f"response_tokens={response_tokens[:context_length]}"
        )

    def _check_model_logprobs_support(self):
        """
        Verifies if the model supports returning log probabilities for input tokens.
        This function sends a prompt to the model and checks whether the model's response
        includes log probabilities for the input tokens. If log probabilities are not present,
        it raises a `RuntimeError`, indicating that the model is not supported.
        Raises:
            RuntimeError: If the model does not return log probabilities for input tokens.
        """
        tokens = self.model.generate_text(
            prompt=["The best ice cream flavor is:"],
            params=self.generate_params,
            raw_response=True,
        )[0]["results"][0]
        if all(token.get("logprob", None) is None for token in tokens["input_tokens"]):
            raise RuntimeError(
                f"Model {self._model_id} is not supported: does not return logprobs for input tokens"
            )

    def _get_log_likelihood(
        self,
        input_tokens: List[Dict[str, float]],
        context_tokens: List[Dict[str, float]],
    ) -> LogLikelihoodResult:
        """
        Calculates the log likelihood of the generated tokens compared to the context tokens.
        Args:
212
            input_tokens (List[Dict[str, float]]): A List of token dictionaries, each containing
213
                token information like `text` and `logprob`.
214
            context_tokens (List[Dict[str, float]]): A List of token dictionaries representing
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
                the input context.
        Returns:
            LogLikelihoodResult: An object containing the calculated log likelihood and a boolean
            flag indicating if the tokens were generated greedily.
        """

        response_tokens = [token["text"] for token in input_tokens]
        context_length = len(context_tokens)

        if self._has_stop_token(response_tokens, context_tokens):
            context_length -= 1

        return LogLikelihoodResult(
            log_likelihood=sum(
                token.get("logprob", 0) for token in input_tokens[context_length:]
            ),
            is_greedy=all(
                token["rank"] == 1 for token in input_tokens[context_length:]
            ),
        )

    def generate_until(self, requests: List[Instance]) -> List[str]:
        """
        Generates text responses for a List of requests, with progress tracking and caching.
        Args:
            requests (List[Instance]): A List of instances, each containing a text input to be processed.
        Returns:
            List[str]: A List of generated responses.
        """
244
        requests = [request.args for request in requests]
245
246
        results = []

247
248
249
        for request in tqdm(
            requests,
            desc="Running generate_until function ...",
250
        ):
251
            context, continuation = request
252
            try:
253
254
255
256
257
258
                if isinstance(context, JsonChatStr):
                    context = json.loads(context.prompt)
                    response = self.model.chat(context, self.generate_params)
                    response = response["choices"][0]["message"]["content"]
                else:
                    response = self.model.generate_text(context, self.generate_params)
259
            except Exception as exp:
260
261
                eval_logger.error("Error while generating text.")
                raise exp
262

263
264
265
266
            results.append(response)
            self.cache_hook.add_partial(
                "generate_until", (context, continuation), response
            )
267
268
269
270
271
272
273
274
275
276
277

        return results

    def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]:
        """
        Args:
            requests: Each request contains Instance.args : Tuple[str, str] containing:
                1. an input string to the LM and
                2. a target string on which the loglikelihood of the LM producing this target,
                   conditioned on the input, will be returned.
        Returns:
278
            Tuple (loglikelihood, is_greedy) for each request according to the input order:
279
280
281
282
283
284
285
286
287
288
                loglikelihood: probability of generating the target string conditioned on the input
                is_greedy: True if and only if the target string would be generated by greedy sampling from the LM
        """
        try:
            from ibm_watsonx_ai.metanames import GenTextParamsMetaNames as GenParams
        except ImportError:
            raise ImportError(
                "Could not import ibm_watsonx_ai: Please install lm_eval[ibm_watsonx_ai] package."
            )
        self._check_model_logprobs_support()
289
290
        generate_params = copy.copy(self.generate_params)
        generate_params[GenParams.MAX_NEW_TOKENS] = 1
291
292
293
294

        requests = [request.args for request in requests]
        results: List[LogLikelihoodResult] = []

295
296
297
298
        # Note: We're not using batching due to (current) indeterminism of loglikelihood values when sending batch of requests
        for request in tqdm(
            requests,
            desc="Running loglikelihood function ...",
299
        ):
300
            context, continuation = request
301
            try:
302
303
304
                tokenized_context = self.model.tokenize(
                    prompt=context, return_tokens=True
                )["result"]["tokens"]
305
            except Exception as exp:
306
307
                eval_logger.error("Error while model tokenize.")
                raise exp
308

309
            input_prompt = context + continuation
310
311

            try:
312
313
                response = self.model.generate_text(
                    prompt=input_prompt, params=generate_params, raw_response=True
314
315
                )
            except Exception as exp:
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
                eval_logger.error("Error while model generate text.")
                raise exp

            log_likelihood_response = self._get_log_likelihood(
                response["results"][0]["input_tokens"], tokenized_context
            )
            results.append(log_likelihood_response)
            self.cache_hook.add_partial(
                "loglikelihood",
                (context, continuation),
                (
                    log_likelihood_response.log_likelihood,
                    log_likelihood_response.is_greedy,
                ),
            )
331
332
333
334
335
336
337

        return cast(List[Tuple[float, bool]], results)

    def loglikelihood_rolling(self, requests) -> List[Tuple[float, bool]]:
        """
        Used to evaluate perplexity on a data distribution.
        Args:
338
            requests: Each request contains Instance.args : Tuple[str] containing an input string to the model whose
339
340
                entire loglikelihood, conditioned on purely the EOT token, will be calculated.
        Returns:
341
            Tuple (loglikelihood,) for each request according to the input order:
342
343
344
345
346
347
348
349
350
                loglikelihood: solely the probability of producing each piece of text given no starting input.
        """
        try:
            from ibm_watsonx_ai.metanames import GenTextParamsMetaNames as GenParams
        except ImportError:
            raise ImportError(
                "Could not import ibm_watsonx_ai: Please install lm_eval[ibm_watsonx_ai] package."
            )
        self._check_model_logprobs_support()
351
352
        generate_params = copy.deepcopy(self.generate_params)
        generate_params[GenParams.MAX_NEW_TOKENS] = 1
353

354
        requests = [request.args for request in requests]
355
356
        results: List[LogLikelihoodResult] = []

357
358
359
360
        # Note: We're not using batching due to (current) indeterminism of loglikelihood values when sending batch of requests
        for request in tqdm(
            requests,
            desc="Running loglikelihood_rolling function ...",
361
        ):
362
            context, continuation = request
363
            try:
364
365
                response = self.model.generate_text(
                    prompt=context, params=generate_params, raw_response=True
366
367
                )
            except Exception as exp:
368
369
370
371
372
373
374
375
376
377
378
379
                eval_logger.error("Error while model generate text.")
                raise exp

            log_likelihood_response = self._get_log_likelihood(
                response["results"][0]["input_tokens"], []
            )
            results.append(log_likelihood_response)
            self.cache_hook.add_partial(
                "loglikelihood_rolling",
                (context, continuation),
                log_likelihood_response.log_likelihood,
            )
380
381

        return cast(List[Tuple[float, bool]], results)
382
383
384
385
386
387
388
389
390
391

    @property
    def tokenizer_name(self) -> str:
        return ""

    def apply_chat_template(
        self, chat_history: List[Dict[str, str]]
    ) -> List[Dict[str, str]]:
        # A hack similar from api_model to allow encoding for cache
        return JsonChatStr(json.dumps(chat_history))