winogrande.py 3.77 KB
Newer Older
Charles Foster's avatar
Charles Foster committed
1
import numpy as np
2
3
4
5
6
7
8
9
10
from . common import HFTask
from lm_eval.base import rf, mean

"""
This evaluation of Winogrande uses partial evaluation as described by
Trinh & Le in Simple Method for Commonsense Reasoning (2018).
Reference: https://arxiv.org/abs/1806.02847
"""

Charles Foster's avatar
Charles Foster committed
11
12
13
14
15

class Winogrande(HFTask):
    DATASET_PATH = "winogrande"
    DATASET_NAME = "winogrande_xl"

16
17
    answer_to_num = {'1': 0, '2': 1}

Charles Foster's avatar
Charles Foster committed
18
19
20
21
22
23
24
    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
25
        return False
Charles Foster's avatar
Charles Foster committed
26

27
28
    def doc_to_text(self, doc):
        return self.partial_context(doc, doc["option" + doc["answer"]])
Charles Foster's avatar
Charles Foster committed
29

30
31
32
33
    def fewshot_description(self):
        # TODO: redo description
        return "Winograd schema sentence including a either a ___ blank with a missing word, making the pronoun ambiguous, or the same with the word filled in."

34
    @classmethod
35
36
    def partial_context(cls, doc, option):
        # Substitute the pronoun in the sentence with the specified option
37
38
        # and ignore everything after.
        pronoun_loc = doc["sentence"].index("_")
39
40
41
        return doc["sentence"][:pronoun_loc] + option

    def doc_to_target(self, doc):
Leo Gao's avatar
Leo Gao committed
42
        return self.partial_target(doc)
43
44
45
46
47

    @classmethod
    def partial_target(cls, doc):
        # The target is everything after the document specified pronoun.
        pronoun_loc = doc["sentence"].index("_") + 1
Leo Gao's avatar
Leo Gao committed
48
        return " " + doc["sentence"][pronoun_loc:].strip()
49

Leo Gao's avatar
Leo Gao committed
50
    def construct_requests(self, doc, ctx):
51
        """Uses RequestFactory to construct Requests and returns an iterable of
Leo Gao's avatar
Leo Gao committed
52
        Requests which will be sent to the LM.
53

Leo Gao's avatar
Leo Gao committed
54
55
56
        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
57
            The context string, generated by fewshot_context. This includes the natural
Leo Gao's avatar
Leo Gao committed
58
            language description, as well as the few shot examples, and the question
59
            part of the document for `doc`.
Leo Gao's avatar
Leo Gao committed
60
        """
61
        target = self.partial_target(doc)
62
        lls = []
63
64
65
        for option in [doc["option1"], doc["option2"]]:
            partial_ctx = self.partial_context(doc, option)
            full_ctx = self.append_context(ctx, partial_ctx)
66
67
            lls.append(rf.loglikelihood(full_ctx, target)[0])
        return lls
68
69
70

    @classmethod
    def append_context(cls, ctx, partial_ctx):
71
        ctx = ctx.split("\n\n")  # Each fewshot context is on its own new line.
72
73
        ctx.pop()  # Remove the correct context put in by `doc_to_text`.
        return "\n\n".join([*ctx, partial_ctx]) if ctx else partial_ctx
74

Leo Gao's avatar
Leo Gao committed
75
    def process_results(self, doc, results):
76
77
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
Leo Gao's avatar
Leo Gao committed
78
79
80
81
82
83
84
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
85
        return {
86
            "acc": np.argmax(results) == self.answer_to_num[doc["answer"]]
87
        }
Leo Gao's avatar
Leo Gao committed
88
89
90
91

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
92
            A dictionary where keys are the names of submetrics and values are
Leo Gao's avatar
Leo Gao committed
93
94
            functions that aggregate a list of metrics
        """
95
96
97
        return {
            "acc": mean
        }
Leo Gao's avatar
Leo Gao committed
98
99
100
101

    def higher_is_better(self):
        """
        :returns: {str: bool}
102
            A dictionary where keys are the names of submetrics and values are
Leo Gao's avatar
Leo Gao committed
103
104
            whether a higher value of the submetric is better
        """
105
106
107
        return {
            "acc": True
        }