wsc273.py 5.09 KB
Newer Older
1
2
import numpy as np
import random
&'s avatar
& committed
3
4
from lm_eval.base import rf
from ..metrics import mean
5
6
7
8
9
10
11
12
13
14
from . common import HFTask

"""
NOTE: This evaluation of Winograd Schema Challenge is based on `partial evaluation`
as described by Trinh & Le in Simple Method for Commonsense Reasoning (2018).
See: https://arxiv.org/abs/1806.02847
"""


class WinogradSchemaChallenge273(HFTask):
Leo Gao's avatar
Leo Gao committed
15
    VERSION = 0
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
    DATASET_PATH = "winograd_wsc"
    DATASET_NAME = "wsc273"

    upper_pronouns = ["A", "An", "The", "She", "He",
                      "It", "They", "My", "His", "Her", "Their"]

    def __init__(self):
        super().__init__()
        self.data = self.__clean_data()

    def __clean_data(self):
        # The HF implementation of `wsc273` is not `partial evaluation` friendly.
        data = []
        for doc in self.data["test"]:
            doc["text"] = doc["text"].replace("  ", " ")
31
32
            doc["options"][0] = self.__normalize_option(doc, doc["options"][0])
            doc["options"][1] = self.__normalize_option(doc, doc["options"][1])
33
34
35
            data.append(doc)
        return {"test": data}

36
    def __normalize_option(self, doc, option):
37
        # Append `'s` to possessive determiner based options.
38
        if doc["pronoun"].lower() in ["my", "his", "her", "our", "their"]:
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
            option += "'s"
        # Appropriately lowercase the pronoun in the option.
        pronoun = option.split()[0]
        start_of_sentence = doc["text"][doc['pronoun_loc'] - 2] == '.'
        if not start_of_sentence and pronoun in self.upper_pronouns:
            return option.replace(pronoun, pronoun.lower())
        return option

    def has_training_docs(self):
        return False

    def has_validation_docs(self):
        return False

    def has_test_docs(self):
        return True

56
57
58
59
    def fewshot_description(self):
        # TODO: redo description
        return "Winograd schema sentence with correct continuation. True. Winograd schema sentence with incorrect continuation. False."

60
    def fewshot_examples(self, k, rnd):
61
62
        # NOTE: `super().fewshot_examples` samples from training docs which are
        # not available for this test-set-only dataset.
63
64
65
66
67

        if self._fewshot_docs is None:
            self._fewshot_docs = list(self.test_docs())

        return rnd.sample(list(self._fewshot_docs), k)
68

69
70
    def doc_to_text(self, doc):
        return self.partial_context(doc, doc["options"][doc["label"]])
71
72

    @classmethod
73
74
75
76
77
78
    def partial_context(cls, doc, option):
        # Substitute the pronoun in the original text with the specified
        # option and ignore everything after.
        return doc["text"][:doc["pronoun_loc"]] + option

    def doc_to_target(self, doc):
Leo Gao's avatar
Leo Gao committed
79
        return self.partial_target(doc)
80
81
82
83
84

    @classmethod
    def partial_target(cls, doc):
        # The target is everything after the document specified pronoun.
        start_index = doc["pronoun_loc"] + len(doc["pronoun"])
Leo Gao's avatar
Leo Gao committed
85
        return " " + doc["text"][start_index:].strip()
86
87

    def construct_requests(self, doc, ctx):
88
        """Uses RequestFactory to construct Requests and returns an iterable of
89
90
91
92
93
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
94
            The context string, generated by fewshot_context. This includes the natural
95
            language description, as well as the few shot examples, and the question
96
            part of the document for `doc`.
97
98
        """
        target = self.partial_target(doc)
99
        lls = []
100
101
102
        for option in doc["options"]:
            partial_ctx = self.partial_context(doc, option)
            full_ctx = self.append_context(ctx, partial_ctx)
103
104
            lls.append(rf.loglikelihood(full_ctx, target)[0])
        return lls
105
106
107

    @classmethod
    def append_context(cls, ctx, partial_ctx):
108
        ctx = ctx.split("\n\n")  # Each fewshot context is on its own new line.
109
110
        ctx.pop()  # Remove the correct context put in by `doc_to_text`.
        return "\n\n".join([*ctx, partial_ctx]) if ctx else partial_ctx
111
112

    def process_results(self, doc, results):
113
114
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
115
116
117
118
119
120
121
122
123
124
125
126
127
128
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        return {
            "acc": np.argmax(results) == doc["label"]
        }

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
129
            A dictionary where keys are the names of submetrics and values are
130
131
132
133
134
135
136
137
138
            functions that aggregate a list of metrics
        """
        return {
            "acc": mean
        }

    def higher_is_better(self):
        """
        :returns: {str: bool}
139
            A dictionary where keys are the names of submetrics and values are
140
141
142
143
144
            whether a higher value of the submetric is better
        """
        return {
            "acc": True
        }