triviaqa.py 2.56 KB
Newer Older
1
import os
Anish Thite's avatar
Anish Thite committed
2
import json
&'s avatar
& committed
3
4
from lm_eval.base import Task, rf
from ..metrics import mean
Anish Thite's avatar
Anish Thite committed
5
6
from ..utils import sh

7

8
class TriviaQA(Task):
Leo Gao's avatar
Leo Gao committed
9
    VERSION = 0
Anish Thite's avatar
Anish Thite committed
10
    def download(self):
11
12
13
14
15
16
17
        if not os.path.exists('data/triviaqa'):
            sh("""
            mkdir -p data/triviaqa
            wget http://nlp.cs.washington.edu/triviaqa/data/triviaqa-unfiltered.tar.gz -O data/triviaqa/trivia_qa-unfiltered.tar.gz
            tar -xf data/triviaqa/trivia_qa-unfiltered.tar.gz
            mv triviaqa-unfiltered/ data/triviaqa/
            """)
18
19
20
21
22
23
            
            # convert to streamable jsonl
            for subset in ['train', 'dev']:
                with open(f'data/triviaqa/triviaqa-unfiltered/unfiltered-web-{subset}.jsonl', 'w') as fh:
                    for d in json.load(open(f'data/triviaqa/triviaqa-unfiltered/unfiltered-web-{subset}.json'))['Data']:
                        fh.write(json.dumps(d) + "\n")
Anish Thite's avatar
Anish Thite committed
24
25
26
27
28
29
30
31

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
Leo Gao's avatar
Leo Gao committed
32
        return False
Anish Thite's avatar
Anish Thite committed
33
34

    def training_docs(self):
35
        return map(json.loads, open('data/triviaqa/triviaqa-unfiltered/unfiltered-web-train.jsonl'))
Anish Thite's avatar
Anish Thite committed
36
37

    def validation_docs(self):
Leo Gao's avatar
Leo Gao committed
38
        return map(json.loads, open('data/triviaqa/triviaqa-unfiltered/unfiltered-web-dev.jsonl'))
Anish Thite's avatar
Anish Thite committed
39
40

    def test_docs(self):
41
        raise NotImplementedError()
Anish Thite's avatar
Anish Thite committed
42
43
    
    def fewshot_description(self):
Leo Gao's avatar
Leo Gao committed
44
45
        # TODO: figure out fewshot description
        return ""
Anish Thite's avatar
Anish Thite committed
46
    
47
    def doc_to_text(self, doc):
48
        return f"Question: {doc['Question']}\nAnswer:"
49
50

    def doc_to_target(self, doc):
Leo Gao's avatar
Leo Gao committed
51
52
53
54
55
56
57
58
59
60
61
62
63
        return " " + doc['Answer']['Value']

    def _remove_prefixes(self, aliases):
        # Optimization: Remove any alias that has a strict prefix elsewhere in the list
        # we can do this because if the prefix is acceptable by isgreedy, we can stop looking
        aliases.sort()
        ret = [aliases[0]]
        for alias in aliases[1:]:
            if not alias.startswith(ret[-1]):
                ret.append(alias)

        return ret
        
Anish Thite's avatar
Anish Thite committed
64

Leo Gao's avatar
Leo Gao committed
65
    def construct_requests(self, doc, ctx):
Leo Gao's avatar
Leo Gao committed
66
67
68
69
70
        ret = []
        for alias in self._remove_prefixes(doc['Answer']['Aliases']):
            _, is_prediction = rf.loglikelihood(ctx, " " + alias)
            ret.append(is_prediction)
        return ret
71

Leo Gao's avatar
Leo Gao committed
72
    def process_results(self, doc, results):
73
        return {
Leo Gao's avatar
Leo Gao committed
74
            "acc": float(any(results))
75
        }
Leo Gao's avatar
Leo Gao committed
76
77

    def aggregation(self):
78
79
80
        return {
            "acc": mean,
        }
Leo Gao's avatar
Leo Gao committed
81
82

    def higher_is_better(self):
83
84
        return {
            "acc": True
Leo Gao's avatar
Leo Gao committed
85
        }