naturalqs.py 3.88 KB
Newer Older
1
import random
2
from . common import HFTask
Leo Gao's avatar
Leo Gao committed
3
from itertools import islice
4

5
6

class NaturalQs(HFTask):
Leo Gao's avatar
Leo Gao committed
7
    VERSION = 0
Leo Gao's avatar
Leo Gao committed
8
9
10
11
    # TODO: naturalqs has a *really* large train set that huggingface just
    # automatically downloads even if you dont use it. we should try and only 
    # download the val set and not even bother with the train set. 

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
    DATASET_PATH = "natural_questions"
    DATASET_NAME = None

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return False

    def fewshot_description(self):
        # TODO: figure out description
        return ""

28
29
30
    def training_docs(self):
        # Cache training for faster few-shot.
        # Data is too large to fit in memory.
Charles Foster's avatar
Charles Foster committed
31
        return self.data["train"]
32

33
    def fewshot_examples(self, k, rnd):
Leo Gao's avatar
Leo Gao committed
34
        # Data is too large to fit in memory. We just sample from the first bit.
35
36
        if self._training_docs is None:
            self._training_docs = list(islice(self.training_docs(), 0, 100000))
Leo Gao's avatar
Leo Gao committed
37

Leo Gao's avatar
Leo Gao committed
38
        return rnd.sample(self._training_docs, k)
Leo Gao's avatar
Leo Gao committed
39

40
    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
41
        return 'Q: ' + doc['question']['text'] + '\n\n' + 'A:'
42
43
44
45
46
47
48
49
50
51
52

    def doc_to_target(self, doc):
        # There's a short answer and a long answer. Based on the paper, I'm using the long answer.
        short_answer = doc['annotations']['short_answers'][0]['text']
        long_answer_start = doc['annotations']['long_answer'][0]['start_token']
        long_answer_end = doc['annotations']['long_answer'][0]['end_token']
        long_answer_span = doc['document']['tokens']['token'][long_answer_start:long_answer_end]
        long_answer_is_html = doc['document']['tokens']['is_html'][long_answer_start:long_answer_end]
        long_answer_chars = [tok for (tok, is_html) in zip(long_answer_span, long_answer_is_html) if not is_html]
        long_answer = " ".join(long_answer_chars)
        return long_answer # Replace with short_answer[0] for short answer
53

Leo Gao's avatar
Leo Gao committed
54
55
56
    def construct_requests(self, doc, ctx):
        """ Uses RequestFactory to construct Requests and returns an iterable of 
        Requests which will be sent to the LM.
57

Leo Gao's avatar
Leo Gao committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural 
            language description, as well as the few shot examples, and the question
            part of the document for `doc`. 
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')
    
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a 
        dict where keys are the names of submetrics and values are the values of 
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
            A dictionary where keys are the names of submetrics and values are 
            functions that aggregate a list of metrics
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')

    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are 
            whether a higher value of the submetric is better
        """
        # TODO: implement evaluation.
Leo Gao's avatar
Leo Gao committed
97
        raise NotImplementedError('Evaluation not implemented')