coqa.py 5.68 KB
Newer Older
1
import os
2
import json
3
import transformers.data.metrics.squad_metrics as squad_metrics
4
from lm_eval.base import Task, rf, mean
sdtblck's avatar
sdtblck committed
5
from ..utils import sh
6
from itertools import zip_longest
7

8

9
class CoQA(Task):
Leo Gao's avatar
Leo Gao committed
10
    VERSION = 0
thefazzer's avatar
thefazzer committed
11

sdtblck's avatar
sdtblck committed
12
    def download(self):
13
14
15
16
17
18
19
20
        coqa_train_filepath = 'data/coqa/coqa-train-v1.0.json'
        coqa_dev_filepath = 'data/coqa/coqa-dev-v1.0.json'

        sh ("""mkdir -p data/coqa""")
        if not os.path.exists(coqa_train_filepath):
            sh ("""wget http://downloads.cs.stanford.edu/nlp/data/coqa/coqa-train-v1.0.json -O """ + coqa_train_filepath)
        if not os.path.exists(coqa_dev_filepath):
            sh ("""wget http://downloads.cs.stanford.edu/nlp/data/coqa/coqa-dev-v1.0.json -O """ + coqa_dev_filepath)
sdtblck's avatar
sdtblck committed
21

22
23
24
25
    def has_training_docs(self):
        return True

    def has_validation_docs(self):
Anish Thite's avatar
Anish Thite committed
26
        return True
Jason Phang's avatar
Jason Phang committed
27
28
29
30

    def has_test_docs(self):
        return False

31
    def training_docs(self):
32
        return json.load(open('data/coqa/coqa-train-v1.0.json'))['data']
33
34

    def validation_docs(self):
thefazzer's avatar
thefazzer committed
35
        return json.load(open('data/coqa/coqa-dev-v1.0.json'))['data']
36
37

    def test_docs(self):
Leo Gao's avatar
Leo Gao committed
38
        pass
39
40
    
    def fewshot_description(self):
thefazzer's avatar
thefazzer committed
41
        return "Given a passage and a conversation so far, answer the next question in the conversation."
42
    
Leo Gao's avatar
Leo Gao committed
43
    def doc_to_text(self, doc):
thefazzer's avatar
thefazzer committed
44
45
        # Given a passage p, the conversation history {q1, a1, . . . qi−1, ai−1} 
        # and a question qi, the task is to predict the answer ai
46
        doc_text = doc["story"] + '\n\n'
thefazzer's avatar
thefazzer committed
47
        for (q, a) in zip_longest(doc["questions"], doc["answers"][:-1]):   # omit target answer ai
48
            question = f"Q: {q['input_text']}" + '\n\n'
Leo Gao's avatar
Leo Gao committed
49
            answer = f"A: {a['input_text']}" + '\n\n' if a is not None else "A:"
50
51
            doc_text += question + answer
        return doc_text
thefazzer's avatar
thefazzer committed
52
        
53
54
    @classmethod
    def get_answers(cls, doc, turn_id):
thefazzer's avatar
thefazzer committed
55
        # Returns unique answers and valid alternatives (Some questions in CoQA have multiple valid answers).
56
57
58
59
        answers = []
        answer_forturn = doc["answers"][turn_id - 1]["input_text"]
        answers.append(answer_forturn)
        
thefazzer's avatar
thefazzer committed
60
61
62
63
64
        additional_answers = doc.get("additional_answers")
        if additional_answers:
            for key in additional_answers:
                additional_answer_for_turn = additional_answers[key][turn_id - 1]["input_text"]
                if additional_answer_for_turn.lower() not in map(str.lower, answers):
65
66
                    answers.append(additional_answer_for_turn)
        return answers
thefazzer's avatar
thefazzer committed
67
    
thefazzer's avatar
thefazzer committed
68
69
70
71
72
73
74
75
76
77
78
79
80
    @classmethod
    def get_answer_choice(self, raw_text):
        # Function maps answers to CoQA answer categories
        # ~ 1/5 of the CoQA answers are Yes/No 
        # ~ 2/3 of the CoQA answers are span-based
        # (answers overlap with the passage ignoring punctuation and case mismatch)
        if raw_text == "unknown":
            return '0'
        if squad_metrics.normalize_answer(raw_text) == "yes":
            return '1'
        if squad_metrics.normalize_answer(raw_text) == "no":
            return '2'
        return '3' # Not a yes/no question
Leo Gao's avatar
Leo Gao committed
81

82
83
    @staticmethod
    def compute_scores(gold_list, pred):
thefazzer's avatar
thefazzer committed
84
85
        # tests for exact match and on the normalised answer (compute_exact)
        # test for overlap (compute_f1)
86
87
88
89
90
        f1_sum = 0.0
        em_sum = 0.0
        if len(gold_list) > 1:
            for i in range(len(gold_list)):
                gold_answers = gold_list[0:i] + gold_list[i + 1:]
thefazzer's avatar
thefazzer committed
91
                # predictions compared against (n) golds and take maximum
92
93
94
95
96
97
98
99
                em_sum += max(squad_metrics.compute_exact(a, pred) for a in gold_answers)
                f1_sum += max(squad_metrics.compute_f1(a, pred) for a in gold_answers)
        else:
            em_sum += max(squad_metrics.compute_exact(a, pred) for a in gold_list)
            f1_sum += max(squad_metrics.compute_f1(a, pred) for a in gold_list)

        return {'em': em_sum / max(1, len(gold_list)), 'f1': f1_sum / max(1, len(gold_list))}

thefazzer's avatar
thefazzer committed
100
101
102
103
104
    def doc_to_target(self, doc, turnid=None):
        # Default to prediction of last turn.
        if turnid is None:
            turnid = len(doc["questions"])
        raw_text = doc['answers'][turnid - 1]["input_text"]
Leo Gao's avatar
Leo Gao committed
105
        return " " + raw_text
thefazzer's avatar
thefazzer committed
106

Leo Gao's avatar
Leo Gao committed
107
108
109
110
111
112
113
114
115
116
117
    def construct_requests(self, doc, ctx):
        """ Uses RequestFactory to construct Requests and returns an iterable of 
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural 
            language description, as well as the few shot examples, and the question
            part of the document for `doc`. 
        """
118
119
        cont_request = rf.greedy_until(ctx, ['\n'])
        return cont_request
thefazzer's avatar
thefazzer committed
120

Leo Gao's avatar
Leo Gao committed
121
122
123
124
125
126
127
128
129
130
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a 
        dict where keys are the names of submetrics and values are the values of 
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
131
        turn_id = len(doc["questions"])
132
133
        gold_list = self.get_answers(doc, turn_id)
        pred = results[0]
134

thefazzer's avatar
thefazzer committed
135
        scores = self.compute_scores(gold_list, pred)
136

thefazzer's avatar
thefazzer committed
137
        return {
thefazzer's avatar
thefazzer committed
138
139
            "f1": scores['f1'],
            "em": scores['em'],
thefazzer's avatar
thefazzer committed
140
        }
141
142

    def higher_is_better(self):
143
        return {
144
145
            "f1": True,
            "em": True,
146
        }
Leo Gao's avatar
Leo Gao committed
147

148
    def aggregation(self):
149
        return {
150
151
            "f1": mean,
            "em": mean,
Leo Gao's avatar
Leo Gao committed
152
        }