seq2seq.py 14.2 KB
Newer Older
Benjamin Fattori's avatar
Benjamin Fattori committed
1
2
3
import torch
import transformers

4
import copy
Benjamin Fattori's avatar
Benjamin Fattori committed
5
6
7
8
9
10
from tqdm import tqdm

import torch.nn.functional as F

from lm_eval import utils
from lm_eval.logger import eval_logger
11
12
from lm_eval.api.registry import register_model
from lm_eval.api.model import LM
Benjamin Fattori's avatar
Benjamin Fattori committed
13

14
15
from lm_eval.utils import MultiTokenEOSCriteria, stop_sequences_criteria

Benjamin Fattori's avatar
Benjamin Fattori committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from accelerate import Accelerator


@register_model("hf-seq2seq", "seq2seq")
class Seq2SeqHFLM(LM):
    _DEFAULT_MAX_LENGTH: int = 2048
    def __init__(
        self,
        device="cuda",
        pretrained="t5-small",
        revision="main",
        low_cpu_mem_usage=None,
        subfolder=None,
        tokenizer=None,
        batch_size=1,
    ):
        super().__init__()

        assert isinstance(device, str)
        assert isinstance(pretrained, str)
        assert isinstance(batch_size, int)
        gpus = torch.cuda.device_count()
        if gpus <= 1:
            if device:
                if device not in ["cuda", "cpu"]:
                    device = int(device)
                self._device = torch.device(device)
                print(f"Using device '{device}'")
            else:
                print("Device not specified")
                print(f"Cuda Available? {torch.cuda.is_available()}")
                self._device = (
                    torch.device("cuda")
                    if torch.cuda.is_available()
                    else torch.device("cpu")
                )
            self._rank = 0
            self._world_size = 1

        else:
            self._device = "cpu"

        # TODO: update this to be less of a hack once subfolder is fixed in HF
        revision = revision + ("/" + subfolder if subfolder is not None else "")

        self.model = transformers.AutoModelForSeq2SeqLM.from_pretrained(
            pretrained, revision=revision, low_cpu_mem_usage=low_cpu_mem_usage
        ).to(self.device)
        self.model.eval()

        self.tokenizer = transformers.AutoTokenizer.from_pretrained(
            pretrained if tokenizer is None else tokenizer,
            revision=revision,
        )

        self.vocab_size = self.tokenizer.vocab_size

        # multithreading and batching
        self.batch_size_per_gpu = batch_size

        if gpus > 1:
77
78
79
80
81
82
83
84
85
86
87
            accelerator = Accelerator()
            if gpus > accelerator.num_processes:
                warning = (
                    "WARNING: The number of total system GPUs does not match the number of spawned processes. "
                    "If you would like to use data parallelism, please launch the script "
                    "with 'accelerate launch *script*'. "
                    f"Current run will proceed with {accelerator.num_processes} devices."
                )
                print(warning)
                self._rank = accelerator.local_process_index
                self._world_size = accelerator.num_processes
88
89
90
91
92
93
94
95
                # manually set model to use gpu, for case where many GPUs available but
                # only seek to use one
                self._device = (
                    torch.device(f"cuda:{accelerator.local_process_index}")
                    if torch.cuda.is_available()
                    else torch.device("cpu")
                )
                self.model.to(self.device)
96
97
98
99
100
101
102
103
104
105
            else:
                self.model = accelerator.prepare(self.model)
                self._device = torch.device(f"cuda:{accelerator.local_process_index}")
                self.accelerator = accelerator

                if self.accelerator.is_local_main_process:
                    print(f"Using {gpus} devices with data parallelism")

                self._rank = self.accelerator.local_process_index
                self._world_size = self.accelerator.num_processes
Benjamin Fattori's avatar
Benjamin Fattori committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

    @property
    def max_length(self):
        return self._DEFAULT_MAX_LENGTH #TODO: Is this a good default?
    @property
    def max_gen_toks(self):
        return 256

    @property
    def batch_size(self):
        return self.batch_size_per_gpu

    @property
    def device(self):
        return self._device

    @property
    def rank(self):
        return self._rank

    @property
    def world_size(self):
        return self._world_size
    
    def tok_encode(self, string: str):
        return self.tokenizer.encode(string, add_special_tokens=True)

    def tok_decode(self, tokens):
        return self.tokenizer.decode(tokens, skip_special_tokens=True)
    
141
    def _model_call(self, inps, attn_mask = None ,labels = None):
Benjamin Fattori's avatar
Benjamin Fattori committed
142
143
144
145
146
147
148
149
150
151
152
        """
        inps: a torch tensor of shape [batch, sequence_ctx]
        the size of sequence may vary from call to call

        labels: a torch tensor of shape [batch, sequence_cont]
        the size of sequence may vary from call to call

        returns: a torch tensor of shape [batch, sequence, vocab] with the
        logits returned from the model
        """
        with torch.no_grad():
153
            return self.model(input_ids = inps, attention_mask = attn_mask, labels = labels).logits
Benjamin Fattori's avatar
Benjamin Fattori committed
154
        
155
156
157
158
159
160
    def _model_generate(self, context, max_length, stop, **generation_kwargs):
        # we require users to pass do_sample=True explicitly
        # for non-greedy gen. This should be reevaluated when considering beam search.
        if "do_sample" not in generation_kwargs.keys():
            generation_kwargs["do_sample"] = False
        # build stopping criteria
Benjamin Fattori's avatar
Benjamin Fattori committed
161
162
163
        stopping_criteria = stop_sequences_criteria(
            self.tokenizer, stop, 1, context.shape[0]
        )
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
        if hasattr(self, "accelerator"):
            return self.accelerator.unwrap_model(self.model).generate(
                context,
                max_new_tokens=max_length,
                stopping_criteria=stopping_criteria,
                pad_token_id=self.eot_token_id,
                **generation_kwargs,
            )
        else:
            return self.model.generate(
                context,
                max_new_tokens=max_length,
                stopping_criteria=stopping_criteria,
                pad_token_id=self.eot_token_id,
                **generation_kwargs,
Benjamin Fattori's avatar
Benjamin Fattori committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
        )
    
    def loglikelihood(self, requests):
        new_reqs = []
        for context, continuation in [req.args for req in requests]:
            if context == "":
                # end of text as context
                context_enc = [self.eot_token_id]
            else:
                context_enc = self.tok_encode(context)

            continuation_enc = self.tok_encode(continuation)

            new_reqs.append(((context, continuation), context_enc, continuation_enc))

        return self._loglikelihood_tokens(new_reqs)
    
    def loglikelihood_rolling(self, requests):
197
        loglikelihoods = []
198
        for (string,) in tqdm([req.args for req in requests], disable=(self.rank != 0)):
199
200
201
202
203
            rolling_token_windows = list(
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
204
                        prefix_token=self.eot_token_id, 
205
206
207
208
209
210
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )
            
211
            #TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder
212
213
214
215
            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

            pad_amnt = 0
            if self.world_size > 1:
216
                # We pad out the external document-level iterator so the inner iterator doesn't hang
217
218
219
220
221
222
223
224
                mytensor = torch.tensor(len(rolling_token_windows), device=self.device)
                gathered = (
                    self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
                )

                pad_amnt = max(gathered) - gathered[self.rank]
                if pad_amnt > 0:
                    rolling_token_windows += pad_amnt * [rolling_token_windows[0]]
225
226

            string_nll = self._loglikelihood_tokens(
227
                rolling_token_windows, disable_tqdm=True
228
229
            )

230
231
232
233
234
            if (self.world_size > 1) and (pad_amnt > 0):
                string_nll = [x[0] for x in string_nll[:-pad_amnt]]
            else:
                # discard is_greedy
                string_nll = [x[0] for x in string_nll]
235
236
237
238
239

            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)

        return loglikelihoods
Benjamin Fattori's avatar
Benjamin Fattori committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
    
    def _loglikelihood_tokens(self, requests, disable_tqdm=False):
        res = []

        def _collate(x):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end

            toks = x[1] + x[2]
            return -len(toks), tuple(toks)
        
        re_ord = utils.Reorderer(requests, _collate)
        for chunk in utils.chunks(
            tqdm(re_ord.get_reordered(), disable=(disable_tqdm or (self.rank != 0))),
            self.batch_size,
        ):
            inps = []
            conts = []
262
            encoder_attns = []
Benjamin Fattori's avatar
Benjamin Fattori committed
263
            cont_toks_list = []
264
265
266
            
            max_batch_length_inp = None
            max_batch_length_cont = None
Benjamin Fattori's avatar
Benjamin Fattori committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

                inp = torch.tensor(
                    (context_enc)[-self.max_length :],
                    dtype=torch.long,
                ).to(self.device)
                (inplen,) = inp.shape

                cont = torch.tensor(
                    (continuation_enc)[-self.max_length :],
                    dtype=torch.long,
                ).to(self.device)
                (contlen,) = cont.shape

286
287
                max_batch_length_inp = max(max_batch_length_inp, inplen) if max_batch_length_inp is not None else inplen
                max_batch_length_cont = max(max_batch_length_cont, contlen) if max_batch_length_cont is not None else contlen
Benjamin Fattori's avatar
Benjamin Fattori committed
288

289
290
291
                inps.append(inp)  # [1, inp_len]
                conts.append(cont) # [1, cont_len]
                encoder_attns.append(torch.ones_like(inp))
Benjamin Fattori's avatar
Benjamin Fattori committed
292
293
294

                cont_toks_list.append(continuation_enc)

295
296
297
298
            batched_inps = utils.pad_and_concat(max_batch_length_inp, inps) # [batch, padding_length]
            batched_conts = utils.pad_and_concat(max_batch_length_cont, conts) # [batch, padding_length]
            batched_encoder_mask = utils.pad_and_concat(max_batch_length_inp, encoder_attns)
            # need to make attention mask here too
Benjamin Fattori's avatar
Benjamin Fattori committed
299
300

            multi_logits = F.log_softmax(
301
                self._model_call(batched_inps, attn_mask = batched_encoder_mask, labels = batched_conts), dim=-1
Benjamin Fattori's avatar
Benjamin Fattori committed
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
            ).cpu()  # [batch, padding_length, vocab]

            for (cache_key, _, _), logits, cont_toks in zip(
                chunk, multi_logits, cont_toks_list
            ):

                # Slice to original seq length 
                contlen = len(cont_toks)
                logits = logits[: contlen].unsqueeze(
                    0
                )  # [1, seq, vocab]

                # Check if per-token argmax is exactly equal to continuation
                greedy_tokens = logits.argmax(dim=-1)
                cont_toks = torch.tensor(cont_toks, dtype=torch.long).unsqueeze(
                    0
                )  # [1, seq]
                max_equal = (greedy_tokens == cont_toks).all()

                # Obtain log-probs at the corresponding continuation token indices
                logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                    -1
                )  # [1, seq]

                # Answer: (log prob, is-exact-match)
                answer = (float(logits.sum()), bool(max_equal))

                res.append(answer)

        return re_ord.get_original(res)
    
    def greedy_until(self, requests):
        res = []

        def _collate(x):
            toks = self.tok_encode(x[0])
            return len(toks), x[0]

        re_ord = utils.Reorderer([req.args for req in requests], _collate)

342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
        for context, gen_kwargs in tqdm(re_ord.get_reordered()):
            until = None
            if isinstance(gen_kwargs, dict):
                gen_kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
                print(gen_kwargs)
                if "until" in gen_kwargs.keys():
                    until = gen_kwargs.pop("until")
                    if isinstance(until, str):
                        until = [gen_kwargs]
                    elif not isinstance(until, list):
                        raise ValueError(
                            f"Expected `gen_kwargs['until']` to be of type Union[str,list] but got {until}"
                        )
            else:
                raise ValueError(
                    f"Expected `gen_kwargs` to be of type `dict` but got {gen_kwargs}"
                )
            if not until:
                until = [self.tok_decode(self.eot_token_id)]
            if "max_gen_toks" in gen_kwargs.keys():
                max_gen_toks = gen_kwargs.pop("max_gen_toks")
            else:
                max_gen_toks = self.max_gen_toks

Benjamin Fattori's avatar
Benjamin Fattori committed
366
367
368
369
370
371
372
            (primary_until) = until[0]

            context_enc = torch.tensor(
                [self.tok_encode(context)[-self.max_length :]]
            ).to(self.device)

            cont = self._model_generate(
373
374
375
376
                context=context_enc, 
                max_length=context_enc.shape[1] + max_gen_toks, 
                stop=primary_until,
                **gen_kwargs,
Benjamin Fattori's avatar
Benjamin Fattori committed
377
378
            )
            s = self.tok_decode(cont[0].tolist())
379
            print(s)
Benjamin Fattori's avatar
Benjamin Fattori committed
380
381
            for term in until:
                s = s.split(term)[0]
382
            print(s)
Benjamin Fattori's avatar
Benjamin Fattori committed
383
384
385
386
            res.append(s)

        return re_ord.get_original(res)