model.py 22.5 KB
Newer Older
1
import abc
2
3
4
import hashlib
import json
import logging
haileyschoelkopf's avatar
haileyschoelkopf committed
5
import os
Baber's avatar
Baber committed
6
from typing import TYPE_CHECKING, Optional, Type, TypeVar, Union
7

Lintang Sutawika's avatar
Lintang Sutawika committed
8
import transformers
haileyschoelkopf's avatar
haileyschoelkopf committed
9
from sqlitedict import SqliteDict
10
from tqdm import tqdm
11

12
from lm_eval import utils
13

lintangsutawika's avatar
lintangsutawika committed
14

Baber's avatar
Baber committed
15
16
17
18
if TYPE_CHECKING:
    from lm_eval.api.instance import Instance


Lintang Sutawika's avatar
Lintang Sutawika committed
19
eval_logger = logging.getLogger(__name__)
20

21
22
T = TypeVar("T", bound="LM")

23
24

class LM(abc.ABC):
Ethan Smith's avatar
Ethan Smith committed
25
    def __init__(self) -> None:
26
        """Defines the interface that should be implemented by all LM subclasses.
Baber's avatar
Baber committed
27
        LMs are assumed to take text (strings) as input and yield strings or logprobabilities as output
28
29
30
        (inputs/outputs should be tokenization-agnostic.)

        """
31
32
33
        # set rank and world size to a single process, by default.
        self._rank = 0
        self._world_size = 1
haileyschoelkopf's avatar
haileyschoelkopf committed
34
        self.cache_hook = CacheHook(None)
35
36

    @abc.abstractmethod
Baber's avatar
Baber committed
37
    def loglikelihood(self, requests: list[Instance]) -> list[tuple[float, bool]]:
38
39
40
41
        """Compute log-likelihood of generating a continuation from a context.
        Downstream tasks should attempt to use loglikelihood instead of other
        LM calls whenever possible.

baberabb's avatar
baberabb committed
42
43
44
        :param requests: list[Instance]
            A list of Instance objects, with property `args` which returns a tuple (context, continuation).
            `context: str`
45
46
                Context string. Implementations of LM must be able to handle an
                empty context string.
baberabb's avatar
baberabb committed
47
            `continuation: str`
48
49
50
                The continuation over which log likelihood will be calculated. If
                there is a word boundary, the space should be in the continuation.
                For example, context="hello" continuation=" world" is correct.
baberabb's avatar
baberabb committed
51
52

        :return: list[tuple[float, bool]]
53
            A list of pairs (logprob, isgreedy)
baberabb's avatar
baberabb committed
54
55
56
57
            `logprob: float`
                The log probability of `continuation`.
            `isgreedy`:
                Whether `continuation` would be generated by greedy sampling from `context`.
58
59
60
61
        """
        pass

    @abc.abstractmethod
Baber's avatar
Baber committed
62
    def loglikelihood_rolling(self, requests: list[Instance]) -> list[float]:
63
64
65
66
67
68
69
        """Compute full log-likelihood of a string, with no truncation, for perplexity computation
        - We will use the full max context length of the model.
        - For inputs that exceed the max context length, we divide the tokenized string into chunks of up to
        the max context length.
        - IMPORTANT: Each document's loglikelihood/perplexity is computed *separately*, unlike other implementations
          which may simply concatenate multiple documents together.
        - IMPORTANT: We maximize the amount of context for each prediction. Specifically, for inputs that we break into
Baber's avatar
Baber committed
70
          multiple chunks, the last input will still have full-sized context.
71
72
          Example:
            Input tokens: [ 0 1 2 3 4 5 6 7 8 9 ]
73
            Prefix: BOS/EOS
74
75
76
            Max context length: 4
            Resulting input/prediction pairs:

77
                INPUT:  BOS   0   1   2
78
79
80
81
82
83
84
85
86
87
88
89
                PRED:     0   1   2   3

                INPUT:    3   4   5   6
                PRED:     4   5   6   7

                INPUT:    5   6   7   8
                PRED:             8   9

          Observe that:
            1. Each token is predicted exactly once
            2. For the last pair, we provide the full context, but only score the last two tokens

baberabb's avatar
baberabb committed
90
        :param requests: list[Instance]
91
            A list of Instance objects with property `args` which returns a tuple (context,).
92
            string: str
93
94
95
                String for which we are computing overall loglikelihood
        :return: list[tuple[float]]
            A list of tuples (logprob,)
96
            logprob: float
97
98
                The log probability of `context` conditioned on the BOS/EOS token.
                Can also be overridden for custom cases by `prefix_token_id`.
99
100
101
102
103
        """
        pass

    # TODO: Add an optional max length
    @abc.abstractmethod
Baber's avatar
Baber committed
104
    def generate_until(self, requests: list[Instance]) -> list[str]:
105
106
        """Generate greedily until a stopping sequence

baberabb's avatar
baberabb committed
107
        :param requests: list[Instance]
Baber Abbasi's avatar
Baber Abbasi committed
108
            A list of Instance objects with property `args` which returns a tuple (context, gen_kwargs).
109
110
            context: str
                Context string
Baber Abbasi's avatar
Baber Abbasi committed
111
112
            gen_kwargs: dict
                A dictionary of keyword arguments to pass to the generation function e.g. top_k, until, etc.
baberabb's avatar
baberabb committed
113
        :return: list[str]
Baber Abbasi's avatar
Baber Abbasi committed
114
            A list of model generated continuations.
115
116
117
118
119
            continuation: str
                The generated continuation.
        """
        pass

Baber Abbasi's avatar
Baber Abbasi committed
120
    def apply_chat_template(
Baber's avatar
Baber committed
121
        self, chat_history: list[dict], add_generation_prompt=True
Baber Abbasi's avatar
Baber Abbasi committed
122
    ) -> str:
KonradSzafer's avatar
KonradSzafer committed
123
124
125
126
127
128
        """
        Defines how to transform few-shot examples provided as chat history into a format that can be used as input to the LM.

        :param chat_history: list[dict[str, str]]
            A list of dictionaries with keys 'role' and 'content'.
            Values are strings representing the role name and the content of the message, respectively.
Baber Abbasi's avatar
Baber Abbasi committed
129
130
        :param add_generation_prompt: bool
            Whether to append an assistant gen prefix (for e.g. <|assistant|>) to the assistant messages in the chat history. False if prefilling an assistant message.
KonradSzafer's avatar
KonradSzafer committed
131
132
133
134
135
136
137
        :return: str
            A string representing the chat history in a format that can be used as input to the LM.
        """
        raise NotImplementedError(
            "To use this model with chat templates, please implement the 'apply_chat_template' method for your model type."
        )

138
    @classmethod
139
140
141
142
143
144
145
146
147
148
149
150
151
    def create_from_arg_string(
        cls: Type[T], arg_string: str, additional_config: Optional[dict] = None
    ) -> T:
        """
        Creates an instance of the LM class using the given argument string and additional config.

        Parameters:
        - arg_string: A string containing arguments in the format key1=value1,key2=value2.
        - additional_config: Optional dictionary containing additional configuration parameters.

        Returns:
        - Instance of the LM class.
        """
152
153
154
155
        additional_config = {} if additional_config is None else additional_config
        args = utils.simple_parse_args_string(arg_string)
        args2 = {k: v for k, v in additional_config.items() if v is not None}
        return cls(**args, **args2)
haileyschoelkopf's avatar
haileyschoelkopf committed
156

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
    @classmethod
    def create_from_arg_obj(
        cls: Type[T], arg_dict: dict, additional_config: Optional[dict] = None
    ) -> T:
        """
        Creates an instance of the LM class using the given arg_obj

        Parameters:
        - arg_obj: A dict containing arguments in the format key1=value1,key2=value2.
        - additional_config: Optional dictionary containing additional configuration parameters.

        Returns:
        - Instance of the LM class.
        """

        additional_config = {} if additional_config is None else additional_config
        additional_config = {
            k: v for k, v in additional_config.items() if v is not None
        }

        return cls(**arg_dict, **additional_config)

haileyschoelkopf's avatar
haileyschoelkopf committed
179
    @property
Baber's avatar
Baber committed
180
    def rank(self) -> int:
Baber's avatar
Baber committed
181
        """Returns the rank of the current process in a distributed setting."""
haileyschoelkopf's avatar
haileyschoelkopf committed
182
183
184
        # used in the case of parallelism. Hardcoded to
        # ensure no errors arise using API models which do
        # not support multi-device parallelism nor expect it.
185
        return self._rank
haileyschoelkopf's avatar
haileyschoelkopf committed
186
187

    @property
Baber's avatar
Baber committed
188
    def world_size(self) -> int:
Baber's avatar
Baber committed
189
        """Returns the total number of processes in a distributed setting."""
haileyschoelkopf's avatar
haileyschoelkopf committed
190
191
192
        # used in the case of parallelism. Hardcoded to
        # ensure no errors arise using API models which do
        # not support multi-device parallelism nor expect it.
193
        return self._world_size
haileyschoelkopf's avatar
haileyschoelkopf committed
194

KonradSzafer's avatar
KonradSzafer committed
195
196
197
198
199
200
201
202
203
204
    @property
    def tokenizer_name(self) -> str:
        """Must be defined for LM subclasses which implement Chat Templating.
        Should return the name of the tokenizer or chat template used.
        Used only to properly fingerprint caches when requests are being cached with `--cache_requests`, otherwise not used.
        """
        raise NotImplementedError(
            "To use this model with chat templates, please implement the 'tokenizer_name' property."
        )

205
206
207
208
    def chat_template(self, chat_template: Union[bool, str] = False) -> Optional[str]:
        """Returns the chat template structure for user/assistant messages if a template is provided.
        This method is intended to be overridden in a subclass to define a specific chat template format.
        For models that do not support chat templates, this method returns None by default.
KonradSzafer's avatar
KonradSzafer committed
209
        """
210
211

        return ""
KonradSzafer's avatar
KonradSzafer committed
212

Baber's avatar
Baber committed
213
214
    def set_cache_hook(self, cache_hook: "CacheHook") -> None:
        """Sets the cache hook for the LM, which is used to cache responses from the LM."""
haileyschoelkopf's avatar
haileyschoelkopf committed
215
216
217
218
219
220
221
222
223
224
        self.cache_hook = cache_hook


### SQLite-based caching of LM responses
def hash_args(attr, args):
    dat = json.dumps([attr] + list(args))
    return hashlib.sha256(dat.encode("utf-8")).hexdigest()


class CacheHook:
Ethan Smith's avatar
Ethan Smith committed
225
    def __init__(self, cachinglm) -> None:
Baber's avatar
Baber committed
226
        """CacheHook is used to cache responses from the LM."""
haileyschoelkopf's avatar
haileyschoelkopf committed
227
228
229
230
231
232
        if cachinglm is None:
            self.dbdict = None
            return

        self.dbdict = cachinglm.dbdict

Ethan Smith's avatar
Ethan Smith committed
233
    def add_partial(self, attr, req, res) -> None:
Baber's avatar
Baber committed
234
        """Adds a partial result to the cache."""
haileyschoelkopf's avatar
haileyschoelkopf committed
235
236
237
238
239
240
241
        if self.dbdict is None:
            return
        hsh = hash_args(attr, req)
        self.dbdict[hsh] = res


class CachingLM:
Baber's avatar
Baber committed
242
    def __init__(self, lm: "LM", cache_db: str) -> None:
haileyschoelkopf's avatar
haileyschoelkopf committed
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
        """LM wrapper that returns cached results if they exist, and uses the underlying LM if not.

        :param lm: LM
            Underlying LM
        :param cache_db: str
            Path to cache db
        """
        self.lm = lm
        self.cache_db = cache_db
        if os.path.dirname(cache_db):
            os.makedirs(os.path.dirname(cache_db), exist_ok=True)
        self.dbdict = SqliteDict(cache_db, autocommit=True)

        # add hook to lm
        lm.set_cache_hook(self.get_cache_hook())

Baber Abbasi's avatar
Baber Abbasi committed
259
    def __getattr__(self, attr: str):
haileyschoelkopf's avatar
haileyschoelkopf committed
260
        lm_attr = getattr(self.lm, attr)
Baber Abbasi's avatar
Baber Abbasi committed
261
262
        if attr not in ["loglikelihood", "loglikelihood_rolling", "generate_until"]:
            eval_logger.debug(f"Passing through attribute '{attr}' to underlying LM")
haileyschoelkopf's avatar
haileyschoelkopf committed
263
264
            return lm_attr

Baber's avatar
Baber committed
265
        def fn(requests: list["Instance"]) -> list["Instance"]:
haileyschoelkopf's avatar
haileyschoelkopf committed
266
267
268
269
            res = []
            remaining_reqs = []
            warned = False
            # figure out which ones are cached and which ones are new
270
271
272
            eval_logger.info(
                f"Loading '{attr}' responses from cache '{self.cache_db}' where possible..."
            )
273
            for req in tqdm(requests, desc="Checking cached requests"):
haileyschoelkopf's avatar
haileyschoelkopf committed
274
                hsh = hash_args(attr, req.args)
275
                if attr == "generate_until" and req.args[1].get("do_sample", False):
haileyschoelkopf's avatar
haileyschoelkopf committed
276
277
278
279
                    # when we are doing non-greedy generation, don't use the cache
                    # (else every "randomly sampled" generation would be identical for repeats > 1).
                    if not warned:
                        eval_logger.warning(
280
                            f"Arguments to lm.generate_until() '{req.args[1]}' include non-deterministic sampling. Caching will not be performed for such requests."
haileyschoelkopf's avatar
haileyschoelkopf committed
281
282
283
284
285
286
287
288
289
290
291
292
293
                        )
                        warned = True
                    res.append(None)
                    remaining_reqs.append(req)
                elif hsh in self.dbdict:
                    ob = self.dbdict[hsh]

                    assert ob is not None

                    res.append(ob)
                else:
                    res.append(None)
                    remaining_reqs.append(req)
294
295
296
            eval_logger.info(
                f"Cached requests: {len(requests) - len(remaining_reqs)}, Requests remaining: {len(remaining_reqs)}"
            )
297
298
299
300
301
            if remaining_reqs:
                # actually run the LM on the requests that do not have cached results
                rem_res = getattr(self.lm, attr)(remaining_reqs)
            else:
                rem_res = []
haileyschoelkopf's avatar
haileyschoelkopf committed
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

            # stick the new ones back into the list and also cache any of the new ones
            resptr = 0
            for req, r in zip(remaining_reqs, rem_res):
                while res[resptr] is not None:
                    resptr += 1

                res[resptr] = r

                # caching
                hsh = hash_args(attr, req.args)
                self.dbdict[hsh] = r
            self.dbdict.commit()

            return res

        return fn

    def get_cache_hook(self):
        return CacheHook(self)
322
323
324
325
326
327
328
329


class TemplateLM(LM):
    """
    A class acting as intermediary between the LM base class
    and boilerplate often included in other LM subclasses.
    """

330
331
    tokenizer = None

332
333
    @property
    @abc.abstractmethod
Baber's avatar
Baber committed
334
    def eot_token_id(self) -> int:
Baber's avatar
Baber committed
335
        """Returns the token ID for the end-of-text token (e.g., EOS)."""
336
337
        pass

338
    @property
Baber's avatar
Baber committed
339
    def prefix_token_id(self) -> int:
Baber's avatar
Baber committed
340
        """Returns the token ID for the prefix token (e.g., BOS or EOS)."""
341
        return self.eot_token_id
342

343
    @abc.abstractmethod
Baber's avatar
Baber committed
344
    def tok_encode(self, string: str, **kwargs) -> list[int]:
Baber Abbasi's avatar
Baber Abbasi committed
345
346
347
        """
        Tokenize a string using the model's tokenizer and return a list of token IDs.
        """
348
349
350
        pass

    @abc.abstractmethod
Baber's avatar
Baber committed
351
    def _loglikelihood_tokens(
Baber's avatar
Baber committed
352
        self, requests: list[tuple[tuple[str, str], list[int], list[int]]], **kwargs
Baber's avatar
Baber committed
353
    ) -> list[tuple[float, bool]]:
Baber's avatar
Baber committed
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
        """Called by loglikelihood to compute log likelihoods for a list of requests.

        Args:
            requests: list[tuple[tuple[str, str], list[int], list[int]]]
                A list of tuples where each tuple contains:
                - (context, continuation) as a tuple of strings
                - context_enc: list of token IDs for the context
                - continuation_enc: list of token IDs for the continuation
        Returns:
            list[tuple[float, bool]]
                A list of tuples where each tuple contains:
                - logprob: float, the (summed) log probability of the continuation given the context
                - isgreedy: bool, whether the continuation would be generated by greedy sampling from the context

        See LM.loglikelihood for more details.
        """
370
371
        pass

Baber Abbasi's avatar
Baber Abbasi committed
372
373
    def _encode_pair(
        self, context: str, continuation: str
Baber's avatar
Baber committed
374
375
376
    ) -> tuple[list[int], list[int]]:
        """Encodes a pair of context and continuation strings into token IDs.

Baber's avatar
Baber committed
377
        We encode using encode(context+continuation) and then split into context and continuation.
Baber's avatar
Baber committed
378
        """
379
380
381
382
383
        n_spaces = len(context) - len(context.rstrip())
        if n_spaces > 0:
            continuation = context[-n_spaces:] + continuation
            context = context[:-n_spaces]

Lintang Sutawika's avatar
Lintang Sutawika committed
384
        model_class = getattr(self, "AUTO_MODEL_CLASS", None)
385

Lintang Sutawika's avatar
Lintang Sutawika committed
386
387
388
389
390
391
392
393
394
        if model_class == transformers.AutoModelForSeq2SeqLM:
            context_enc = self.tok_encode(context)
            continuation_enc = self.tok_encode(continuation, add_special_tokens=False)
        else:
            whole_enc = self.tok_encode(context + continuation)
            context_enc = self.tok_encode(context)

            context_enc_len = len(context_enc)
            continuation_enc = whole_enc[context_enc_len:]
395
396
397

        return context_enc, continuation_enc

398
    def loglikelihood(
Baber's avatar
Baber committed
399
        self, requests: list["Instance"], disable_tqdm: bool = False
Baber's avatar
Baber committed
400
    ) -> list[tuple[float, bool]]:
Baber's avatar
Baber committed
401
402
403
404
        """Compute log-likelihood of generating a continuation from a context.

        This calls `_loglikelihood_tokens` to compute the log likelihoods for a list of requests, after encoding.
        """
405
406
407
        new_reqs = []
        for context, continuation in [req.args for req in requests]:
            if context == "":
408
                # BOS or EOS as context
409
                context_enc, continuation_enc = (
410
                    [self.prefix_token_id],
411
412
413
414
415
416
417
                    self.tok_encode(continuation),
                )
            else:
                context_enc, continuation_enc = self._encode_pair(context, continuation)

            new_reqs.append(((context, continuation), context_enc, continuation_enc))

418
        return self._loglikelihood_tokens(new_reqs, disable_tqdm=disable_tqdm)
419
420

    @abc.abstractmethod
421
422
    def loglikelihood_rolling(
        self, requests, disable_tqdm: bool = False
Baber's avatar
Baber committed
423
    ) -> list[float]:
Baber's avatar
Baber committed
424
425
426
427
        """Compute rolling log-likelihood of a sequence using non-overlapping windows.

        See LM.loglikelihood_rolling for more details.
        """
428
429
430
        pass

    @abc.abstractmethod
Baber's avatar
Baber committed
431
    def generate_until(self, requests, disable_tqdm: bool = False) -> list[str]:
Baber's avatar
Baber committed
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
        """Generate until a stopping sequence.

        Args:
            requests: list[Instance]
                A list of Instance objects with property `args` which returns a tuple (context, gen_kwargs).
                context: str
                    Context string
                gen_kwargs: dict
                    A dictionary of keyword arguments to pass to the generation function e.g. top_k, until, etc.
        Returns:
            list[continuation, ...]
                A list of model generated continuations.
                continuation: str
                    The generated continuation.

        See LM.generate_until for more details.
        """
449
        pass
450
451
452

    def chat_template(self, chat_template: Union[bool, str] = False) -> Optional[str]:
        """
Baber's avatar
Baber committed
453
        Assumes tokenizer has a chat_template attribute (self.tokenizer.chat_template: dict | str)
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
        Set and get the appropriate chat template for the model.
        This method sets the tokenizer's chat_template and returns the template string for reproducibility.

        The template selection logic is adapted from the Transformers library's `apply_chat_template`
        method in the Tokenizer class. The original implementation can be found at:
        https://github.com/huggingface/transformers/blob/fc35907f95459d7a6c5281dfadd680b6f7b620e3/src/transformers/tokenization_utils_base.py#L1687

        This method ensures that the right template is chosen based on the following:
        0. If the model has no 'tokenizer' attribute: assumes that there is only a single possible chat template, handled on the model provider side internally. Returns the empty string.
        1. If the model's tokenizer has multiple templates:
            a. Use the specified template if it exists in the dictionary.
            b. Use the default template from the list if no specific template is provided.
            c. Raise an error if no default template exists and no specific template is provided.
        2. If the model's tokenizer has a single template or no template:
            a. Use the tokenizer's chat template if available.
            b. Fall back to the default chat template if no tokenizer chat template exists.

        Args:
            chat_template (Union[bool, str]): Specifies the chat template to use.
                - If False or None, no template is applied.
                - If True, the default or only available template is used.
                - If a string, the template with the matching name is used.

        Returns:
            Optional[str]: The selected chat template, or None if no template is applied.
        """
        if self.tokenizer is None:
            return ""

        if chat_template is False or chat_template is None:
            eval_logger.warning(
                "model.chat_template was called with the chat_template set to False or None. "
                "Therefore no chat template will be applied. Make sure this is an intended behavior."
            )
            return None

        # Convert boolean chat_template to None to ensure compatibility with the adapted logic
        if isinstance(chat_template, bool):
            chat_template = None
        using_default_template = False

        # First, handle the cases when the model has a dict of multiple templates
496
497
498
499
500
501
        try:
            template = (
                self.tokenizer.chat_template or self.tokenizer.default_chat_template
            )
        except AttributeError:
            return None
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551

        if isinstance(template, dict):
            using_default_dict = self.tokenizer.chat_template is None

            if chat_template is not None:
                if chat_template in template:
                    selected_template = template[chat_template]
                    if using_default_dict:
                        using_default_template = True
                else:
                    raise ValueError(
                        f"The specified chat template '{chat_template}' is not available. "
                        f"Available template names are {sorted(template.keys())}."
                    )
            else:
                # If user didn't pass a chat template, use the default template from the dict
                if "default" in template:
                    selected_template = template["default"]
                    using_default_template = True
                else:
                    raise ValueError(
                        "This model has multiple chat templates with no default specified! Please either pass a chat "
                        "template or the name of the template you wish to use to the `chat_template` argument. Available "
                        f"template names are {sorted(template.keys())}."
                    )

        # Cases when the model has a single template or no template
        else:
            # priority: `chat_template` argument > `tokenizer.chat_template` > `tokenizer.default_chat_template
            if isinstance(chat_template, str):
                eval_logger.warning(
                    "Chat template name provided, but the tokenizer's chat template is not a dictionary. "
                    "Using the tokenizer's chat template or the default template instead."
                )
            if self.tokenizer.chat_template is not None:
                selected_template = self.tokenizer.chat_template
            else:
                selected_template = self.tokenizer.default_chat_template
                using_default_template = True

        if using_default_template:
            eval_logger.warning(
                "No chat template is set for this tokenizer, falling back to a default class-level template. This is "
                "very error-prone, because models are often trained with templates different from the class default! "
                "Default chat templates are a legacy feature and will be removed in Transformers v4.43, at which "
                "point any code depending on them will stop working. We recommend setting a valid chat template before "
                "then to ensure that this model continues working without issues."
            )

        return selected_template