"configs/det/det_r50_vd_db.yml" did not exist on "9467b754366bf69de5b28f57008c64625e20cf56"
vllm_causallms.py 12.5 KB
Newer Older
baberabb's avatar
baberabb committed
1
2
3
4
5
6
7
8
9
from collections import defaultdict
from typing import List, Tuple, Optional, Literal

from lm_eval.api.instance import Instance
from lm_eval.api.model import LM
import copy
from tqdm import tqdm
from lm_eval.api.registry import register_model
from lm_eval import utils
baberabb's avatar
bugfix  
baberabb committed
10
from vllm_causallms import LLM, SamplingParams
baberabb's avatar
baberabb committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34


@register_model("vllm")
class VLLM(LM):
    _DEFAULT_MAX_LENGTH = 2048

    def __init__(
        self,
        pretrained="gpt2",
        dtype: Literal["float16", "bfloat16", "float32", "auto"] = "auto",
        revision: Optional[str] = None,
        trust_remote_code: Optional[bool] = False,
        tokenizer_mode: Literal["auto", "slow"] = "auto",
        tensor_parallel_size: int = 1,
        quantization: Optional[str] = None,
        max_gen_toks: int = 256,
        swap_space: int = 4,
        batch_size: int = 1,
        max_length: int = None,
    ):
        super().__init__()

        self.model = LLM(
            model=pretrained,
baberabb's avatar
bugfix  
baberabb committed
35
            gpu_memory_utilization=0.2,
baberabb's avatar
baberabb committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
            revision=revision,
            dtype=dtype,
            tokenizer_mode=tokenizer_mode,
            trust_remote_code=trust_remote_code,
            tensor_parallel_size=tensor_parallel_size,
            swap_space=swap_space,
            quantization=quantization,
        )
        self.tokenizer = self.model.get_tokenizer()
        self.batch_size = batch_size
        self._max_length = max_length
        self._max_gen_toks = max_gen_toks

    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

    @property
    def max_length(self):
        if self._max_length:  # if max length manually set, return it
            return self._max_length
        if hasattr(self.model.llm_engine.model_config, "max_model_len"):
            return self.model.llm_engine.model_config.max_model_len
        return self._DEFAULT_MAX_LENGTH

    @property
    def max_gen_toks(self):
        return self._max_gen_toks

    def tok_encode(self, string: str, left_truncate_len=None, add_special_tokens=False):
        """ """
        encoding = self.tokenizer.encode(string, add_special_tokens=add_special_tokens)

        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]

        return encoding

    def _model_generate(
        self,
baberabb's avatar
baberabb committed
78
        requests: List[int] = None,
baberabb's avatar
baberabb committed
79
80
81
82
83
        generate: bool = False,
        max_tokens: int = None,
        stop: Optional[List[str]] = None,
        **kwargs,
    ):
baberabb's avatar
bugfix  
baberabb committed
84
85
        if "do_sample" in kwargs.keys():
            kwargs.pop("do_sample")
baberabb's avatar
baberabb committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
        if generate:
            generate_sampling_params = SamplingParams(
                max_tokens=max_tokens, stop=stop, **kwargs
            )
            outputs = self.model.generate(
                prompt_token_ids=requests,
                sampling_params=generate_sampling_params,
            )
        else:
            logliklihood_sampling_params = SamplingParams(
                temperature=0, prompt_logprobs=2, max_tokens=1
            )
            outputs = self.model.generate(
                prompt_token_ids=requests, sampling_params=logliklihood_sampling_params
            )
        return outputs

    def loglikelihood(self, requests) -> List[Tuple[float, bool]]:
        new_reqs = []
        for context, continuation in [req.args for req in requests]:
            if context == "":
                # end of text as context
                context_enc, continuation_enc = [
                    self.eot_token_id
                ], self.tokenizer.tok_encode(continuation)
            else:
                context_enc, continuation_enc = self.tokenizer(
                    [context, continuation],
                    truncation="do_not_truncate",
                    add_special_tokens=False,
                    return_attention_mask=False,
                ).input_ids

            new_reqs.append(((context, continuation), context_enc, continuation_enc))

        return self._loglikelihood_tokens(new_reqs)

    def loglikelihood_rolling(self, requests) -> List[float]:
        loglikelihoods = []

        for (string,) in tqdm([req.args for req in requests]):
            rolling_token_windows = list(
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
                        prefix_token=self.eot_token_id,
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )

            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

            string_nll = self._loglikelihood_tokens(
                rolling_token_windows,
            )

            # discard is_greedy
            string_nll = [x[0] for x in string_nll]

            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)
        return loglikelihoods

    def generate_until(self, requests: List[Instance]) -> List[str]:
        res = defaultdict(list)
        re_ords = {}

        # batch tokenize contexts
        context, all_gen_kwargs = zip(*(req.args for req in requests))
        context_encoding = self.tokenizer(context)
baberabb's avatar
baberabb committed
159
        requests = list(zip((context, context_encoding.input_ids), all_gen_kwargs))
baberabb's avatar
baberabb committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

        def _collate_gen(_requests):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
            return -len(_requests[0][1]), tuple(_requests[0][1])

        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
        grouper = utils.Grouper(requests, lambda x: str(x[1]))
        for key, reqs in grouper.get_grouped().items():
            # within each set of reqs for given kwargs, we reorder by token length, descending.
            re_ords[key] = utils.Reorderer(requests, _collate_gen)

        pbar = tqdm(total=len(requests), disable=(self.rank != 0))
        # for each different set of kwargs, we execute all requests, by batch.
        for key, re_ord in re_ords.items():
            chunks = utils.chunks(
                re_ord.get_reordered(),
                n=self.batch_size,
                fn=None,
            )
            for chunk in chunks:
baberabb's avatar
bugfix  
baberabb committed
187
188
                context_and_encoding, all_gen_kwargs = zip(*chunk)
                context, context_encoding = context_and_encoding
baberabb's avatar
baberabb committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
                # we assume all gen kwargs in the batch are the same
                # this is safe to assume because the `grouper` object ensures it.
                gen_kwargs = all_gen_kwargs[0]
                # unpack our keyword arguments.
                until = None
                if isinstance(gen_kwargs, dict):
                    kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
                    if "until" in kwargs.keys():
                        until = kwargs.pop("until")
                        if isinstance(until, str):
                            until = [until]
                        elif not isinstance(until, list):
                            raise ValueError(
                                f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
                            )
                else:
                    raise ValueError(
                        f"Expected `kwargs` to be of type `dict` but got {gen_kwargs}"
                    )
                if not until:
                    until = [self.tokenizer.decode(self.eot_token_id)]
                if "max_gen_toks" in kwargs.keys():
                    max_gen_toks = kwargs.pop("max_gen_toks")
                else:
                    max_gen_toks = self.max_gen_toks

                # set the max length in tokens of inputs ("context_enc")
                # max len for inputs = max length, minus room to generate the max new tokens
                max_ctx_len = self.max_length - max_gen_toks
                context_encoding = [x[-max_ctx_len:] for x in context_encoding]

                # TODO: max_length in kwargs

                # perform batched generation
                cont = self._model_generate(
                    requests=context_encoding,
                    generate=True,
                    max_tokens=max_gen_toks,
                    stop=until,
                    **kwargs,
                )

                # cache generations
                for output, context in zip(cont, context):
                    generated_text = output.outputs[0].text
                    res[key].append(generated_text)
                    self.cache_hook.add_partial(
                        "generate_until", (context, gen_kwargs), generated_text
                    )
                    pbar.update(1)

            # reorder this group of results back to original unsorted form
            res[key] = re_ord.get_original(res[key])

        pbar.close()

        return grouper.get_original(res)

    def _loglikelihood_tokens(
        self, requests, disable_tqdm: bool = False
    ) -> List[Tuple[float, bool]]:
        res = []

        def _collate(x):
            toks = x[1] + x[2]
            return -len(toks), tuple(toks)

        re_ord = utils.Reorderer(requests, _collate)

        chunks = utils.chunks(
            re_ord.get_reordered(),
            n=self.batch_size,
            fn=None,
        )
        pbar = tqdm(total=len(requests), disable=(disable_tqdm or (self.rank != 0)))
        for chunk in chunks:
            inps = []
            ctxlens = []
            for cache_key, context_enc, continuation_enc in chunk:
                inp = (context_enc + continuation_enc)[-(self.max_length) :]
                ctxlen = len(context_enc) - max(
                    0, len(context_enc) + len(continuation_enc) - (self.max_length)
                )

                inps.append(inp)
                ctxlens.append(ctxlen)

baberabb's avatar
baberabb committed
276
            outputs = self._model_generate(requests=inps, generate=False)
baberabb's avatar
baberabb committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301

            for output, ctxlen, (cache_key, context_enc, continuation_enc) in zip(
                outputs, ctxlens, chunk
            ):
                answer = self._parse_logprobs(
                    (context_enc + continuation_enc),
                    output,
                    ctxlen,
                )

                res.append(answer)

                # partial caching
                if cache_key is not None:
                    self.cache_hook.add_partial("loglikelihood", cache_key, answer)
                    pbar.update(1)
        pbar.close()
        return re_ord.get_original(res)

    @staticmethod
    def _parse_logprobs(tokens: List, outputs, ctxlen: int):
        """Process logprobs and tokens.

        :param tokens: list
            Tokens from response
baberabb's avatar
bugfix  
baberabb committed
302
303
        :param outputs: RequestOutput
            Contains prompt
baberabb's avatar
baberabb committed
304
305
306
307
308
309
310
311
312
        :param ctxlen: int
            Length of context (so we can slice them away and only keep the predictions)
        :return:
            continuation_logprobs: float
                Log probabilities of continuation tokens
            is_greedy: bool
                Whether argmax matches given continuation exactly
        """

baberabb's avatar
bugfix  
baberabb committed
313
314
315
316
        # Extract the logprobs for the continuation tokens

        continuation_logprobs_dicts = outputs.prompt_logprobs

baberabb's avatar
baberabb committed
317
318
        # Calculate continuation_logprobs
        continuation_logprobs = sum(
baberabb's avatar
bugfix  
baberabb committed
319
            logprob_dict.get(token)  # Use .get to avoid KeyError and default to 0
baberabb's avatar
baberabb committed
320
            for token, logprob_dict in zip(
baberabb's avatar
bugfix  
baberabb committed
321
                tokens[ctxlen:], continuation_logprobs_dicts[ctxlen:]
baberabb's avatar
baberabb committed
322
323
324
325
326
            )
        )

        # Determine if is_greedy
        is_greedy = True
baberabb's avatar
bugfix  
baberabb committed
327
328
329
330
331
332
333
        for token, logprob_dict in zip(tokens[ctxlen:], continuation_logprobs_dicts):
            # Get the token with the maximum log probability from the logprob_dict
            if logprob_dict:  # Ensure the logprob_dict is not None
                top_token = max(logprob_dict, key=logprob_dict.get)
                if top_token != token:
                    is_greedy = False
                    break
baberabb's avatar
baberabb committed
334
335

        return continuation_logprobs, is_greedy