Commit 0e8c46ae authored by Tri Dao's avatar Tri Dao
Browse files

Run isort and black on test files

parent 7fcd3e6a
import math
from functools import partial
import pytest
import torch
import torch.nn.functional as F
import pytest
from einops import rearrange
from flash_attn.ops.fused_dense import FusedDense, FusedMLP
@pytest.mark.parametrize('dtype', [torch.float16, torch.bfloat16])
@pytest.mark.parametrize('return_residual', [False, True])
@pytest.mark.parametrize('has_bias', [True, False])
@pytest.mark.parametrize('out_features', [1024, 4096])
@pytest.mark.parametrize('in_features', [1024, 4096])
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
@pytest.mark.parametrize("return_residual", [False, True])
@pytest.mark.parametrize("has_bias", [True, False])
@pytest.mark.parametrize("out_features", [1024, 4096])
@pytest.mark.parametrize("in_features", [1024, 4096])
def test_fused_linear_bias(in_features, out_features, has_bias, return_residual, dtype):
device = 'cuda'
device = "cuda"
rtol, atol = (3e-3, 1e-2) if dtype == torch.bfloat16 else (3e-3, 1e-3)
# set seed
torch.random.manual_seed(0)
batch_size = 8
seqlen = 512
x_pt = torch.randn(batch_size, seqlen, in_features, device=device, dtype=dtype,
requires_grad=True)
x_pt = torch.randn(
batch_size, seqlen, in_features, device=device, dtype=dtype, requires_grad=True
)
x = x_pt.detach().clone().requires_grad_()
model_pt = torch.nn.Linear(in_features, out_features, bias=has_bias, device=device, dtype=dtype)
model = FusedDense(in_features, out_features, bias=has_bias, return_residual=return_residual,
device=device, dtype=dtype)
model = FusedDense(
in_features,
out_features,
bias=has_bias,
return_residual=return_residual,
device=device,
dtype=dtype,
)
with torch.no_grad():
model.weight.copy_(model_pt.weight)
if has_bias:
......@@ -37,10 +42,16 @@ def test_fused_linear_bias(in_features, out_features, has_bias, return_residual,
out = model(x)
else:
out, x_copy = model(x)
x_copy = (x_copy[..., :out_features] if out_features < in_features
else F.pad(x_copy, (0, out_features - in_features)))
x_pt_copy = (x_pt[..., :out_features] if out_features < in_features
else F.pad(x_pt, (0, out_features - in_features)))
x_copy = (
x_copy[..., :out_features]
if out_features < in_features
else F.pad(x_copy, (0, out_features - in_features))
)
x_pt_copy = (
x_pt[..., :out_features]
if out_features < in_features
else F.pad(x_pt, (0, out_features - in_features))
)
# Just add some random function of the residual
out_pt = out_pt + F.gelu(x_pt_copy)
out = out + F.gelu(x_copy)
......@@ -60,43 +71,64 @@ def test_fused_linear_bias(in_features, out_features, has_bias, return_residual,
assert torch.allclose(model.bias.grad, model_pt.bias.grad, rtol=rtol, atol=atol * 5)
@pytest.mark.parametrize('dtype', [torch.float16, torch.bfloat16])
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
# @pytest.mark.parametrize('dtype', [torch.float16])
@pytest.mark.parametrize('heuristic', ['auto', -1])
@pytest.mark.parametrize("heuristic", ["auto", -1])
# @pytest.mark.parametrize('heuristic', ['auto'])
@pytest.mark.parametrize('checkpoint_lvl', [0, 1, 2])
@pytest.mark.parametrize("checkpoint_lvl", [0, 1, 2])
# @pytest.mark.parametrize('checkpoint_lvl', [1])
@pytest.mark.parametrize('return_residual', [False, True])
@pytest.mark.parametrize("return_residual", [False, True])
# @pytest.mark.parametrize('return_residual', [False])
@pytest.mark.parametrize('has_bias2', [True, False])
@pytest.mark.parametrize('has_bias1', [True, False])
@pytest.mark.parametrize("has_bias2", [True, False])
@pytest.mark.parametrize("has_bias1", [True, False])
# @pytest.mark.parametrize('has_bias2', [True])
# @pytest.mark.parametrize('has_bias1', [True])
@pytest.mark.parametrize('activation', ['gelu_approx', 'relu'])
@pytest.mark.parametrize("activation", ["gelu_approx", "relu"])
# @pytest.mark.parametrize('activation', ['relu'])
@pytest.mark.parametrize('out_features', [1024, 4096])
@pytest.mark.parametrize('in_features', [1024, 4096])
@pytest.mark.parametrize("out_features", [1024, 4096])
@pytest.mark.parametrize("in_features", [1024, 4096])
# @pytest.mark.parametrize('out_features', [4096])
# @pytest.mark.parametrize('in_features', [1024])
def test_fused_mlp(in_features, out_features, activation, has_bias1, has_bias2, return_residual,
checkpoint_lvl, heuristic, dtype):
device = 'cuda'
def test_fused_mlp(
in_features,
out_features,
activation,
has_bias1,
has_bias2,
return_residual,
checkpoint_lvl,
heuristic,
dtype,
):
device = "cuda"
rtol, atol = (3e-3, 3e-2) if dtype == torch.bfloat16 else (3e-3, 1e-3)
# set seed
torch.random.manual_seed(0)
batch_size = 8
seqlen = 512
x_pt = torch.randn(batch_size, seqlen, in_features, device=device, dtype=dtype,
requires_grad=True)
x_pt = torch.randn(
batch_size, seqlen, in_features, device=device, dtype=dtype, requires_grad=True
)
x = x_pt.detach().clone().requires_grad_()
model_pt_fc1 = torch.nn.Linear(in_features, out_features, bias=has_bias1, device=device,
dtype=dtype)
model_pt_fc2 = torch.nn.Linear(out_features, in_features, bias=has_bias2, device=device,
dtype=dtype)
model = FusedMLP(in_features, out_features, in_features, activation=activation,
bias1=has_bias1, bias2=has_bias2, return_residual=return_residual,
checkpoint_lvl=checkpoint_lvl, heuristic=heuristic,
device=device, dtype=dtype)
model_pt_fc1 = torch.nn.Linear(
in_features, out_features, bias=has_bias1, device=device, dtype=dtype
)
model_pt_fc2 = torch.nn.Linear(
out_features, in_features, bias=has_bias2, device=device, dtype=dtype
)
model = FusedMLP(
in_features,
out_features,
in_features,
activation=activation,
bias1=has_bias1,
bias2=has_bias2,
return_residual=return_residual,
checkpoint_lvl=checkpoint_lvl,
heuristic=heuristic,
device=device,
dtype=dtype,
)
with torch.no_grad():
model.fc1.weight.copy_(model_pt_fc1.weight)
if has_bias1:
......@@ -104,8 +136,11 @@ def test_fused_mlp(in_features, out_features, activation, has_bias1, has_bias2,
model.fc2.weight.copy_(model_pt_fc2.weight)
if has_bias2:
model.fc2.bias.copy_(model_pt_fc2.bias)
activation_fn = (partial(F.gelu, approximate='tanh') if activation == 'gelu_approx'
else partial(F.relu, inplace=True))
activation_fn = (
partial(F.gelu, approximate="tanh")
if activation == "gelu_approx"
else partial(F.relu, inplace=True)
)
out_pt = model_pt_fc2(activation_fn(model_pt_fc1(x_pt)))
if not return_residual:
out = model(x)
......@@ -121,13 +156,17 @@ def test_fused_mlp(in_features, out_features, activation, has_bias1, has_bias2,
out_pt.backward(g)
out.backward(g)
# The error for relu is higher still
if activation == 'relu':
if activation == "relu":
atol = 1e-1 if dtype == torch.bfloat16 else 5e-2
assert torch.allclose(x.grad, x_pt.grad, rtol=rtol, atol=atol)
# The error for d_weight and d_bias is quite a bit higher
assert torch.allclose(model.fc1.weight.grad, model_pt_fc1.weight.grad, rtol=rtol, atol=atol * 10)
assert torch.allclose(
model.fc1.weight.grad, model_pt_fc1.weight.grad, rtol=rtol, atol=atol * 10
)
if has_bias1:
assert torch.allclose(model.fc1.bias.grad, model_pt_fc1.bias.grad, rtol=rtol, atol=atol * 5)
assert torch.allclose(model.fc2.weight.grad, model_pt_fc2.weight.grad, rtol=rtol, atol=atol * 10)
assert torch.allclose(
model.fc2.weight.grad, model_pt_fc2.weight.grad, rtol=rtol, atol=atol * 10
)
if has_bias2:
assert torch.allclose(model.fc2.bias.grad, model_pt_fc2.bias.grad, rtol=rtol, atol=atol * 5)
This diff is collapsed.
This diff is collapsed.
import math
import pytest
import torch
import torch.nn.functional as F
import pytest
from einops import rearrange
from flash_attn.layers.rotary import apply_rotary_emb_func, apply_rotary_emb_torch
is_sm8x = torch.cuda.get_device_capability("cuda") >= (8, 0)
is_sm8x = torch.cuda.get_device_capability('cuda') >= (8, 0)
@pytest.mark.parametrize('dtype', ([torch.float16] if not is_sm8x else [torch.float16, torch.bfloat16]))
@pytest.mark.parametrize(
"dtype", ([torch.float16] if not is_sm8x else [torch.float16, torch.bfloat16])
)
# @pytest.mark.parametrize('dtype', ([torch.float16]))
@pytest.mark.parametrize('rotary_fraction', [1.0, 0.5])
@pytest.mark.parametrize("rotary_fraction", [1.0, 0.5])
# @pytest.mark.parametrize('rotary_fraction', [0.5])
@pytest.mark.parametrize('inplace', [False, True])
@pytest.mark.parametrize("inplace", [False, True])
# @pytest.mark.parametrize('inplace', [False])
def test_rotary_single_tensor(inplace, rotary_fraction, dtype):
rtol = 1e-3
......@@ -23,12 +23,13 @@ def test_rotary_single_tensor(inplace, rotary_fraction, dtype):
nheads = 4
seqlen = 217
headdim = 128
x = torch.randn(batch_size, seqlen, nheads, headdim, dtype=dtype, device='cuda',
requires_grad=True)
x = torch.randn(
batch_size, seqlen, nheads, headdim, dtype=dtype, device="cuda", requires_grad=True
)
x_pt = x.detach().clone().requires_grad_()
rotary_dim = int(rotary_fraction * headdim)
assert rotary_dim % 2 == 0
angle = torch.randn(seqlen, rotary_dim // 2, device='cuda')
angle = torch.randn(seqlen, rotary_dim // 2, device="cuda")
cos = torch.cos(angle).to(dtype=dtype)
sin = torch.sin(angle).to(dtype=dtype)
out = apply_rotary_emb_func(x, cos, sin, inplace)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment