Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
flash-attention
Commits
0e8c46ae
Commit
0e8c46ae
authored
Aug 18, 2023
by
Tri Dao
Browse files
Run isort and black on test files
parent
7fcd3e6a
Changes
24
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1898 additions
and
1103 deletions
+1898
-1103
tests/layers/test_rotary.py
tests/layers/test_rotary.py
+56
-36
tests/losses/test_cross_entropy.py
tests/losses/test_cross_entropy.py
+12
-10
tests/losses/test_cross_entropy_parallel.py
tests/losses/test_cross_entropy_parallel.py
+39
-23
tests/models/test_bert.py
tests/models/test_bert.py
+136
-71
tests/models/test_falcon.py
tests/models/test_falcon.py
+139
-96
tests/models/test_gpt.py
tests/models/test_gpt.py
+36
-33
tests/models/test_gpt_generation.py
tests/models/test_gpt_generation.py
+137
-73
tests/models/test_gpt_generation_cg.py
tests/models/test_gpt_generation_cg.py
+35
-26
tests/models/test_gpt_generation_parallel.py
tests/models/test_gpt_generation_parallel.py
+84
-42
tests/models/test_gpt_neox.py
tests/models/test_gpt_neox.py
+33
-27
tests/models/test_gpt_parallel.py
tests/models/test_gpt_parallel.py
+120
-77
tests/models/test_gptj.py
tests/models/test_gptj.py
+68
-51
tests/models/test_llama.py
tests/models/test_llama.py
+9
-10
tests/models/test_opt.py
tests/models/test_opt.py
+28
-23
tests/models/test_vit.py
tests/models/test_vit.py
+10
-12
tests/modules/test_block_parallel.py
tests/modules/test_block_parallel.py
+152
-74
tests/modules/test_embedding_parallel.py
tests/modules/test_embedding_parallel.py
+47
-30
tests/modules/test_mha_parallel.py
tests/modules/test_mha_parallel.py
+86
-45
tests/modules/test_mlp_parallel.py
tests/modules/test_mlp_parallel.py
+70
-41
tests/ops/test_dropout_layer_norm.py
tests/ops/test_dropout_layer_norm.py
+601
-303
No files found.
tests/layers/test_rotary.py
View file @
0e8c46ae
...
...
@@ -2,26 +2,24 @@
import
math
import
pytest
import
torch
import
torch.nn.functional
as
F
import
pytest
from
einops
import
rearrange
from
flash_attn.layers.rotary
import
RotaryEmbedding
,
apply_rotary_emb_func
,
apply_rotary_emb_qkv_
from
transformers.models.gpt_neox.modeling_gpt_neox
import
RotaryEmbedding
as
RotaryEmbeddingNeoX
from
transformers.models.gpt_neox.modeling_gpt_neox
import
apply_rotary_pos_emb
as
apply_rotary_pos_emb_neox
from
transformers.models.gptj.modeling_gptj
import
fixed_pos_embedding
from
transformers.models.gpt_neox.modeling_gpt_neox
import
(
apply_rotary_pos_emb
as
apply_rotary_pos_emb_neox
,
)
from
transformers.models.gptj.modeling_gptj
import
apply_rotary_pos_emb
as
apply_rotary_pos_emb_gptj
from
flash_attn.layers.rotary
import
apply_rotary_emb_func
,
apply_rotary_emb_qkv_
from
flash_attn.layers.rotary
import
RotaryEmbedding
from
transformers.models.gptj.modeling_gptj
import
fixed_pos_embedding
# NeoX-style rotary embedding
@
pytest
.
mark
.
parametrize
(
'
seqlen_offset
'
,
[
0
,
711
])
@
pytest
.
mark
.
parametrize
(
'
rotary_emb_fraction
'
,
[
0.5
,
1.0
])
@
pytest
.
mark
.
parametrize
(
"
seqlen_offset
"
,
[
0
,
711
])
@
pytest
.
mark
.
parametrize
(
"
rotary_emb_fraction
"
,
[
0.5
,
1.0
])
def
test_rotary
(
rotary_emb_fraction
,
seqlen_offset
):
device
=
'
cuda
'
device
=
"
cuda
"
dtype
=
torch
.
float16
rtol
,
atol
=
(
1e-3
,
5e-3
)
# set seed
...
...
@@ -32,49 +30,70 @@ def test_rotary(rotary_emb_fraction, seqlen_offset):
nheads
=
16
headdim
=
128
rotary_dim
=
int
(
headdim
*
rotary_emb_fraction
)
qkv
=
torch
.
randn
(
batch_size
,
seqlen
,
3
,
nheads
,
headdim
,
device
=
device
,
dtype
=
dtype
,
requires_grad
=
True
)
qkv
=
torch
.
randn
(
batch_size
,
seqlen
,
3
,
nheads
,
headdim
,
device
=
device
,
dtype
=
dtype
,
requires_grad
=
True
)
qkv_og
=
qkv
.
clone
().
detach
()
# Our implementation modifies qkv inplace
rotary
=
RotaryEmbedding
(
rotary_dim
,
device
=
device
)
rotary_neox
=
RotaryEmbeddingNeoX
(
rotary_dim
,
seqlen_total
,
device
=
device
)
# Doesn't matter what tensor we pass in, rotary_neox only uses the device of the tensor
cos_neox
,
sin_neox
=
rotary_neox
(
qkv
,
seq_len
=
seqlen_total
)
cos_neox
,
sin_neox
=
cos_neox
.
to
(
dtype
=
dtype
),
sin_neox
.
to
(
dtype
=
dtype
)
q_pt
=
rearrange
(
qkv
[:,
:,
0
,
:,
:
rotary_dim
],
'b s h d -> b h s d'
).
detach
().
clone
().
requires_grad_
(
True
)
k_pt
=
rearrange
(
qkv
[:,
:,
1
,
:,
:
rotary_dim
],
'b s h d -> b h s d'
).
detach
().
clone
().
requires_grad_
(
True
)
q_pt
=
(
rearrange
(
qkv
[:,
:,
0
,
:,
:
rotary_dim
],
"b s h d -> b h s d"
)
.
detach
()
.
clone
()
.
requires_grad_
(
True
)
)
k_pt
=
(
rearrange
(
qkv
[:,
:,
1
,
:,
:
rotary_dim
],
"b s h d -> b h s d"
)
.
detach
()
.
clone
()
.
requires_grad_
(
True
)
)
q_neox
,
k_neox
=
apply_rotary_pos_emb_neox
(
q_pt
,
k_pt
,
cos_neox
,
sin_neox
,
offset
=
seqlen_offset
)
out
=
rotary
(
qkv
,
seqlen_offset
=
seqlen_offset
)
assert
torch
.
allclose
(
rotary
.
_cos_cached
,
cos_neox
[...,
:
rotary_dim
//
2
].
to
(
dtype
=
dtype
),
rtol
=
rtol
,
atol
=
atol
)
assert
torch
.
allclose
(
rotary
.
_sin_cached
,
sin_neox
[...,
:
rotary_dim
//
2
].
to
(
dtype
=
dtype
),
rtol
=
rtol
,
atol
=
atol
)
assert
torch
.
allclose
(
rearrange
(
q_neox
,
'b h s d -> b s h d'
),
out
[:,
:,
0
,
:,
:
rotary_dim
],
rtol
=
rtol
,
atol
=
atol
)
assert
torch
.
allclose
(
rearrange
(
k_neox
,
'b h s d -> b s h d'
),
out
[:,
:,
1
,
:,
:
rotary_dim
],
rtol
=
rtol
,
atol
=
atol
)
assert
torch
.
allclose
(
rotary
.
_cos_cached
,
cos_neox
[...,
:
rotary_dim
//
2
].
to
(
dtype
=
dtype
),
rtol
=
rtol
,
atol
=
atol
)
assert
torch
.
allclose
(
rotary
.
_sin_cached
,
sin_neox
[...,
:
rotary_dim
//
2
].
to
(
dtype
=
dtype
),
rtol
=
rtol
,
atol
=
atol
)
assert
torch
.
allclose
(
rearrange
(
q_neox
,
"b h s d -> b s h d"
),
out
[:,
:,
0
,
:,
:
rotary_dim
],
rtol
=
rtol
,
atol
=
atol
)
assert
torch
.
allclose
(
rearrange
(
k_neox
,
"b h s d -> b s h d"
),
out
[:,
:,
1
,
:,
:
rotary_dim
],
rtol
=
rtol
,
atol
=
atol
)
assert
torch
.
equal
(
out
[:,
:,
0
:
2
,
:,
rotary_dim
:],
qkv_og
[:,
:,
0
:
2
,
:,
rotary_dim
:])
assert
torch
.
equal
(
out
[:,
:,
2
],
qkv_og
[:,
:,
2
])
g
=
torch
.
randn_like
(
out
)
g_og
=
g
.
clone
().
detach
()
# Our implementation modifies g inplace
out
.
backward
(
g
)
q_neox
.
backward
(
rearrange
(
g_og
[:,
:,
0
,
:,
:
rotary_dim
],
'b s h d -> b h s d'
))
k_neox
.
backward
(
rearrange
(
g_og
[:,
:,
1
,
:,
:
rotary_dim
],
'b s h d -> b h s d'
))
assert
torch
.
allclose
(
rearrange
(
q_pt
.
grad
,
'b h s d -> b s h d'
),
qkv
.
grad
[:,
:,
0
,
:,
:
rotary_dim
],
rtol
=
rtol
,
atol
=
atol
)
assert
torch
.
allclose
(
rearrange
(
k_pt
.
grad
,
'b h s d -> b s h d'
),
qkv
.
grad
[:,
:,
1
,
:,
:
rotary_dim
],
rtol
=
rtol
,
atol
=
atol
)
q_neox
.
backward
(
rearrange
(
g_og
[:,
:,
0
,
:,
:
rotary_dim
],
"b s h d -> b h s d"
))
k_neox
.
backward
(
rearrange
(
g_og
[:,
:,
1
,
:,
:
rotary_dim
],
"b s h d -> b h s d"
))
assert
torch
.
allclose
(
rearrange
(
q_pt
.
grad
,
"b h s d -> b s h d"
),
qkv
.
grad
[:,
:,
0
,
:,
:
rotary_dim
],
rtol
=
rtol
,
atol
=
atol
,
)
assert
torch
.
allclose
(
rearrange
(
k_pt
.
grad
,
"b h s d -> b s h d"
),
qkv
.
grad
[:,
:,
1
,
:,
:
rotary_dim
],
rtol
=
rtol
,
atol
=
atol
,
)
assert
torch
.
equal
(
qkv
.
grad
[:,
:,
0
:
2
,
:,
rotary_dim
:],
g_og
[:,
:,
0
:
2
,
:,
rotary_dim
:])
assert
torch
.
equal
(
qkv
.
grad
[:,
:,
2
],
g_og
[:,
:,
2
])
# GPT-J-style rotary embedding
@
pytest
.
mark
.
parametrize
(
'
seqlen_offset
'
,
[
0
,
711
])
@
pytest
.
mark
.
parametrize
(
'
rotary_emb_fraction
'
,
[
0.5
,
1.0
])
@
pytest
.
mark
.
parametrize
(
"
seqlen_offset
"
,
[
0
,
711
])
@
pytest
.
mark
.
parametrize
(
"
rotary_emb_fraction
"
,
[
0.5
,
1.0
])
def
test_rotary_interleaved
(
rotary_emb_fraction
,
seqlen_offset
):
device
=
'
cuda
'
device
=
"
cuda
"
dtype
=
torch
.
float16
rtol
,
atol
=
(
1e-3
,
5e-3
)
# set seed
...
...
@@ -85,8 +104,9 @@ def test_rotary_interleaved(rotary_emb_fraction, seqlen_offset):
nheads
=
16
headdim
=
128
rotary_dim
=
int
(
headdim
*
rotary_emb_fraction
)
qkv
=
torch
.
randn
(
batch_size
,
seqlen
,
3
,
nheads
,
headdim
,
device
=
device
,
dtype
=
dtype
,
requires_grad
=
True
)
qkv
=
torch
.
randn
(
batch_size
,
seqlen
,
3
,
nheads
,
headdim
,
device
=
device
,
dtype
=
dtype
,
requires_grad
=
True
)
qkv_og
=
qkv
.
clone
().
detach
()
# Our implementation modifies qkv inplace
rotary
=
RotaryEmbedding
(
rotary_dim
,
interleaved
=
True
,
device
=
device
)
sincos_gptj
=
fixed_pos_embedding
(
qkv
[...,
:
rotary_dim
],
seq_dim
=
1
,
seq_len
=
seqlen_total
)
...
...
tests/losses/test_cross_entropy.py
View file @
0e8c46ae
import
math
import
pytest
import
torch
import
torch.nn.functional
as
F
import
pytest
from
einops
import
rearrange
from
flash_attn.losses.cross_entropy
import
CrossEntropyLossApex
is_sm8x
=
torch
.
cuda
.
get_device_capability
(
'
cuda
'
)[
0
]
>=
8
is_sm8x
=
torch
.
cuda
.
get_device_capability
(
"
cuda
"
)[
0
]
>=
8
@
pytest
.
mark
.
parametrize
(
'dtype'
,
[
torch
.
float16
,
torch
.
float32
]
+
([
torch
.
bfloat16
]
if
is_sm8x
else
[]))
@
pytest
.
mark
.
parametrize
(
"dtype"
,
[
torch
.
float16
,
torch
.
float32
]
+
([
torch
.
bfloat16
]
if
is_sm8x
else
[])
)
# @pytest.mark.parametrize('dtype', [torch.float16])
@
pytest
.
mark
.
parametrize
(
'
inplace_backward
'
,
[
False
,
True
])
@
pytest
.
mark
.
parametrize
(
"
inplace_backward
"
,
[
False
,
True
])
# @pytest.mark.parametrize('inplace_backward', [False])
@
pytest
.
mark
.
parametrize
(
'
smoothing
'
,
[
0.0
,
0.9
])
@
pytest
.
mark
.
parametrize
(
'
vocab_size
'
,
[
50257
])
@
pytest
.
mark
.
parametrize
(
"
smoothing
"
,
[
0.0
,
0.9
])
@
pytest
.
mark
.
parametrize
(
"
vocab_size
"
,
[
50257
])
def
test_cross_entropy_loss_apex
(
vocab_size
,
smoothing
,
inplace_backward
,
dtype
):
device
=
'
cuda
'
device
=
"
cuda
"
rtol
,
atol
=
(
1e-5
,
1e-6
)
if
dtype
==
torch
.
float32
else
(
1e-3
,
1e-4
)
# set seed
torch
.
random
.
manual_seed
(
0
)
batch_size
=
8
seqlen
=
128
x_pt
=
torch
.
randn
(
batch_size
*
seqlen
,
vocab_size
,
device
=
device
,
dtype
=
dtype
,
requires_grad
=
True
)
x_pt
=
torch
.
randn
(
batch_size
*
seqlen
,
vocab_size
,
device
=
device
,
dtype
=
dtype
,
requires_grad
=
True
)
x
=
x_pt
.
detach
().
clone
().
requires_grad_
()
y
=
torch
.
randint
(
0
,
vocab_size
,
(
batch_size
*
seqlen
,),
dtype
=
torch
.
long
,
device
=
device
)
y
[
torch
.
randperm
(
batch_size
*
seqlen
)[:
10
]]
=
-
100
...
...
tests/losses/test_cross_entropy_parallel.py
View file @
0e8c46ae
...
...
@@ -3,35 +3,37 @@
import
math
import
pytest
import
torch
import
torch.nn.functional
as
F
import
pytest
from
apex.transformer
import
parallel_state
from
apex.transformer
import
tensor_parallel
from
apex.transformer
import
parallel_state
,
tensor_parallel
from
flash_attn.losses.cross_entropy
import
CrossEntropyLoss
is_sm8x
=
torch
.
cuda
.
get_device_capability
(
'
cuda
'
)[
0
]
>=
8
is_sm8x
=
torch
.
cuda
.
get_device_capability
(
"
cuda
"
)[
0
]
>=
8
@
pytest
.
mark
.
parametrize
(
'dtype'
,
[
torch
.
float16
,
torch
.
float32
]
+
([
torch
.
bfloat16
]
if
is_sm8x
else
[]))
@
pytest
.
mark
.
parametrize
(
"dtype"
,
[
torch
.
float16
,
torch
.
float32
]
+
([
torch
.
bfloat16
]
if
is_sm8x
else
[])
)
# @pytest.mark.parametrize('dtype', [torch.float16])
@
pytest
.
mark
.
parametrize
(
'
inplace_backward
'
,
[
False
,
True
])
@
pytest
.
mark
.
parametrize
(
"
inplace_backward
"
,
[
False
,
True
])
# @pytest.mark.parametrize('inplace_backward', [False])
@
pytest
.
mark
.
parametrize
(
'
smoothing
'
,
[
0.0
,
0.9
])
@
pytest
.
mark
.
parametrize
(
"
smoothing
"
,
[
0.0
,
0.9
])
# @pytest.mark.parametrize('smoothing', [0.9])
@
pytest
.
mark
.
parametrize
(
'
vocab_size
'
,
[
50264
])
@
pytest
.
mark
.
parametrize
(
'
world_size
'
,
[
1
,
2
,
4
,
8
])
@
pytest
.
mark
.
parametrize
(
"
vocab_size
"
,
[
50264
])
@
pytest
.
mark
.
parametrize
(
"
world_size
"
,
[
1
,
2
,
4
,
8
])
# @pytest.mark.parametrize('world_size', [2])
def
test_cross_entropy_loss_parallel
(
vocab_size
,
world_size
,
smoothing
,
inplace_backward
,
dtype
):
assert
vocab_size
%
world_size
==
0
rtol
,
atol
=
((
1e-5
,
1e-6
)
if
dtype
==
torch
.
float32
else
((
1e-3
,
1e-4
)
if
dtype
==
torch
.
float16
else
(
1e-2
,
3e-3
)))
rtol
,
atol
=
(
(
1e-5
,
1e-6
)
if
dtype
==
torch
.
float32
else
((
1e-3
,
1e-4
)
if
dtype
==
torch
.
float16
else
(
1e-2
,
3e-3
))
)
if
not
torch
.
distributed
.
is_initialized
():
torch
.
distributed
.
init_process_group
(
backend
=
'
nccl
'
,
init_method
=
'
env://
'
)
torch
.
distributed
.
init_process_group
(
backend
=
"
nccl
"
,
init_method
=
"
env://
"
)
partition_vocab_size
=
vocab_size
//
world_size
device
=
f
'
cuda:
{
torch
.
distributed
.
get_rank
()
}
'
device
=
f
"
cuda:
{
torch
.
distributed
.
get_rank
()
}
"
assert
world_size
<=
torch
.
distributed
.
get_world_size
()
parallel_state
.
initialize_model_parallel
(
tensor_model_parallel_size_
=
world_size
)
rank
=
parallel_state
.
get_tensor_model_parallel_rank
()
...
...
@@ -39,15 +41,24 @@ def test_cross_entropy_loss_parallel(vocab_size, world_size, smoothing, inplace_
torch
.
random
.
manual_seed
(
0
)
batch_size
=
8
seqlen
=
128
x_pt
=
(
torch
.
randn
(
batch_size
*
seqlen
,
vocab_size
,
device
=
device
,
dtype
=
dtype
)
*
10
).
requires_grad_
()
x
=
tensor_parallel
.
scatter_to_tensor_model_parallel_region
(
x_pt
).
detach
().
clone
().
requires_grad_
()
x_pt
=
(
torch
.
randn
(
batch_size
*
seqlen
,
vocab_size
,
device
=
device
,
dtype
=
dtype
)
*
10
).
requires_grad_
()
x
=
(
tensor_parallel
.
scatter_to_tensor_model_parallel_region
(
x_pt
)
.
detach
()
.
clone
()
.
requires_grad_
()
)
y
=
torch
.
randint
(
0
,
vocab_size
,
(
batch_size
*
seqlen
,),
dtype
=
torch
.
long
,
device
=
device
)
y
[
torch
.
randperm
(
batch_size
*
seqlen
)[:
10
]]
=
-
100
model_pt
=
torch
.
nn
.
CrossEntropyLoss
(
label_smoothing
=
smoothing
,
reduction
=
'none'
)
model
=
CrossEntropyLoss
(
label_smoothing
=
smoothing
,
reduction
=
'none'
,
inplace_backward
=
inplace_backward
,
process_group
=
parallel_state
.
get_tensor_model_parallel_group
())
model_pt
=
torch
.
nn
.
CrossEntropyLoss
(
label_smoothing
=
smoothing
,
reduction
=
"none"
)
model
=
CrossEntropyLoss
(
label_smoothing
=
smoothing
,
reduction
=
"none"
,
inplace_backward
=
inplace_backward
,
process_group
=
parallel_state
.
get_tensor_model_parallel_group
(),
)
out
=
model
(
x
,
y
)
out_pt
=
model_pt
(
x_pt
.
float
(),
y
)
assert
torch
.
allclose
(
out
,
out_pt
,
rtol
=
1e-5
,
atol
=
1e-6
)
...
...
@@ -55,6 +66,11 @@ def test_cross_entropy_loss_parallel(vocab_size, world_size, smoothing, inplace_
g
=
torch
.
randn_like
(
out
)
out_pt
.
backward
(
g
)
out
.
backward
(
g
)
assert
torch
.
allclose
(
x
.
grad
,
x_pt
.
grad
[:,
(
rank
*
partition_vocab_size
):(
rank
+
1
)
*
partition_vocab_size
],
rtol
=
rtol
,
atol
=
atol
)
assert
torch
.
allclose
(
x
.
grad
,
x_pt
.
grad
[:,
(
rank
*
partition_vocab_size
)
:
(
rank
+
1
)
*
partition_vocab_size
],
rtol
=
rtol
,
atol
=
atol
,
)
parallel_state
.
destroy_model_parallel
()
tests/models/test_bert.py
View file @
0e8c46ae
import
re
from
collections
import
OrderedDict
import
pytest
import
torch
import
torch.nn.functional
as
F
import
pytest
from
einops
import
rearrange
from
flash_attn.models.bert
import
BertForPreTraining
,
BertModel
,
remap_state_dict
from
flash_attn.utils.pretrained
import
state_dict_from_pretrained
from
transformers
import
BertConfig
from
transformers.models.bert.modeling_bert
import
BertModel
as
BertModelHF
from
transformers.models.bert.modeling_bert
import
BertForPreTraining
as
BertForPreTrainingHF
from
flash_attn.models.bert
import
BertModel
,
BertForPreTraining
from
flash_attn.models.bert
import
remap_state_dict
from
flash_attn.utils.pretrained
import
state_dict_from_pretrained
from
transformers.models.bert.modeling_bert
import
BertModel
as
BertModelHF
@
pytest
.
mark
.
parametrize
(
'
model_name
'
,
[
"bert-base-uncased"
,
"bert-large-uncased"
])
@
pytest
.
mark
.
parametrize
(
"
model_name
"
,
[
"bert-base-uncased"
,
"bert-large-uncased"
])
# @pytest.mark.parametrize('model_name', ["bert-base-uncased"])
def
test_bert_state_dict
(
model_name
):
config
=
BertConfig
.
from_pretrained
(
model_name
)
...
...
@@ -30,12 +26,15 @@ def test_bert_state_dict(model_name):
def
get_hf_models
(
model_name
,
config
,
dtype
):
pretrained_state_dict
=
state_dict_from_pretrained
(
model_name
)
def
key_mapping_ln_gamma_beta
(
key
):
key
=
re
.
sub
(
r
'
LayerNorm.gamma$
'
,
'
LayerNorm.weight
'
,
key
)
key
=
re
.
sub
(
r
'
LayerNorm.beta$
'
,
'
LayerNorm.bias
'
,
key
)
key
=
re
.
sub
(
r
"
LayerNorm.gamma$
"
,
"
LayerNorm.weight
"
,
key
)
key
=
re
.
sub
(
r
"
LayerNorm.beta$
"
,
"
LayerNorm.bias
"
,
key
)
return
key
pretrained_state_dict
=
OrderedDict
((
key_mapping_ln_gamma_beta
(
k
),
v
)
for
k
,
v
in
pretrained_state_dict
.
items
())
pretrained_state_dict
=
OrderedDict
(
(
key_mapping_ln_gamma_beta
(
k
),
v
)
for
k
,
v
in
pretrained_state_dict
.
items
()
)
model_hf
=
BertForPreTrainingHF
(
config
)
# Missing key(s) in state_dict: "bert.embeddings.position_ids", "cls.predictions.decoder.bias"
# position_ids is a buffer, and predictions.decoder.bias is tied to predictions.bias.
...
...
@@ -44,7 +43,7 @@ def get_hf_models(model_name, config, dtype):
return
model_hf
@
pytest
.
mark
.
parametrize
(
'
model_name
'
,
[
"bert-base-uncased"
,
"bert-large-uncased"
])
@
pytest
.
mark
.
parametrize
(
"
model_name
"
,
[
"bert-base-uncased"
,
"bert-large-uncased"
])
# @pytest.mark.parametrize('model_name', ["bert-base-uncased"])
def
test_bert_non_optimized
(
model_name
):
"""Check that our implementation of BERT (without any optimizations enabled) matches the
...
...
@@ -67,10 +66,11 @@ def test_bert_non_optimized(model_name):
torch
.
manual_seed
(
0
)
batch_size
=
4
max_seqlen
=
512
seqlens
=
torch
.
randint
(
max_seqlen
//
2
,
max_seqlen
+
1
,
(
batch_size
,),
device
=
'cuda'
)
attention_mask
=
torch
.
arange
(
max_seqlen
,
device
=
'cuda'
)[
None
,
:]
<
seqlens
[:,
None
]
input_ids
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
max_seqlen
),
dtype
=
torch
.
long
,
device
=
'cuda'
)
seqlens
=
torch
.
randint
(
max_seqlen
//
2
,
max_seqlen
+
1
,
(
batch_size
,),
device
=
"cuda"
)
attention_mask
=
torch
.
arange
(
max_seqlen
,
device
=
"cuda"
)[
None
,
:]
<
seqlens
[:,
None
]
input_ids
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
max_seqlen
),
dtype
=
torch
.
long
,
device
=
"cuda"
)
out
=
model
.
bert
(
input_ids
,
attention_mask
=
attention_mask
)
sequence_output
,
pooled_output
=
out
.
last_hidden_state
,
out
.
pooler_output
out_hf
=
model_hf
.
bert
(
input_ids
,
attention_mask
=
attention_mask
)
...
...
@@ -78,15 +78,19 @@ def test_bert_non_optimized(model_name):
out_ref
=
model_ref
.
bert
(
input_ids
,
attention_mask
=
attention_mask
)
sequence_output_ref
,
pooled_output_ref
=
out_ref
.
last_hidden_state
,
out_ref
.
pooler_output
print
(
f
'Output max diff:
{
(
sequence_output
-
sequence_output_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'Output mean diff:
{
(
sequence_output
-
sequence_output_ref
).
abs
().
mean
().
item
()
}
'
)
print
(
f
'HF fp16 max diff:
{
(
sequence_output_hf
-
sequence_output_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'HF fp16 mean diff:
{
(
sequence_output_hf
-
sequence_output_ref
).
abs
().
mean
().
item
()
}
'
)
assert
(
sequence_output
-
sequence_output_ref
).
abs
().
max
().
item
()
<
3
*
(
sequence_output_hf
-
sequence_output_ref
).
abs
().
max
().
item
()
assert
(
pooled_output
-
pooled_output_ref
).
abs
().
max
().
item
()
<
3
*
(
pooled_output_hf
-
pooled_output_ref
).
abs
().
max
().
item
()
print
(
f
"Output max diff:
{
(
sequence_output
-
sequence_output_ref
).
abs
().
max
().
item
()
}
"
)
print
(
f
"Output mean diff:
{
(
sequence_output
-
sequence_output_ref
).
abs
().
mean
().
item
()
}
"
)
print
(
f
"HF fp16 max diff:
{
(
sequence_output_hf
-
sequence_output_ref
).
abs
().
max
().
item
()
}
"
)
print
(
f
"HF fp16 mean diff:
{
(
sequence_output_hf
-
sequence_output_ref
).
abs
().
mean
().
item
()
}
"
)
assert
(
sequence_output
-
sequence_output_ref
).
abs
().
max
().
item
()
<
3
*
(
sequence_output_hf
-
sequence_output_ref
).
abs
().
max
().
item
()
assert
(
pooled_output
-
pooled_output_ref
).
abs
().
max
().
item
()
<
3
*
(
pooled_output_hf
-
pooled_output_ref
).
abs
().
max
().
item
()
@
pytest
.
mark
.
parametrize
(
'
model_name
'
,
[
"bert-base-uncased"
,
"bert-large-uncased"
])
@
pytest
.
mark
.
parametrize
(
"
model_name
"
,
[
"bert-base-uncased"
,
"bert-large-uncased"
])
# @pytest.mark.parametrize('model_name', ["bert-base-uncased"])
def
test_bert_optimized
(
model_name
):
"""Check that our implementation of BERT (with all optimizations enabled) matches the
...
...
@@ -117,10 +121,11 @@ def test_bert_optimized(model_name):
torch
.
manual_seed
(
0
)
batch_size
=
4
max_seqlen
=
512
seqlens
=
torch
.
randint
(
max_seqlen
//
2
,
max_seqlen
+
1
,
(
batch_size
,),
device
=
'cuda'
)
attention_mask
=
torch
.
arange
(
max_seqlen
,
device
=
'cuda'
)[
None
,
:]
<
seqlens
[:,
None
]
input_ids
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
max_seqlen
),
dtype
=
torch
.
long
,
device
=
'cuda'
)
seqlens
=
torch
.
randint
(
max_seqlen
//
2
,
max_seqlen
+
1
,
(
batch_size
,),
device
=
"cuda"
)
attention_mask
=
torch
.
arange
(
max_seqlen
,
device
=
"cuda"
)[
None
,
:]
<
seqlens
[:,
None
]
input_ids
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
max_seqlen
),
dtype
=
torch
.
long
,
device
=
"cuda"
)
out
=
model
.
bert
(
input_ids
,
attention_mask
=
attention_mask
)
sequence_output
,
pooled_output
=
out
.
last_hidden_state
,
out
.
pooler_output
out_hf
=
model_hf
.
bert
(
input_ids
,
attention_mask
=
attention_mask
)
...
...
@@ -131,12 +136,24 @@ def test_bert_optimized(model_name):
sequence_output_ref
,
pooled_output_ref
=
out_ref
.
last_hidden_state
,
out_ref
.
pooler_output
sequence_output_ref
[
~
attention_mask
,
:]
=
0.0
print
(
f
'BertModel output max diff:
{
(
sequence_output
-
sequence_output_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'BertModel output mean diff:
{
(
sequence_output
-
sequence_output_ref
).
abs
().
mean
().
item
()
}
'
)
print
(
f
'HF fp16 BertModel max diff:
{
(
sequence_output_hf
-
sequence_output_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'HF fp16 BertModel mean diff:
{
(
sequence_output_hf
-
sequence_output_ref
).
abs
().
mean
().
item
()
}
'
)
assert
(
sequence_output
-
sequence_output_ref
).
abs
().
max
().
item
()
<
4
*
(
sequence_output_hf
-
sequence_output_ref
).
abs
().
max
().
item
()
assert
(
pooled_output
-
pooled_output_ref
).
abs
().
max
().
item
()
<
4
*
(
pooled_output_hf
-
pooled_output_ref
).
abs
().
max
().
item
()
print
(
f
"BertModel output max diff:
{
(
sequence_output
-
sequence_output_ref
).
abs
().
max
().
item
()
}
"
)
print
(
f
"BertModel output mean diff:
{
(
sequence_output
-
sequence_output_ref
).
abs
().
mean
().
item
()
}
"
)
print
(
f
"HF fp16 BertModel max diff:
{
(
sequence_output_hf
-
sequence_output_ref
).
abs
().
max
().
item
()
}
"
)
print
(
f
"HF fp16 BertModel mean diff:
{
(
sequence_output_hf
-
sequence_output_ref
).
abs
().
mean
().
item
()
}
"
)
assert
(
sequence_output
-
sequence_output_ref
).
abs
().
max
().
item
()
<
4
*
(
sequence_output_hf
-
sequence_output_ref
).
abs
().
max
().
item
()
assert
(
pooled_output
-
pooled_output_ref
).
abs
().
max
().
item
()
<
4
*
(
pooled_output_hf
-
pooled_output_ref
).
abs
().
max
().
item
()
out
=
model
(
input_ids
,
attention_mask
=
attention_mask
)
prediction_scores
,
seq_relationship_scores
=
out
.
prediction_logits
,
out
.
seq_relationship_logits
...
...
@@ -144,25 +161,43 @@ def test_bert_optimized(model_name):
prediction_scores
=
prediction_scores
.
clone
()
prediction_scores
[
~
attention_mask
,
:]
=
0.0
out_hf
=
model_hf
(
input_ids
,
attention_mask
=
attention_mask
)
prediction_scores_hf
,
seq_relationship_scores_hf
=
out_hf
.
prediction_logits
,
out_hf
.
seq_relationship_logits
prediction_scores_hf
,
seq_relationship_scores_hf
=
(
out_hf
.
prediction_logits
,
out_hf
.
seq_relationship_logits
,
)
prediction_scores_hf
[
~
attention_mask
,
:]
=
0.0
out_ref
=
model_ref
(
input_ids
,
attention_mask
=
attention_mask
)
prediction_scores_ref
,
seq_relationship_scores_ref
=
out_ref
.
prediction_logits
,
out_ref
.
seq_relationship_logits
prediction_scores_ref
,
seq_relationship_scores_ref
=
(
out_ref
.
prediction_logits
,
out_ref
.
seq_relationship_logits
,
)
prediction_scores_ref
[
~
attention_mask
,
:]
=
0.0
print
(
f
'prediction_scores max diff:
{
(
prediction_scores
-
prediction_scores_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'prediction_scores mean diff:
{
(
prediction_scores
-
prediction_scores_ref
).
abs
().
mean
().
item
()
}
'
)
print
(
f
'HF fp16 prediction_scoresff:
{
(
prediction_scores_hf
-
prediction_scores_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'HF fp16 prediction_scoresiff:
{
(
prediction_scores_hf
-
prediction_scores_ref
).
abs
().
mean
().
item
()
}
'
)
assert
(
prediction_scores
-
prediction_scores_ref
).
abs
().
max
().
item
()
<
2
*
(
prediction_scores_hf
-
prediction_scores_ref
).
abs
().
max
().
item
()
assert
(
seq_relationship_scores
-
seq_relationship_scores_ref
).
abs
().
max
().
item
()
<
2
*
(
seq_relationship_scores_hf
-
seq_relationship_scores_ref
).
abs
().
max
().
item
()
print
(
f
"prediction_scores max diff:
{
(
prediction_scores
-
prediction_scores_ref
).
abs
().
max
().
item
()
}
"
)
print
(
f
"prediction_scores mean diff:
{
(
prediction_scores
-
prediction_scores_ref
).
abs
().
mean
().
item
()
}
"
)
print
(
f
"HF fp16 prediction_scoresff:
{
(
prediction_scores_hf
-
prediction_scores_ref
).
abs
().
max
().
item
()
}
"
)
print
(
f
"HF fp16 prediction_scoresiff:
{
(
prediction_scores_hf
-
prediction_scores_ref
).
abs
().
mean
().
item
()
}
"
)
assert
(
prediction_scores
-
prediction_scores_ref
).
abs
().
max
().
item
()
<
2
*
(
prediction_scores_hf
-
prediction_scores_ref
).
abs
().
max
().
item
()
assert
(
seq_relationship_scores
-
seq_relationship_scores_ref
).
abs
().
max
().
item
()
<
2
*
(
seq_relationship_scores_hf
-
seq_relationship_scores_ref
).
abs
().
max
().
item
()
@
pytest
.
mark
.
parametrize
(
'
last_layer_subset
'
,
[
False
,
True
])
@
pytest
.
mark
.
parametrize
(
"
last_layer_subset
"
,
[
False
,
True
])
# @pytest.mark.parametrize('last_layer_subset', [True])
@
pytest
.
mark
.
parametrize
(
'
has_key_padding_mask
'
,
[
True
,
False
])
@
pytest
.
mark
.
parametrize
(
"
has_key_padding_mask
"
,
[
True
,
False
])
# @pytest.mark.parametrize('has_key_padding_mask', [True])
@
pytest
.
mark
.
parametrize
(
'
model_name
'
,
[
"bert-base-uncased"
,
"bert-large-uncased"
])
@
pytest
.
mark
.
parametrize
(
"
model_name
"
,
[
"bert-base-uncased"
,
"bert-large-uncased"
])
# @pytest.mark.parametrize('model_name', ["bert-base-uncased"])
def
test_bert_dense_seq_output
(
model_name
,
has_key_padding_mask
,
last_layer_subset
):
"""Check that our implementation of BERT (with all optimizations enabled) matches the
...
...
@@ -196,40 +231,70 @@ def test_bert_dense_seq_output(model_name, has_key_padding_mask, last_layer_subs
torch
.
manual_seed
(
0
)
batch_size
=
4
max_seqlen
=
512
seqlens
=
torch
.
randint
(
max_seqlen
//
2
,
max_seqlen
+
1
,
(
batch_size
,),
device
=
'
cuda
'
)
seqlens
=
torch
.
randint
(
max_seqlen
//
2
,
max_seqlen
+
1
,
(
batch_size
,),
device
=
"
cuda
"
)
if
has_key_padding_mask
:
attention_mask
=
torch
.
arange
(
max_seqlen
,
device
=
'
cuda
'
)[
None
,
:]
<
seqlens
[:,
None
]
attention_mask
=
torch
.
arange
(
max_seqlen
,
device
=
"
cuda
"
)[
None
,
:]
<
seqlens
[:,
None
]
else
:
attention_mask
=
None
input_ids
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
max_seqlen
),
dtype
=
torch
.
long
,
device
=
'cuda'
)
labels
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
max_seqlen
),
dtype
=
torch
.
long
,
device
=
'cuda'
)
input_ids
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
max_seqlen
),
dtype
=
torch
.
long
,
device
=
"cuda"
)
labels
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
max_seqlen
),
dtype
=
torch
.
long
,
device
=
"cuda"
)
if
attention_mask
is
not
None
:
labels
[
~
attention_mask
]
=
0
labels
[(
torch
.
rand
(
batch_size
,
max_seqlen
,
device
=
'
cuda
'
)
>
0.15
)]
=
0
labels
[(
torch
.
rand
(
batch_size
,
max_seqlen
,
device
=
"
cuda
"
)
>
0.15
)]
=
0
masked_tokens_mask
=
labels
.
flatten
()
>
0
next_sequence_label
=
torch
.
randint
(
0
,
2
,
(
batch_size
,),
device
=
'
cuda
'
)
next_sequence_label
=
torch
.
randint
(
0
,
2
,
(
batch_size
,),
device
=
"
cuda
"
)
out
=
model
(
input_ids
,
attention_mask
=
attention_mask
,
labels
=
labels
,
next_sentence_label
=
next_sequence_label
input_ids
,
attention_mask
=
attention_mask
,
labels
=
labels
,
next_sentence_label
=
next_sequence_label
,
)
prediction_scores
,
seq_relationship_scores
=
out
.
prediction_logits
,
out
.
seq_relationship_logits
out_hf
=
model_hf
(
input_ids
,
attention_mask
=
attention_mask
,
labels
=
labels
,
next_sentence_label
=
next_sequence_label
)
prediction_scores_hf
,
seq_relationship_scores_hf
=
out_hf
.
prediction_logits
,
out_hf
.
seq_relationship_logits
prediction_scores_hf
=
rearrange
(
prediction_scores_hf
,
'b s d -> (b s) d'
)[
masked_tokens_mask
]
out_ref
=
model_ref
(
input_ids
,
attention_mask
=
attention_mask
,
labels
=
labels
,
next_sentence_label
=
next_sequence_label
)
prediction_scores_ref
,
seq_relationship_scores_ref
=
out_ref
.
prediction_logits
,
out_ref
.
seq_relationship_logits
prediction_scores_ref
=
rearrange
(
prediction_scores_ref
,
'b s d -> (b s) d'
)[
masked_tokens_mask
]
print
(
f
'prediction_scores max diff:
{
(
prediction_scores
-
prediction_scores_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'prediction_scores mean diff:
{
(
prediction_scores
-
prediction_scores_ref
).
abs
().
mean
().
item
()
}
'
)
print
(
f
'HF fp16 prediction_scoresff:
{
(
prediction_scores_hf
-
prediction_scores_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'HF fp16 prediction_scoresiff:
{
(
prediction_scores_hf
-
prediction_scores_ref
).
abs
().
mean
().
item
()
}
'
)
assert
(
prediction_scores
-
prediction_scores_ref
).
abs
().
max
().
item
()
<
2
*
(
prediction_scores_hf
-
prediction_scores_ref
).
abs
().
max
().
item
()
assert
(
seq_relationship_scores
-
seq_relationship_scores_ref
).
abs
().
max
().
item
()
<
2
*
(
seq_relationship_scores_hf
-
seq_relationship_scores_ref
).
abs
().
max
().
item
()
out_hf
=
model_hf
(
input_ids
,
attention_mask
=
attention_mask
,
labels
=
labels
,
next_sentence_label
=
next_sequence_label
,
)
prediction_scores_hf
,
seq_relationship_scores_hf
=
(
out_hf
.
prediction_logits
,
out_hf
.
seq_relationship_logits
,
)
prediction_scores_hf
=
rearrange
(
prediction_scores_hf
,
"b s d -> (b s) d"
)[
masked_tokens_mask
]
out_ref
=
model_ref
(
input_ids
,
attention_mask
=
attention_mask
,
labels
=
labels
,
next_sentence_label
=
next_sequence_label
,
)
prediction_scores_ref
,
seq_relationship_scores_ref
=
(
out_ref
.
prediction_logits
,
out_ref
.
seq_relationship_logits
,
)
prediction_scores_ref
=
rearrange
(
prediction_scores_ref
,
"b s d -> (b s) d"
)[
masked_tokens_mask
]
print
(
f
"prediction_scores max diff:
{
(
prediction_scores
-
prediction_scores_ref
).
abs
().
max
().
item
()
}
"
)
print
(
f
"prediction_scores mean diff:
{
(
prediction_scores
-
prediction_scores_ref
).
abs
().
mean
().
item
()
}
"
)
print
(
f
"HF fp16 prediction_scoresff:
{
(
prediction_scores_hf
-
prediction_scores_ref
).
abs
().
max
().
item
()
}
"
)
print
(
f
"HF fp16 prediction_scoresiff:
{
(
prediction_scores_hf
-
prediction_scores_ref
).
abs
().
mean
().
item
()
}
"
)
assert
(
prediction_scores
-
prediction_scores_ref
).
abs
().
max
().
item
()
<
2
*
(
prediction_scores_hf
-
prediction_scores_ref
).
abs
().
max
().
item
()
assert
(
seq_relationship_scores
-
seq_relationship_scores_ref
).
abs
().
max
().
item
()
<
2
*
(
seq_relationship_scores_hf
-
seq_relationship_scores_ref
).
abs
().
max
().
item
()
# The loss calculation from HF is wrong: it doesn't ignore the labels that are 0.
# assert (out.loss - out_ref.loss).abs().max().item() < 2 * (out_hf.loss - out_ref.loss).abs().max().item()
tests/models/test_falcon.py
View file @
0e8c46ae
...
...
@@ -3,44 +3,46 @@
import
os
import
time
from
pathlib
import
Path
current_dir
=
Path
(
__file__
).
parent
.
absolute
()
import
torch
import
pytest
import
torch
from
einops
import
rearrange
from
transformers
import
AutoConfig
,
AutoTokenizer
,
AutoModelForCausalLM
from
flash_attn.models.falcon
import
falcon_config_to_gpt2_config
,
remap_state_dict_hf_falcon
from
flash_attn.models.gpt
import
GPTLMHeadModel
,
combine_state_dicts_tp
,
shard_state_dict_tp
from
flash_attn.models.falcon
import
remap_state_dict_hf_falcon
,
falcon_config_to_gpt2_config
from
flash_attn.utils.distributed
import
all_gather_raw
from
flash_attn.utils.pretrained
import
state_dict_from_pretrained
from
flash_attn.utils.generation
import
update_graph_cache
from
flash_attn.utils.pretrained
import
state_dict_from_pretrained
from
transformers
import
AutoConfig
,
AutoModelForCausalLM
,
AutoTokenizer
@
pytest
.
mark
.
parametrize
(
'
model_name
'
,
[
"tiiuae/falcon-7b"
,
"tiiuae/falcon-40b"
])
@
pytest
.
mark
.
parametrize
(
"
model_name
"
,
[
"tiiuae/falcon-7b"
,
"tiiuae/falcon-40b"
])
def
test_falcon_state_dict
(
model_name
):
config
=
falcon_config_to_gpt2_config
(
AutoConfig
.
from_pretrained
(
model_name
,
trust_remote_code
=
True
))
pretrained_state_dict
=
remap_state_dict_hf_falcon
(
state_dict_from_pretrained
(
model_name
),
config
)
model
=
GPTLMHeadModel
(
config
,
device
=
'meta'
)
# Without device='meta' init is very slow
config
=
falcon_config_to_gpt2_config
(
AutoConfig
.
from_pretrained
(
model_name
,
trust_remote_code
=
True
)
)
pretrained_state_dict
=
remap_state_dict_hf_falcon
(
state_dict_from_pretrained
(
model_name
),
config
)
model
=
GPTLMHeadModel
(
config
,
device
=
"meta"
)
# Without device='meta' init is very slow
state_dict
=
model
.
state_dict
()
assert
state_dict
.
keys
()
==
pretrained_state_dict
.
keys
()
for
k
in
state_dict
.
keys
():
assert
state_dict
[
k
].
shape
==
pretrained_state_dict
[
k
].
shape
@
pytest
.
mark
.
parametrize
(
'
model_name
'
,
[
"tiiuae/falcon-7b"
])
@
pytest
.
mark
.
parametrize
(
"
model_name
"
,
[
"tiiuae/falcon-7b"
])
def
test_falcon_optimized
(
model_name
):
"""Check that our implementation (with all optimizations enabled) matches the
HF implementation: the output of our forward pass in fp16 should be around the same as the HF
forward pass in fp16, when compared to the HF forward pass in fp32.
"""
dtype
=
torch
.
float16
device
=
'cuda'
config
=
falcon_config_to_gpt2_config
(
AutoConfig
.
from_pretrained
(
model_name
,
trust_remote_code
=
True
))
device
=
"cuda"
config
=
falcon_config_to_gpt2_config
(
AutoConfig
.
from_pretrained
(
model_name
,
trust_remote_code
=
True
)
)
config
.
use_flash_attn
=
True
config
.
fused_bias_fc
=
True
config
.
fused_mlp
=
False
# We don't have fused MLP for "gelu" activation
...
...
@@ -53,8 +55,9 @@ def test_falcon_optimized(model_name):
torch
.
manual_seed
(
0
)
batch_size
=
2
max_seqlen
=
256
input_ids
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
max_seqlen
),
dtype
=
torch
.
long
,
device
=
device
)
input_ids
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
max_seqlen
),
dtype
=
torch
.
long
,
device
=
device
)
with
torch
.
no_grad
():
out
=
model
.
transformer
(
input_ids
)
logits
=
model
(
input_ids
).
logits
...
...
@@ -78,30 +81,33 @@ def test_falcon_optimized(model_name):
logits_hf
=
model_hf
(
input_ids
).
logits
del
model_hf
print
(
f
'
Output max diff:
{
(
out
-
out_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'
Output mean diff:
{
(
out
-
out_ref
).
abs
().
mean
().
item
()
}
'
)
print
(
f
'
HF fp16 max diff:
{
(
out_hf
-
out_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'
HF fp16 mean diff:
{
(
out_hf
-
out_ref
).
abs
().
mean
().
item
()
}
'
)
print
(
f
"
Output max diff:
{
(
out
-
out_ref
).
abs
().
max
().
item
()
}
"
)
print
(
f
"
Output mean diff:
{
(
out
-
out_ref
).
abs
().
mean
().
item
()
}
"
)
print
(
f
"
HF fp16 max diff:
{
(
out_hf
-
out_ref
).
abs
().
max
().
item
()
}
"
)
print
(
f
"
HF fp16 mean diff:
{
(
out_hf
-
out_ref
).
abs
().
mean
().
item
()
}
"
)
assert
(
out
-
out_ref
).
abs
().
max
().
item
()
<
3
*
(
out_hf
-
out_ref
).
abs
().
max
().
item
()
print
(
f
'Logits max diff:
{
(
logits
-
logits_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'Logits mean diff:
{
(
logits
-
logits_ref
).
abs
().
mean
().
item
()
}
'
)
print
(
f
'HF fp16 max diff:
{
(
logits_hf
-
logits_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'HF fp16 mean diff:
{
(
logits_hf
-
logits_ref
).
abs
().
mean
().
item
()
}
'
)
assert
(
logits
-
logits_ref
).
abs
().
max
().
item
()
<
3
*
(
logits_hf
-
logits_ref
).
abs
().
max
().
item
()
print
(
f
"Logits max diff:
{
(
logits
-
logits_ref
).
abs
().
max
().
item
()
}
"
)
print
(
f
"Logits mean diff:
{
(
logits
-
logits_ref
).
abs
().
mean
().
item
()
}
"
)
print
(
f
"HF fp16 max diff:
{
(
logits_hf
-
logits_ref
).
abs
().
max
().
item
()
}
"
)
print
(
f
"HF fp16 mean diff:
{
(
logits_hf
-
logits_ref
).
abs
().
mean
().
item
()
}
"
)
assert
(
logits
-
logits_ref
).
abs
().
max
().
item
()
<
3
*
(
logits_hf
-
logits_ref
).
abs
().
max
().
item
()
# torchrun --no_python --nproc_per_node=4 pytest -q -s tests/models/test_falcon.py -k "falcon_parallel_forward"
# We want to run this on a machine with 4 x A100 80GB or 8 x A100 40GB so we have enough
# memory to run the model in fp32.
@
pytest
.
mark
.
parametrize
(
'
world_size
'
,
[
4
])
@
pytest
.
mark
.
parametrize
(
'
model_name
'
,
[
"tiiuae/falcon-40b"
])
@
pytest
.
mark
.
parametrize
(
"
world_size
"
,
[
4
])
@
pytest
.
mark
.
parametrize
(
"
model_name
"
,
[
"tiiuae/falcon-40b"
])
def
test_falcon_parallel_forward
(
model_name
,
world_size
):
from
apex.transformer
import
parallel_state
dtype
=
torch
.
float16
config
=
falcon_config_to_gpt2_config
(
AutoConfig
.
from_pretrained
(
model_name
,
trust_remote_code
=
True
))
config
=
falcon_config_to_gpt2_config
(
AutoConfig
.
from_pretrained
(
model_name
,
trust_remote_code
=
True
)
)
config
.
use_flash_attn
=
False
config
.
fused_bias_fc
=
True
config
.
fused_mlp
=
False
# We don't have fused MLP for "gelu" activation
...
...
@@ -109,14 +115,16 @@ def test_falcon_parallel_forward(model_name, world_size):
config
.
residual_in_fp32
=
True
if
not
torch
.
distributed
.
is_initialized
():
torch
.
distributed
.
init_process_group
(
backend
=
'
nccl
'
,
init_method
=
'
env://
'
)
device
=
f
'
cuda:
{
torch
.
distributed
.
get_rank
()
}
'
torch
.
distributed
.
init_process_group
(
backend
=
"
nccl
"
,
init_method
=
"
env://
"
)
device
=
f
"
cuda:
{
torch
.
distributed
.
get_rank
()
}
"
assert
world_size
<=
torch
.
distributed
.
get_world_size
()
parallel_state
.
initialize_model_parallel
(
tensor_model_parallel_size_
=
world_size
)
rank
=
parallel_state
.
get_tensor_model_parallel_rank
()
process_group
=
parallel_state
.
get_tensor_model_parallel_group
()
pretrained_state_dict
=
remap_state_dict_hf_falcon
(
state_dict_from_pretrained
(
model_name
),
config
)
pretrained_state_dict
=
remap_state_dict_hf_falcon
(
state_dict_from_pretrained
(
model_name
),
config
)
model
=
GPTLMHeadModel
(
config
,
process_group
=
process_group
,
device
=
device
,
dtype
=
dtype
)
model
.
load_state_dict
(
shard_state_dict_tp
(
pretrained_state_dict
,
config
,
world_size
,
rank
))
...
...
@@ -126,8 +134,9 @@ def test_falcon_parallel_forward(model_name, world_size):
batch_size
=
2
max_seqlen
=
256
seqlens
=
torch
.
randint
(
max_seqlen
//
2
,
max_seqlen
+
1
,
(
batch_size
,),
device
=
device
)
input_ids
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
max_seqlen
),
dtype
=
torch
.
long
,
device
=
device
)
input_ids
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
max_seqlen
),
dtype
=
torch
.
long
,
device
=
device
)
with
torch
.
no_grad
():
out
=
model
.
transformer
(
input_ids
)
out
,
_
=
all_gather_raw
(
out
,
process_group
=
process_group
)
...
...
@@ -135,7 +144,7 @@ def test_falcon_parallel_forward(model_name, world_size):
logits
=
model
(
input_ids
).
logits
logits
=
rearrange
(
logits
,
"(b s) d -> b s d"
,
b
=
batch_size
)
logits
,
_
=
all_gather_raw
(
logits
,
process_group
)
logits
=
rearrange
(
logits
,
'
(n b) ... d -> b ... (n d)
'
,
b
=
batch_size
)
logits
=
rearrange
(
logits
,
"
(n b) ... d -> b ... (n d)
"
,
b
=
batch_size
)
del
model
if
rank
==
0
:
...
...
@@ -157,29 +166,32 @@ def test_falcon_parallel_forward(model_name, world_size):
logits_ref
=
model_ref
(
input_ids
).
logits
.
to
(
device
=
device
)
del
model_ref
print
(
f
'
Output max diff:
{
(
out
-
out_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'
Output mean diff:
{
(
out
-
out_ref
).
abs
().
mean
().
item
()
}
'
)
print
(
f
'
HF fp16 max diff:
{
(
out_hf
-
out_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'
HF fp16 mean diff:
{
(
out_hf
-
out_ref
).
abs
().
mean
().
item
()
}
'
)
print
(
f
"
Output max diff:
{
(
out
-
out_ref
).
abs
().
max
().
item
()
}
"
)
print
(
f
"
Output mean diff:
{
(
out
-
out_ref
).
abs
().
mean
().
item
()
}
"
)
print
(
f
"
HF fp16 max diff:
{
(
out_hf
-
out_ref
).
abs
().
max
().
item
()
}
"
)
print
(
f
"
HF fp16 mean diff:
{
(
out_hf
-
out_ref
).
abs
().
mean
().
item
()
}
"
)
assert
(
out
-
out_ref
).
abs
().
max
().
item
()
<
2
*
(
out_hf
-
out_ref
).
abs
().
max
().
item
()
print
(
f
'Logits max diff:
{
(
logits
-
logits_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'Logits mean diff:
{
(
logits
-
logits_ref
).
abs
().
mean
().
item
()
}
'
)
print
(
f
'HF fp16 max diff:
{
(
logits_hf
-
logits_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'HF fp16 mean diff:
{
(
logits_hf
-
logits_ref
).
abs
().
mean
().
item
()
}
'
)
assert
(
logits
-
logits_ref
).
abs
().
max
().
item
()
<
2
*
(
logits_hf
-
logits_ref
).
abs
().
max
().
item
()
print
(
f
"Logits max diff:
{
(
logits
-
logits_ref
).
abs
().
max
().
item
()
}
"
)
print
(
f
"Logits mean diff:
{
(
logits
-
logits_ref
).
abs
().
mean
().
item
()
}
"
)
print
(
f
"HF fp16 max diff:
{
(
logits_hf
-
logits_ref
).
abs
().
max
().
item
()
}
"
)
print
(
f
"HF fp16 mean diff:
{
(
logits_hf
-
logits_ref
).
abs
().
mean
().
item
()
}
"
)
assert
(
logits
-
logits_ref
).
abs
().
max
().
item
()
<
2
*
(
logits_hf
-
logits_ref
).
abs
().
max
().
item
()
@
pytest
.
mark
.
parametrize
(
'
model_name
'
,
[
"tiiuae/falcon-7b"
])
@
pytest
.
mark
.
parametrize
(
"
model_name
"
,
[
"tiiuae/falcon-7b"
])
def
test_falcon_generation
(
model_name
):
"""Check that our implementation (with all optimizations enabled) matches the
HF implementation: the output of our forward pass in fp16 should be around the same as the HF
forward pass in fp16, when compared to the HF forward pass in fp32.
"""
dtype
=
torch
.
float16
device
=
'cuda'
config
=
falcon_config_to_gpt2_config
(
AutoConfig
.
from_pretrained
(
model_name
,
trust_remote_code
=
True
))
device
=
"cuda"
config
=
falcon_config_to_gpt2_config
(
AutoConfig
.
from_pretrained
(
model_name
,
trust_remote_code
=
True
)
)
config
.
use_flash_attn
=
True
config
.
fused_bias_fc
=
True
config
.
fused_mlp
=
False
# We don't have fused MLP for "gelu" activation
...
...
@@ -193,8 +205,9 @@ def test_falcon_generation(model_name):
batch_size
=
1
seqlen
=
100
max_length
=
150
input_ids
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
seqlen
),
dtype
=
torch
.
long
,
device
=
device
)
input_ids
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
seqlen
),
dtype
=
torch
.
long
,
device
=
device
)
model_hf
=
AutoModelForCausalLM
.
from_pretrained
(
model_name
,
torch_dtype
=
dtype
,
device_map
=
{
""
:
device
},
trust_remote_code
=
True
...
...
@@ -203,10 +216,11 @@ def test_falcon_generation(model_name):
print
(
"HF fp16"
)
torch
.
cuda
.
synchronize
()
start
=
time
.
time
()
out_hf
=
model_hf
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
return_dict_in_generate
=
True
,
output_scores
=
True
)
out_hf
=
model_hf
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
return_dict_in_generate
=
True
,
output_scores
=
True
)
torch
.
cuda
.
synchronize
()
print
(
f
'
Prompt processing + decoding time:
{
(
time
.
time
()
-
start
)
*
1000
:.
0
f
}
ms
'
)
print
(
f
"
Prompt processing + decoding time:
{
(
time
.
time
()
-
start
)
*
1000
:.
0
f
}
ms
"
)
del
model_hf
model_ref
=
AutoModelForCausalLM
.
from_pretrained
(
...
...
@@ -214,37 +228,49 @@ def test_falcon_generation(model_name):
)
model_ref
.
eval
()
with
torch
.
no_grad
():
logits_ref
=
model_ref
(
out_hf
.
sequences
).
logits
[:,
(
seqlen
-
1
)
:
-
1
]
logits_ref
=
model_ref
(
out_hf
.
sequences
).
logits
[:,
(
seqlen
-
1
)
:
-
1
]
del
model_ref
model
=
GPTLMHeadModel
.
from_pretrained
(
model_name
,
config
,
device
=
device
,
dtype
=
dtype
)
model
.
eval
()
print
(
'
Without CUDA graph
'
)
print
(
"
Without CUDA graph
"
)
torch
.
cuda
.
synchronize
()
start
=
time
.
time
()
out
=
model
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
eos_token_id
=
eos_token_id
,
fused_ft_kernel
=
True
,
return_dict_in_generate
=
True
,
output_scores
=
True
,
timing
=
True
,
teacher_outputs
=
out_hf
.
sequences
)
out
=
model
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
eos_token_id
=
eos_token_id
,
fused_ft_kernel
=
True
,
return_dict_in_generate
=
True
,
output_scores
=
True
,
timing
=
True
,
teacher_outputs
=
out_hf
.
sequences
,
)
torch
.
cuda
.
synchronize
()
print
(
f
'
Prompt processing + decoding time:
{
(
time
.
time
()
-
start
)
*
1000
:.
0
f
}
ms
'
)
print
(
f
"
Prompt processing + decoding time:
{
(
time
.
time
()
-
start
)
*
1000
:.
0
f
}
ms
"
)
# Capture graph outside the timing loop
batch_size
,
seqlen_og
=
input_ids
.
shape
model
.
_decoding_cache
=
update_graph_cache
(
model
,
None
,
batch_size
,
seqlen_og
,
max_length
)
print
(
'
With CUDA graph
'
)
print
(
"
With CUDA graph
"
)
torch
.
cuda
.
synchronize
()
start
=
time
.
time
()
out_cg
=
model
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
fused_ft_kernel
=
True
,
cg
=
True
,
return_dict_in_generate
=
True
,
output_scores
=
True
,
timing
=
True
,
teacher_outputs
=
out_hf
.
sequences
)
out_cg
=
model
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
fused_ft_kernel
=
True
,
cg
=
True
,
return_dict_in_generate
=
True
,
output_scores
=
True
,
timing
=
True
,
teacher_outputs
=
out_hf
.
sequences
,
)
torch
.
cuda
.
synchronize
()
print
(
f
'
Prompt processing + decoding time:
{
(
time
.
time
()
-
start
)
*
1000
:.
0
f
}
ms
'
)
print
(
f
"
Prompt processing + decoding time:
{
(
time
.
time
()
-
start
)
*
1000
:.
0
f
}
ms
"
)
with
torch
.
no_grad
():
logits_parallel
=
model
(
out_hf
.
sequences
).
logits
[:,
(
seqlen
-
1
)
:
-
1
]
logits_parallel
=
model
(
out_hf
.
sequences
).
logits
[:,
(
seqlen
-
1
)
:
-
1
]
logits_hf
=
torch
.
stack
(
out_hf
.
scores
,
dim
=
1
)
logits
=
torch
.
stack
(
out
.
scores
,
dim
=
1
)
logits_cg
=
torch
.
stack
(
out_cg
.
scores
,
dim
=
1
)
...
...
@@ -254,18 +280,18 @@ def test_falcon_generation(model_name):
hf_error
=
(
logits_hf
-
logits_ref
).
abs
().
max
().
item
()
assert
(
logits_parallel
-
logits_ref
).
abs
().
max
().
item
()
<
2
*
hf_error
print
(
f
'
HF fp16 logits max diff:
{
hf_error
}
'
)
print
(
f
'
Logits max diff:
{
(
logits
-
logits_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
"
HF fp16 logits max diff:
{
hf_error
}
"
)
print
(
f
"
Logits max diff:
{
(
logits
-
logits_ref
).
abs
().
max
().
item
()
}
"
)
assert
(
logits
-
logits_ref
).
abs
().
max
().
item
()
<
2
*
hf_error
print
(
f
'
Logits CG max diff:
{
(
logits_cg
-
logits_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
"
Logits CG max diff:
{
(
logits_cg
-
logits_ref
).
abs
().
max
().
item
()
}
"
)
assert
torch
.
equal
(
logits_cg
,
logits
)
# torchrun --no_python --nproc_per_node=4 pytest -q -s tests/models/test_falcon.py -k "falcon_parallel_generation"
# We want to run this on a machine with 4 x A100 80GB or 8 x A100 40GB so we have enough
# memory to run the model in fp32.
@
pytest
.
mark
.
parametrize
(
'
world_size
'
,
[
4
])
@
pytest
.
mark
.
parametrize
(
'
model_name
'
,
[
"tiiuae/falcon-40b"
])
@
pytest
.
mark
.
parametrize
(
"
world_size
"
,
[
4
])
@
pytest
.
mark
.
parametrize
(
"
model_name
"
,
[
"tiiuae/falcon-40b"
])
def
test_falcon_parallel_generation
(
model_name
,
world_size
):
"""Check that our implementation matches the HF implementation:
the scores in fp16 should be around the same as the HF scores in fp16, when compared to
...
...
@@ -274,8 +300,9 @@ def test_falcon_parallel_generation(model_name, world_size):
from
apex.transformer
import
parallel_state
dtype
=
torch
.
float16
config
=
falcon_config_to_gpt2_config
(
AutoConfig
.
from_pretrained
(
model_name
,
trust_remote_code
=
True
))
config
=
falcon_config_to_gpt2_config
(
AutoConfig
.
from_pretrained
(
model_name
,
trust_remote_code
=
True
)
)
config
.
use_flash_attn
=
False
config
.
fused_bias_fc
=
True
config
.
fused_mlp
=
False
# We don't have fused MLP for "gelu" activation
...
...
@@ -286,8 +313,8 @@ def test_falcon_parallel_generation(model_name, world_size):
os
.
environ
[
"NCCL_ASYNC_ERROR_HANDLING"
]
=
"0"
if
not
torch
.
distributed
.
is_initialized
():
torch
.
distributed
.
init_process_group
(
backend
=
'
nccl
'
,
init_method
=
'
env://
'
)
device
=
f
'
cuda:
{
torch
.
distributed
.
get_rank
()
}
'
torch
.
distributed
.
init_process_group
(
backend
=
"
nccl
"
,
init_method
=
"
env://
"
)
device
=
f
"
cuda:
{
torch
.
distributed
.
get_rank
()
}
"
assert
world_size
<=
torch
.
distributed
.
get_world_size
()
parallel_state
.
initialize_model_parallel
(
tensor_model_parallel_size_
=
world_size
)
rank
=
parallel_state
.
get_tensor_model_parallel_rank
()
...
...
@@ -297,36 +324,50 @@ def test_falcon_parallel_generation(model_name, world_size):
batch_size
=
1
seqlen
=
100
max_length
=
150
input_ids
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
seqlen
),
dtype
=
torch
.
long
,
device
=
device
)
input_ids
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
seqlen
),
dtype
=
torch
.
long
,
device
=
device
)
# Need this, otherwise when we capture the graph the process for GPU 1 would run on both
# GPU0 and GPU1 and things would hang
torch
.
cuda
.
set_device
(
device
)
pretrained_state_dict
=
remap_state_dict_hf_falcon
(
state_dict_from_pretrained
(
model_name
),
config
)
pretrained_state_dict
=
remap_state_dict_hf_falcon
(
state_dict_from_pretrained
(
model_name
),
config
)
model
=
GPTLMHeadModel
(
config
,
process_group
=
process_group
,
device
=
device
,
dtype
=
dtype
)
model
.
load_state_dict
(
shard_state_dict_tp
(
pretrained_state_dict
,
config
,
world_size
,
rank
))
model
.
eval
()
print
(
'
Without CUDA graph
'
)
print
(
"
Without CUDA graph
"
)
out
=
model
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
tensor_parallel
=
world_size
,
vocab_size
=
config
.
vocab_size
,
fused_ft_kernel
=
True
,
input_ids
=
input_ids
,
max_length
=
max_length
,
tensor_parallel
=
world_size
,
vocab_size
=
config
.
vocab_size
,
fused_ft_kernel
=
True
,
# teacher_outputs=out_hf.sequences,
return_dict_in_generate
=
True
,
output_scores
=
True
,
timing
=
True
return_dict_in_generate
=
True
,
output_scores
=
True
,
timing
=
True
,
)
# Capture graph outside the timing loop
batch_size
,
seqlen_og
=
input_ids
.
shape
model
.
_decoding_cache
=
update_graph_cache
(
model
,
None
,
batch_size
,
seqlen_og
,
max_length
)
print
(
'
With CUDA graph
'
)
print
(
"
With CUDA graph
"
)
out_cg
=
model
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
tensor_parallel
=
world_size
,
vocab_size
=
config
.
vocab_size
,
fused_ft_kernel
=
True
,
cg
=
True
,
input_ids
=
input_ids
,
max_length
=
max_length
,
tensor_parallel
=
world_size
,
vocab_size
=
config
.
vocab_size
,
fused_ft_kernel
=
True
,
cg
=
True
,
# teacher_outputs=out_hf.sequences,
return_dict_in_generate
=
True
,
output_scores
=
True
,
timing
=
True
return_dict_in_generate
=
True
,
output_scores
=
True
,
timing
=
True
,
)
del
model
parallel_state
.
destroy_model_parallel
()
...
...
@@ -341,11 +382,13 @@ def test_falcon_parallel_generation(model_name, world_size):
start
=
time
.
time
()
with
torch
.
inference_mode
():
out_hf
=
model_hf
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
return_dict_in_generate
=
True
,
output_scores
=
True
input_ids
=
input_ids
,
max_length
=
max_length
,
return_dict_in_generate
=
True
,
output_scores
=
True
,
)
torch
.
cuda
.
synchronize
()
print
(
f
'
Prompt processing + decoding time:
{
(
time
.
time
()
-
start
)
*
1000
:.
0
f
}
ms
'
)
print
(
f
"
Prompt processing + decoding time:
{
(
time
.
time
()
-
start
)
*
1000
:.
0
f
}
ms
"
)
del
model_hf
model_ref
=
AutoModelForCausalLM
.
from_pretrained
(
...
...
@@ -353,7 +396,7 @@ def test_falcon_parallel_generation(model_name, world_size):
)
model_ref
.
eval
()
with
torch
.
inference_mode
():
logits_ref
=
model_ref
(
out_hf
.
sequences
).
logits
[:,
(
seqlen
-
1
)
:
-
1
]
logits_ref
=
model_ref
(
out_hf
.
sequences
).
logits
[:,
(
seqlen
-
1
)
:
-
1
]
del
model_ref
logits_hf
=
torch
.
stack
(
out_hf
.
scores
,
dim
=
1
)
...
...
@@ -361,8 +404,8 @@ def test_falcon_parallel_generation(model_name, world_size):
logits_cg
=
torch
.
stack
(
out_cg
.
scores
,
dim
=
1
)
hf_error
=
(
logits_hf
-
logits_ref
).
abs
().
max
().
item
()
print
(
f
'
HF fp16 logits max diff:
{
hf_error
}
'
)
print
(
f
'
Logits max diff:
{
(
logits
-
logits_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
"
HF fp16 logits max diff:
{
hf_error
}
"
)
print
(
f
"
Logits max diff:
{
(
logits
-
logits_ref
).
abs
().
max
().
item
()
}
"
)
assert
(
logits
-
logits_ref
).
abs
().
max
().
item
()
<
2
*
hf_error
print
(
f
'
Logits CG max diff:
{
(
logits_cg
-
logits_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
"
Logits CG max diff:
{
(
logits_cg
-
logits_ref
).
abs
().
max
().
item
()
}
"
)
assert
torch
.
equal
(
logits_cg
,
logits
)
tests/models/test_gpt.py
View file @
0e8c46ae
import
re
import
torch
import
pytest
import
torch
from
flash_attn.models.gpt
import
GPTLMHeadModel
,
remap_state_dict_hf_gpt2
from
flash_attn.utils.pretrained
import
state_dict_from_pretrained
from
transformers
import
GPT2Config
from
transformers.models.gpt2.modeling_gpt2
import
GPT2LMHeadModel
as
GPT2LMHeadModelHF
from
flash_attn.models.gpt
import
GPTLMHeadModel
from
flash_attn.models.gpt
import
remap_state_dict_hf_gpt2
from
flash_attn.utils.pretrained
import
state_dict_from_pretrained
@
pytest
.
mark
.
parametrize
(
'
model_name
'
,
[
"gpt2"
,
"gpt2-medium"
])
@
pytest
.
mark
.
parametrize
(
"
model_name
"
,
[
"gpt2"
,
"gpt2-medium"
])
# @pytest.mark.parametrize('model_name', ["gpt2"])
def
test_gpt2_state_dict
(
model_name
):
config
=
GPT2Config
.
from_pretrained
(
model_name
)
...
...
@@ -23,7 +20,7 @@ def test_gpt2_state_dict(model_name):
assert
state_dict
[
k
].
shape
==
pretrained_state_dict
[
k
].
shape
@
pytest
.
mark
.
parametrize
(
'
model_name
'
,
[
"gpt2"
,
"gpt2-medium"
])
@
pytest
.
mark
.
parametrize
(
"
model_name
"
,
[
"gpt2"
,
"gpt2-medium"
])
# @pytest.mark.parametrize('model_name', ["gpt2"])
def
test_gpt2_non_optimized
(
model_name
):
"""Check that our implementation of GPT2 (without any optimizations enabled) matches the
...
...
@@ -46,31 +43,34 @@ def test_gpt2_non_optimized(model_name):
torch
.
manual_seed
(
0
)
batch_size
=
4
max_seqlen
=
512
seqlens
=
torch
.
randint
(
max_seqlen
//
2
,
max_seqlen
+
1
,
(
batch_size
,),
device
=
'cuda'
)
input_ids
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
max_seqlen
),
dtype
=
torch
.
long
,
device
=
'cuda'
)
seqlens
=
torch
.
randint
(
max_seqlen
//
2
,
max_seqlen
+
1
,
(
batch_size
,),
device
=
"cuda"
)
input_ids
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
max_seqlen
),
dtype
=
torch
.
long
,
device
=
"cuda"
)
out
=
model
.
transformer
(
input_ids
)
out_hf
=
model_hf
.
transformer
(
input_ids
).
last_hidden_state
out_ref
=
model_ref
.
transformer
(
input_ids
).
last_hidden_state
print
(
f
'
Output max diff:
{
(
out
-
out_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'
Output mean diff:
{
(
out
-
out_ref
).
abs
().
mean
().
item
()
}
'
)
print
(
f
'
HF fp16 max diff:
{
(
out_hf
-
out_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'
HF fp16 mean diff:
{
(
out_hf
-
out_ref
).
abs
().
mean
().
item
()
}
'
)
print
(
f
"
Output max diff:
{
(
out
-
out_ref
).
abs
().
max
().
item
()
}
"
)
print
(
f
"
Output mean diff:
{
(
out
-
out_ref
).
abs
().
mean
().
item
()
}
"
)
print
(
f
"
HF fp16 max diff:
{
(
out_hf
-
out_ref
).
abs
().
max
().
item
()
}
"
)
print
(
f
"
HF fp16 mean diff:
{
(
out_hf
-
out_ref
).
abs
().
mean
().
item
()
}
"
)
assert
(
out
-
out_ref
).
abs
().
max
().
item
()
<
3
*
(
out_hf
-
out_ref
).
abs
().
max
().
item
()
logits
=
model
(
input_ids
).
logits
logits_hf
=
model_hf
(
input_ids
).
logits
logits_ref
=
model_ref
(
input_ids
).
logits
print
(
f
'Logits max diff:
{
(
logits
-
logits_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'Logits mean diff:
{
(
logits
-
logits_ref
).
abs
().
mean
().
item
()
}
'
)
print
(
f
'HF fp16 max diff:
{
(
logits_hf
-
logits_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'HF fp16 mean diff:
{
(
logits_hf
-
logits_ref
).
abs
().
mean
().
item
()
}
'
)
assert
(
logits
-
logits_ref
).
abs
().
max
().
item
()
<
3
*
(
logits_hf
-
logits_ref
).
abs
().
max
().
item
()
print
(
f
"Logits max diff:
{
(
logits
-
logits_ref
).
abs
().
max
().
item
()
}
"
)
print
(
f
"Logits mean diff:
{
(
logits
-
logits_ref
).
abs
().
mean
().
item
()
}
"
)
print
(
f
"HF fp16 max diff:
{
(
logits_hf
-
logits_ref
).
abs
().
max
().
item
()
}
"
)
print
(
f
"HF fp16 mean diff:
{
(
logits_hf
-
logits_ref
).
abs
().
mean
().
item
()
}
"
)
assert
(
logits
-
logits_ref
).
abs
().
max
().
item
()
<
3
*
(
logits_hf
-
logits_ref
).
abs
().
max
().
item
()
@
pytest
.
mark
.
parametrize
(
'
model_name
'
,
[
"gpt2"
,
"gpt2-medium"
])
@
pytest
.
mark
.
parametrize
(
"
model_name
"
,
[
"gpt2"
,
"gpt2-medium"
])
# @pytest.mark.parametrize('model_name', ["gpt2"])
def
test_gpt2_optimized
(
model_name
):
"""Check that our implementation of GPT2 (with all optimizations enabled) matches the
...
...
@@ -100,25 +100,28 @@ def test_gpt2_optimized(model_name):
torch
.
manual_seed
(
0
)
batch_size
=
4
max_seqlen
=
512
seqlens
=
torch
.
randint
(
max_seqlen
//
2
,
max_seqlen
+
1
,
(
batch_size
,),
device
=
'cuda'
)
input_ids
=
torch
.
randint
(
0
,
vocab_size_og
,
(
batch_size
,
max_seqlen
),
dtype
=
torch
.
long
,
device
=
'cuda'
)
seqlens
=
torch
.
randint
(
max_seqlen
//
2
,
max_seqlen
+
1
,
(
batch_size
,),
device
=
"cuda"
)
input_ids
=
torch
.
randint
(
0
,
vocab_size_og
,
(
batch_size
,
max_seqlen
),
dtype
=
torch
.
long
,
device
=
"cuda"
)
out
=
model
.
transformer
(
input_ids
)
out_hf
=
model_hf
.
transformer
(
input_ids
).
last_hidden_state
out_ref
=
model_ref
.
transformer
(
input_ids
).
last_hidden_state
print
(
f
'
Output max diff:
{
(
out
-
out_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'
Output mean diff:
{
(
out
-
out_ref
).
abs
().
mean
().
item
()
}
'
)
print
(
f
'
HF fp16 max diff:
{
(
out_hf
-
out_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'
HF fp16 mean diff:
{
(
out_hf
-
out_ref
).
abs
().
mean
().
item
()
}
'
)
print
(
f
"
Output max diff:
{
(
out
-
out_ref
).
abs
().
max
().
item
()
}
"
)
print
(
f
"
Output mean diff:
{
(
out
-
out_ref
).
abs
().
mean
().
item
()
}
"
)
print
(
f
"
HF fp16 max diff:
{
(
out_hf
-
out_ref
).
abs
().
max
().
item
()
}
"
)
print
(
f
"
HF fp16 mean diff:
{
(
out_hf
-
out_ref
).
abs
().
mean
().
item
()
}
"
)
assert
(
out
-
out_ref
).
abs
().
max
().
item
()
<
3
*
(
out_hf
-
out_ref
).
abs
().
max
().
item
()
logits
=
model
(
input_ids
).
logits
[...,
:
vocab_size_og
]
logits_hf
=
model_hf
(
input_ids
).
logits
logits_ref
=
model_ref
(
input_ids
).
logits
print
(
f
'Logits max diff:
{
(
logits
-
logits_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'Logits mean diff:
{
(
logits
-
logits_ref
).
abs
().
mean
().
item
()
}
'
)
print
(
f
'HF fp16 max diff:
{
(
logits_hf
-
logits_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'HF fp16 mean diff:
{
(
logits_hf
-
logits_ref
).
abs
().
mean
().
item
()
}
'
)
assert
(
logits
-
logits_ref
).
abs
().
max
().
item
()
<
3
*
(
logits_hf
-
logits_ref
).
abs
().
max
().
item
()
print
(
f
"Logits max diff:
{
(
logits
-
logits_ref
).
abs
().
max
().
item
()
}
"
)
print
(
f
"Logits mean diff:
{
(
logits
-
logits_ref
).
abs
().
mean
().
item
()
}
"
)
print
(
f
"HF fp16 max diff:
{
(
logits_hf
-
logits_ref
).
abs
().
max
().
item
()
}
"
)
print
(
f
"HF fp16 mean diff:
{
(
logits_hf
-
logits_ref
).
abs
().
mean
().
item
()
}
"
)
assert
(
logits
-
logits_ref
).
abs
().
max
().
item
()
<
3
*
(
logits_hf
-
logits_ref
).
abs
().
max
().
item
()
tests/models/test_gpt_generation.py
View file @
0e8c46ae
...
...
@@ -2,36 +2,32 @@ import os
import
re
import
time
import
torch
import
pytest
import
torch
from
einops
import
rearrange
from
transformers
import
GPT2Config
,
GPT2Tokenizer
,
OPTConfig
,
AutoTokenizer
from
flash_attn.models.gpt
import
GPTLMHeadModel
,
remap_state_dict_hf_gpt2
from
flash_attn.models.opt
import
opt_config_to_gpt2_config
,
remap_state_dict_hf_opt
from
flash_attn.utils.generation
import
update_graph_cache
from
flash_attn.utils.pretrained
import
state_dict_from_pretrained
from
transformers
import
AutoTokenizer
,
GPT2Config
,
GPT2Tokenizer
,
OPTConfig
from
transformers.models.gpt2.modeling_gpt2
import
GPT2LMHeadModel
as
GPT2LMHeadModelHF
from
transformers.models.opt.modeling_opt
import
OPTForCausalLM
from
flash_attn.models.gpt
import
GPTLMHeadModel
from
flash_attn.models.gpt
import
remap_state_dict_hf_gpt2
from
flash_attn.models.opt
import
remap_state_dict_hf_opt
,
opt_config_to_gpt2_config
from
flash_attn.utils.pretrained
import
state_dict_from_pretrained
from
flash_attn.utils.generation
import
update_graph_cache
@
pytest
.
mark
.
parametrize
(
'
fused_ft_kernel
'
,
[
False
,
True
])
@
pytest
.
mark
.
parametrize
(
"
fused_ft_kernel
"
,
[
False
,
True
])
# @pytest.mark.parametrize('fused_ft_kernel', [True])
@
pytest
.
mark
.
parametrize
(
'
optimized
'
,
[
False
,
True
])
@
pytest
.
mark
.
parametrize
(
"
optimized
"
,
[
False
,
True
])
# @pytest.mark.parametrize('optimized', [False])
@
pytest
.
mark
.
parametrize
(
'
rotary
'
,
[
False
,
True
])
@
pytest
.
mark
.
parametrize
(
"
rotary
"
,
[
False
,
True
])
# @pytest.mark.parametrize('rotary', [False])
@
pytest
.
mark
.
parametrize
(
'
model_name
'
,
[
"gpt2"
])
@
pytest
.
mark
.
parametrize
(
"
model_name
"
,
[
"gpt2"
])
def
test_greedy_decode_gpt2
(
model_name
,
rotary
,
optimized
,
fused_ft_kernel
):
"""Check that our implementation of GPT2 generation matches the HF implementation:
the scores in fp16 should be around the same as the HF scores in fp16, when compared to
the HF scores in fp32.
"""
dtype
=
torch
.
float16
device
=
'
cuda
'
device
=
"
cuda
"
rtol
,
atol
=
3e-3
,
3e-1
config
=
GPT2Config
.
from_pretrained
(
model_name
)
if
rotary
:
...
...
@@ -47,21 +43,24 @@ def test_greedy_decode_gpt2(model_name, rotary, optimized, fused_ft_kernel):
# if not rotary, we load the weight from HF but ignore the position embeddings.
# The model would be nonsense but it doesn't matter for the test.
model
=
GPTLMHeadModel
.
from_pretrained
(
model_name
,
config
,
strict
=
not
rotary
,
device
=
device
,
dtype
=
dtype
)
model
=
GPTLMHeadModel
.
from_pretrained
(
model_name
,
config
,
strict
=
not
rotary
,
device
=
device
,
dtype
=
dtype
)
model
.
eval
()
if
not
rotary
:
model_ref
=
GPT2LMHeadModelHF
.
from_pretrained
(
model_name
).
to
(
device
=
device
)
model_hf
=
GPT2LMHeadModelHF
.
from_pretrained
(
model_name
,
torch_dtype
=
dtype
).
to
(
device
=
device
)
model_hf
=
GPT2LMHeadModelHF
.
from_pretrained
(
model_name
,
torch_dtype
=
dtype
).
to
(
device
=
device
)
model_ref
.
eval
()
model_hf
.
eval
()
torch
.
manual_seed
(
0
)
tokenizer
=
GPT2Tokenizer
.
from_pretrained
(
"gpt2"
)
input_ids
=
tokenizer
(
"Hello, my dog is cute and he"
,
return_tensors
=
"pt"
).
input_ids
.
to
(
device
=
device
)
input_ids
=
tokenizer
(
"Hello, my dog is cute and he"
,
return_tensors
=
"pt"
).
input_ids
.
to
(
device
=
device
)
max_length
=
25
# input_ids = torch.randint(0, 100, (2, 10), dtype=torch.long, device='cuda')
# max_length = input_ids.shape[1] + 40
...
...
@@ -74,61 +73,102 @@ def test_greedy_decode_gpt2(model_name, rotary, optimized, fused_ft_kernel):
scores
.
append
(
model
(
cur_input_ids
).
logits
[:,
-
1
])
sequences
.
append
(
scores
[
-
1
].
argmax
(
dim
=-
1
))
for
_
in
range
(
input_ids
.
shape
[
1
]
+
1
,
max_length
):
cur_input_ids
=
torch
.
cat
([
cur_input_ids
,
rearrange
(
sequences
[
-
1
],
'
b -> b 1
'
)],
dim
=-
1
)
cur_input_ids
=
torch
.
cat
([
cur_input_ids
,
rearrange
(
sequences
[
-
1
],
"
b -> b 1
"
)],
dim
=-
1
)
scores
.
append
(
model
(
cur_input_ids
).
logits
[:,
-
1
])
sequences
.
append
(
scores
[
-
1
].
argmax
(
dim
=-
1
))
sequences
=
torch
.
cat
([
input_ids
,
torch
.
stack
(
sequences
,
dim
=
1
)],
dim
=
1
)
scores
=
tuple
(
scores
)
out
=
model
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
fused_ft_kernel
=
fused_ft_kernel
,
return_dict_in_generate
=
True
,
output_scores
=
True
,
timing
=
True
)
out
=
model
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
fused_ft_kernel
=
fused_ft_kernel
,
return_dict_in_generate
=
True
,
output_scores
=
True
,
timing
=
True
,
)
print
(
out
.
sequences
)
print
(
tokenizer
.
batch_decode
(
out
.
sequences
.
tolist
()))
if
fused_ft_kernel
:
out_cg
=
model
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
fused_ft_kernel
=
fused_ft_kernel
,
cg
=
True
,
return_dict_in_generate
=
True
,
output_scores
=
True
,
timing
=
True
)
out_cg
=
model
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
fused_ft_kernel
=
fused_ft_kernel
,
cg
=
True
,
return_dict_in_generate
=
True
,
output_scores
=
True
,
timing
=
True
,
)
print
(
out_cg
.
sequences
)
if
not
rotary
:
out_hf
=
model_hf
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
return_dict_in_generate
=
True
,
output_scores
=
True
)
out_ref
=
model_ref
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
return_dict_in_generate
=
True
,
output_scores
=
True
)
print
(
f
'Scores max diff:
{
(
torch
.
stack
(
out
.
scores
,
1
)
-
torch
.
stack
(
out_ref
.
scores
,
1
)).
abs
().
max
().
item
()
}
'
)
print
(
f
'Scores mean diff:
{
(
torch
.
stack
(
out
.
scores
,
1
)
-
torch
.
stack
(
out_ref
.
scores
,
1
)).
abs
().
mean
().
item
()
}
'
)
print
(
f
'HF fp16 max diff:
{
(
torch
.
stack
(
out_hf
.
scores
,
1
)
-
torch
.
stack
(
out_ref
.
scores
,
1
)).
abs
().
max
().
item
()
}
'
)
print
(
f
'HF fp16 mean diff:
{
(
torch
.
stack
(
out_hf
.
scores
,
1
)
-
torch
.
stack
(
out_ref
.
scores
,
1
)).
abs
().
mean
().
item
()
}
'
)
out_hf
=
model_hf
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
return_dict_in_generate
=
True
,
output_scores
=
True
,
)
out_ref
=
model_ref
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
return_dict_in_generate
=
True
,
output_scores
=
True
,
)
print
(
f
"Scores max diff:
{
(
torch
.
stack
(
out
.
scores
,
1
)
-
torch
.
stack
(
out_ref
.
scores
,
1
)).
abs
().
max
().
item
()
}
"
)
print
(
f
"Scores mean diff:
{
(
torch
.
stack
(
out
.
scores
,
1
)
-
torch
.
stack
(
out_ref
.
scores
,
1
)).
abs
().
mean
().
item
()
}
"
)
print
(
f
"HF fp16 max diff:
{
(
torch
.
stack
(
out_hf
.
scores
,
1
)
-
torch
.
stack
(
out_ref
.
scores
,
1
)).
abs
().
max
().
item
()
}
"
)
print
(
f
"HF fp16 mean diff:
{
(
torch
.
stack
(
out_hf
.
scores
,
1
)
-
torch
.
stack
(
out_ref
.
scores
,
1
)).
abs
().
mean
().
item
()
}
"
)
print
(
tokenizer
.
batch_decode
(
out_ref
.
sequences
.
tolist
()))
assert
torch
.
all
(
out
.
sequences
==
sequences
)
assert
torch
.
allclose
(
torch
.
stack
(
out
.
scores
,
dim
=
1
),
torch
.
stack
(
scores
,
dim
=
1
),
rtol
=
rtol
,
atol
=
atol
)
assert
torch
.
allclose
(
torch
.
stack
(
out
.
scores
,
dim
=
1
),
torch
.
stack
(
scores
,
dim
=
1
),
rtol
=
rtol
,
atol
=
atol
)
if
not
rotary
:
assert
torch
.
all
(
out
.
sequences
==
out_ref
.
sequences
)
assert
torch
.
all
(
out
.
sequences
==
out_hf
.
sequences
)
assert
(
torch
.
stack
(
out
.
scores
,
1
)
-
torch
.
stack
(
out_ref
.
scores
,
1
)).
abs
().
max
().
item
()
<
3
*
(
torch
.
stack
(
out_hf
.
scores
,
1
)
-
torch
.
stack
(
out_ref
.
scores
,
1
)).
abs
().
max
().
item
()
assert
(
torch
.
stack
(
out
.
scores
,
1
)
-
torch
.
stack
(
out_ref
.
scores
,
1
)
).
abs
().
max
().
item
()
<
3
*
(
torch
.
stack
(
out_hf
.
scores
,
1
)
-
torch
.
stack
(
out_ref
.
scores
,
1
)
).
abs
().
max
().
item
()
@
pytest
.
mark
.
parametrize
(
'model_name'
,
[
"facebook/opt-125m"
,
"facebook/opt-350m"
,
"facebook/opt-1.3b"
,
"facebook/opt-2.7b"
,
"facebook/opt-6.7b"
])
@
pytest
.
mark
.
parametrize
(
"model_name"
,
[
"facebook/opt-125m"
,
"facebook/opt-350m"
,
"facebook/opt-1.3b"
,
"facebook/opt-2.7b"
,
"facebook/opt-6.7b"
,
],
)
# @pytest.mark.parametrize('model_name', ["facebook/opt-125m"])
def
test_greedy_decode_opt
(
model_name
):
"""Check that our implementation of OPT generation matches the HF implementation:
the scores in fp16 should be around the same as the HF scores in fp16, when compared to
the HF scores in fp32.
"""
print
(
f
'
\n
MODEL:
{
model_name
}
'
)
print
(
f
"
\n
MODEL:
{
model_name
}
"
)
verbose
=
False
dtype
=
torch
.
float16
device
=
'
cuda
'
device
=
"
cuda
"
rtol
,
atol
=
3e-3
,
3e-1
fused_ft_kernel
=
True
config
=
opt_config_to_gpt2_config
(
OPTConfig
.
from_pretrained
(
model_name
))
# Only prenorm supports residual_in_fp32
config
.
residual_in_fp32
=
getattr
(
config
,
'
prenorm
'
,
True
)
config
.
residual_in_fp32
=
getattr
(
config
,
"
prenorm
"
,
True
)
config
.
use_flash_attn
=
True
config
.
fused_bias_fc
=
True
config
.
fused_mlp
=
True
...
...
@@ -143,8 +183,9 @@ def test_greedy_decode_opt(model_name):
tokenizer
=
AutoTokenizer
.
from_pretrained
(
model_name
,
use_fast
=
False
)
eos_token_id
=
tokenizer
.
eos_token_id
input_ids
=
tokenizer
(
"Hello, my dog is cute and he"
,
return_tensors
=
"pt"
).
input_ids
.
to
(
device
=
device
)
input_ids
=
tokenizer
(
"Hello, my dog is cute and he"
,
return_tensors
=
"pt"
).
input_ids
.
to
(
device
=
device
)
max_length
=
25
# input_ids = torch.randint(0, 100, (2, 10), dtype=torch.long, device='cuda')
# max_length = input_ids.shape[1] + 40
...
...
@@ -157,7 +198,7 @@ def test_greedy_decode_opt(model_name):
scores
.
append
(
model
(
cur_input_ids
).
logits
[:,
-
1
])
sequences
.
append
(
scores
[
-
1
].
argmax
(
dim
=-
1
))
for
_
in
range
(
input_ids
.
shape
[
1
]
+
1
,
max_length
):
cur_input_ids
=
torch
.
cat
([
cur_input_ids
,
rearrange
(
sequences
[
-
1
],
'
b -> b 1
'
)],
dim
=-
1
)
cur_input_ids
=
torch
.
cat
([
cur_input_ids
,
rearrange
(
sequences
[
-
1
],
"
b -> b 1
"
)],
dim
=-
1
)
scores
.
append
(
model
(
cur_input_ids
).
logits
[:,
-
1
])
sequences
.
append
(
scores
[
-
1
].
argmax
(
dim
=-
1
))
if
eos_token_id
is
not
None
and
(
sequences
[
-
1
]
==
eos_token_id
).
all
():
...
...
@@ -165,31 +206,41 @@ def test_greedy_decode_opt(model_name):
sequences
=
torch
.
cat
([
input_ids
,
torch
.
stack
(
sequences
,
dim
=
1
)],
dim
=
1
)
scores
=
tuple
(
scores
)
print
(
'
Without CUDA graph
'
)
print
(
"
Without CUDA graph
"
)
torch
.
cuda
.
synchronize
()
start
=
time
.
time
()
out
=
model
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
eos_token_id
=
eos_token_id
,
fused_ft_kernel
=
fused_ft_kernel
,
return_dict_in_generate
=
True
,
output_scores
=
True
,
timing
=
True
)
out
=
model
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
eos_token_id
=
eos_token_id
,
fused_ft_kernel
=
fused_ft_kernel
,
return_dict_in_generate
=
True
,
output_scores
=
True
,
timing
=
True
,
)
torch
.
cuda
.
synchronize
()
print
(
f
'
Prompt processing + decoding time:
{
(
time
.
time
()
-
start
)
*
1000
:.
0
f
}
ms
'
)
print
(
f
"
Prompt processing + decoding time:
{
(
time
.
time
()
-
start
)
*
1000
:.
0
f
}
ms
"
)
if
verbose
:
print
(
out
.
sequences
)
print
(
tokenizer
.
batch_decode
(
out
.
sequences
.
tolist
()))
if
fused_ft_kernel
:
# Capture graph outside the timing loop
batch_size
,
seqlen_og
=
input_ids
.
shape
model
.
_decoding_cache
=
update_graph_cache
(
model
,
None
,
batch_size
,
seqlen_og
,
max_length
)
print
(
'With CUDA graph'
)
model
.
_decoding_cache
=
update_graph_cache
(
model
,
None
,
batch_size
,
seqlen_og
,
max_length
)
print
(
"With CUDA graph"
)
torch
.
cuda
.
synchronize
()
start
=
time
.
time
()
out_cg
=
model
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
fused_ft_kernel
=
fused_ft_kernel
,
cg
=
True
,
return_dict_in_generate
=
True
,
output_scores
=
True
,
timing
=
True
)
out_cg
=
model
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
fused_ft_kernel
=
fused_ft_kernel
,
cg
=
True
,
return_dict_in_generate
=
True
,
output_scores
=
True
,
timing
=
True
,
)
torch
.
cuda
.
synchronize
()
print
(
f
'
Prompt processing + decoding time:
{
(
time
.
time
()
-
start
)
*
1000
:.
0
f
}
ms
'
)
print
(
f
"
Prompt processing + decoding time:
{
(
time
.
time
()
-
start
)
*
1000
:.
0
f
}
ms
"
)
if
verbose
:
print
(
out_cg
.
sequences
)
print
(
tokenizer
.
batch_decode
(
out_cg
.
sequences
.
tolist
()))
...
...
@@ -201,10 +252,11 @@ def test_greedy_decode_opt(model_name):
print
(
"HF fp16"
)
torch
.
cuda
.
synchronize
()
start
=
time
.
time
()
out_hf
=
model_hf
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
return_dict_in_generate
=
True
,
output_scores
=
True
)
out_hf
=
model_hf
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
return_dict_in_generate
=
True
,
output_scores
=
True
)
torch
.
cuda
.
synchronize
()
print
(
f
'
Prompt processing + decoding time:
{
(
time
.
time
()
-
start
)
*
1000
:.
0
f
}
ms
'
)
print
(
f
"
Prompt processing + decoding time:
{
(
time
.
time
()
-
start
)
*
1000
:.
0
f
}
ms
"
)
del
model_hf
model_ref
=
OPTForCausalLM
.
from_pretrained
(
model_name
).
to
(
device
=
device
)
...
...
@@ -212,23 +264,35 @@ def test_greedy_decode_opt(model_name):
print
(
"HF fp32"
)
torch
.
cuda
.
synchronize
()
start
=
time
.
time
()
out_ref
=
model_ref
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
return_dict_in_generate
=
True
,
output_scores
=
True
)
out_ref
=
model_ref
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
return_dict_in_generate
=
True
,
output_scores
=
True
)
torch
.
cuda
.
synchronize
()
print
(
f
'
Prompt processing + decoding time:
{
(
time
.
time
()
-
start
)
*
1000
:.
0
f
}
ms
'
)
print
(
f
"
Prompt processing + decoding time:
{
(
time
.
time
()
-
start
)
*
1000
:.
0
f
}
ms
"
)
del
model_ref
print
(
tokenizer
.
batch_decode
(
out_ref
.
sequences
.
tolist
()))
if
verbose
:
print
(
f
'Scores max diff:
{
(
torch
.
stack
(
out
.
scores
,
1
)
-
torch
.
stack
(
out_ref
.
scores
,
1
)).
abs
().
max
().
item
()
}
'
)
print
(
f
'Scores mean diff:
{
(
torch
.
stack
(
out
.
scores
,
1
)
-
torch
.
stack
(
out_ref
.
scores
,
1
)).
abs
().
mean
().
item
()
}
'
)
print
(
f
'HF fp16 max diff:
{
(
torch
.
stack
(
out_hf
.
scores
,
1
)
-
torch
.
stack
(
out_ref
.
scores
,
1
)).
abs
().
max
().
item
()
}
'
)
print
(
f
'HF fp16 mean diff:
{
(
torch
.
stack
(
out_hf
.
scores
,
1
)
-
torch
.
stack
(
out_ref
.
scores
,
1
)).
abs
().
mean
().
item
()
}
'
)
print
(
f
"Scores max diff:
{
(
torch
.
stack
(
out
.
scores
,
1
)
-
torch
.
stack
(
out_ref
.
scores
,
1
)).
abs
().
max
().
item
()
}
"
)
print
(
f
"Scores mean diff:
{
(
torch
.
stack
(
out
.
scores
,
1
)
-
torch
.
stack
(
out_ref
.
scores
,
1
)).
abs
().
mean
().
item
()
}
"
)
print
(
f
"HF fp16 max diff:
{
(
torch
.
stack
(
out_hf
.
scores
,
1
)
-
torch
.
stack
(
out_ref
.
scores
,
1
)).
abs
().
max
().
item
()
}
"
)
print
(
f
"HF fp16 mean diff:
{
(
torch
.
stack
(
out_hf
.
scores
,
1
)
-
torch
.
stack
(
out_ref
.
scores
,
1
)).
abs
().
mean
().
item
()
}
"
)
assert
torch
.
all
(
out
.
sequences
==
sequences
)
assert
torch
.
allclose
(
torch
.
stack
(
out
.
scores
,
dim
=
1
),
torch
.
stack
(
scores
,
dim
=
1
),
rtol
=
rtol
,
atol
=
atol
)
assert
torch
.
allclose
(
torch
.
stack
(
out
.
scores
,
dim
=
1
),
torch
.
stack
(
scores
,
dim
=
1
),
rtol
=
rtol
,
atol
=
atol
)
assert
torch
.
all
(
out
.
sequences
==
out_ref
.
sequences
)
assert
torch
.
all
(
out
.
sequences
==
out_hf
.
sequences
)
assert
(
torch
.
stack
(
out
.
scores
,
1
)
-
torch
.
stack
(
out_ref
.
scores
,
1
)).
abs
().
max
().
item
()
<
3
*
(
torch
.
stack
(
out_hf
.
scores
,
1
)
-
torch
.
stack
(
out_ref
.
scores
,
1
)).
abs
().
max
().
item
()
assert
(
torch
.
stack
(
out
.
scores
,
1
)
-
torch
.
stack
(
out_ref
.
scores
,
1
)).
abs
().
max
().
item
()
<
3
*
(
torch
.
stack
(
out_hf
.
scores
,
1
)
-
torch
.
stack
(
out_ref
.
scores
,
1
)
).
abs
().
max
().
item
()
tests/models/test_gpt_generation_cg.py
View file @
0e8c46ae
...
...
@@ -2,34 +2,37 @@ import os
import
re
import
time
import
torch
import
pytest
import
torch
from
einops
import
rearrange
from
transformers
import
GPT2Config
from
flash_attn.models.gpt
import
GPTLMHeadModel
from
flash_attn.utils.generation
import
update_graph_cache
from
transformers
import
GPT2Config
def
get_logits
(
model
,
input_ids
,
max_length
,
teacher_outputs
=
None
,
**
kwargs
):
out
=
model
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
fused_ft_kernel
=
True
,
teacher_outputs
=
teacher_outputs
,
return_dict_in_generate
=
True
,
output_scores
=
True
,
timing
=
True
,
**
kwargs
)
out
=
model
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
fused_ft_kernel
=
True
,
teacher_outputs
=
teacher_outputs
,
return_dict_in_generate
=
True
,
output_scores
=
True
,
timing
=
True
,
**
kwargs
,
)
return
torch
.
stack
(
out
.
scores
,
dim
=
1
)
@
pytest
.
mark
.
parametrize
(
'
seqlen,maxlen
'
,
[(
10
,
20
),
(
30
,
150
),
(
3000
,
3400
),
(
14000
,
15000
)])
@
pytest
.
mark
.
parametrize
(
"
seqlen,maxlen
"
,
[(
10
,
20
),
(
30
,
150
),
(
3000
,
3400
),
(
14000
,
15000
)])
# @pytest.mark.parametrize('seqlen,maxlen', [(10, 20)])
@
pytest
.
mark
.
parametrize
(
'
rotary
'
,
[
None
,
"interleaved"
,
"block"
])
@
pytest
.
mark
.
parametrize
(
"
rotary
"
,
[
None
,
"interleaved"
,
"block"
])
# @pytest.mark.parametrize('rotary', [None])
@
pytest
.
mark
.
parametrize
(
'
model_name
'
,
[
"gpt2"
])
@
pytest
.
mark
.
parametrize
(
"
model_name
"
,
[
"gpt2"
])
def
test_greedy_decode_gpt2_cg
(
model_name
,
rotary
,
seqlen
,
maxlen
):
"""Check that decoding with CUDA graph is the same as decoding without CUDA graph.
"""
"""Check that decoding with CUDA graph is the same as decoding without CUDA graph."""
dtype
=
torch
.
float16
device
=
'
cuda
'
device
=
"
cuda
"
rtol
,
atol
=
3e-3
,
3e-1
config
=
GPT2Config
.
from_pretrained
(
model_name
)
config
.
n_positions
=
16
*
1024
...
...
@@ -49,10 +52,12 @@ def test_greedy_decode_gpt2_cg(model_name, rotary, seqlen, maxlen):
torch
.
manual_seed
(
0
)
batch_size
=
1
input_ids
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
seqlen
),
dtype
=
torch
.
long
,
device
=
device
)
teacher_outputs
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
maxlen
),
dtype
=
torch
.
long
,
device
=
device
)
input_ids
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
seqlen
),
dtype
=
torch
.
long
,
device
=
device
)
teacher_outputs
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
maxlen
),
dtype
=
torch
.
long
,
device
=
device
)
logits
=
get_logits
(
model
,
input_ids
,
maxlen
,
teacher_outputs
=
teacher_outputs
)
logits_cg
=
get_logits
(
model
,
input_ids
,
maxlen
,
teacher_outputs
=
teacher_outputs
,
cg
=
True
)
...
...
@@ -61,20 +66,24 @@ def test_greedy_decode_gpt2_cg(model_name, rotary, seqlen, maxlen):
# Try increasing batch size and seqlen, then decrease them to see if it's still correct
batch_size
=
3
maxlen
+=
30
input_ids
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
seqlen
),
dtype
=
torch
.
long
,
device
=
device
)
teacher_outputs
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
maxlen
),
dtype
=
torch
.
long
,
device
=
device
)
input_ids
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
seqlen
),
dtype
=
torch
.
long
,
device
=
device
)
teacher_outputs
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
maxlen
),
dtype
=
torch
.
long
,
device
=
device
)
logits
=
get_logits
(
model
,
input_ids
,
maxlen
,
teacher_outputs
=
teacher_outputs
)
logits_cg
=
get_logits
(
model
,
input_ids
,
maxlen
,
teacher_outputs
=
teacher_outputs
,
cg
=
True
)
assert
torch
.
equal
(
logits
,
logits_cg
)
batch_size
=
2
maxlen
-=
35
input_ids
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
seqlen
),
dtype
=
torch
.
long
,
device
=
device
)
teacher_outputs
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
maxlen
),
dtype
=
torch
.
long
,
device
=
device
)
input_ids
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
seqlen
),
dtype
=
torch
.
long
,
device
=
device
)
teacher_outputs
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
maxlen
),
dtype
=
torch
.
long
,
device
=
device
)
logits
=
get_logits
(
model
,
input_ids
,
maxlen
,
teacher_outputs
=
teacher_outputs
)
logits_cg
=
get_logits
(
model
,
input_ids
,
maxlen
,
teacher_outputs
=
teacher_outputs
,
cg
=
True
)
assert
torch
.
equal
(
logits
,
logits_cg
)
tests/models/test_gpt_generation_parallel.py
View file @
0e8c46ae
...
...
@@ -3,27 +3,23 @@
import
os
import
re
import
torch
import
pytest
import
torch
from
einops
import
rearrange
from
flash_attn.models.gpt
import
GPTLMHeadModel
,
remap_state_dict_hf_gpt2
from
flash_attn.utils.distributed
import
all_gather_raw
from
flash_attn.utils.pretrained
import
state_dict_from_pretrained
from
transformers
import
GPT2Config
,
GPT2Tokenizer
from
transformers.models.gpt2.modeling_gpt2
import
GPT2LMHeadModel
as
GPT2LMHeadModelHF
from
flash_attn.models.gpt
import
GPTLMHeadModel
from
flash_attn.models.gpt
import
remap_state_dict_hf_gpt2
from
flash_attn.utils.pretrained
import
state_dict_from_pretrained
from
flash_attn.utils.distributed
import
all_gather_raw
# @pytest.mark.parametrize('world_size', [1, 2, 4, 8])
@
pytest
.
mark
.
parametrize
(
'
world_size
'
,
[
2
])
@
pytest
.
mark
.
parametrize
(
"
world_size
"
,
[
2
])
# @pytest.mark.parametrize('fused_ft_kernel', [False, True])
@
pytest
.
mark
.
parametrize
(
'
fused_ft_kernel
'
,
[
True
])
@
pytest
.
mark
.
parametrize
(
"
fused_ft_kernel
"
,
[
True
])
# @pytest.mark.parametrize('rotary', [False, True])
@
pytest
.
mark
.
parametrize
(
'
rotary
'
,
[
False
])
@
pytest
.
mark
.
parametrize
(
'
model_name
'
,
[
"gpt2"
])
@
pytest
.
mark
.
parametrize
(
"
rotary
"
,
[
False
])
@
pytest
.
mark
.
parametrize
(
"
model_name
"
,
[
"gpt2"
])
def
test_tensor_parallel
(
model_name
,
rotary
,
fused_ft_kernel
,
world_size
):
"""Check that our implementation of GPT2 generation matches the HF implementation:
the scores in fp16 should be around the same as the HF scores in fp16, when compared to
...
...
@@ -45,23 +41,31 @@ def test_tensor_parallel(model_name, rotary, fused_ft_kernel, world_size):
os
.
environ
[
"NCCL_ASYNC_ERROR_HANDLING"
]
=
"0"
if
not
torch
.
distributed
.
is_initialized
():
torch
.
distributed
.
init_process_group
(
backend
=
'
nccl
'
,
init_method
=
'
env://
'
)
device
=
f
'
cuda:
{
torch
.
distributed
.
get_rank
()
}
'
torch
.
distributed
.
init_process_group
(
backend
=
"
nccl
"
,
init_method
=
"
env://
"
)
device
=
f
"
cuda:
{
torch
.
distributed
.
get_rank
()
}
"
assert
world_size
<=
torch
.
distributed
.
get_world_size
()
# Need this, otherwise when we capture the graph the process for GPU 1 would run on both
# GPU0 and GPU1 and things would hang
torch
.
cuda
.
set_device
(
device
)
from
apex.transformer
import
parallel_state
parallel_state
.
initialize_model_parallel
(
tensor_model_parallel_size_
=
world_size
)
rank
=
parallel_state
.
get_tensor_model_parallel_rank
()
process_group
=
parallel_state
.
get_tensor_model_parallel_group
()
# if not rotary, we load the weight from HF but ignore the position embeddings.
# The model would be nonsense but it doesn't matter for the test.
model
=
GPTLMHeadModel
.
from_pretrained
(
model_name
,
config
,
strict
=
not
rotary
,
device
=
device
,
dtype
=
dtype
,
process_group
=
process_group
,
world_size
=
world_size
,
rank
=
rank
)
model
=
GPTLMHeadModel
.
from_pretrained
(
model_name
,
config
,
strict
=
not
rotary
,
device
=
device
,
dtype
=
dtype
,
process_group
=
process_group
,
world_size
=
world_size
,
rank
=
rank
,
)
model
.
eval
()
if
not
rotary
:
...
...
@@ -72,8 +76,9 @@ def test_tensor_parallel(model_name, rotary, fused_ft_kernel, world_size):
torch
.
manual_seed
(
0
)
tokenizer
=
GPT2Tokenizer
.
from_pretrained
(
"gpt2"
)
input_ids
=
tokenizer
(
"Hello, my dog is cute and "
,
return_tensors
=
"pt"
).
input_ids
.
to
(
device
=
device
)
input_ids
=
tokenizer
(
"Hello, my dog is cute and "
,
return_tensors
=
"pt"
).
input_ids
.
to
(
device
=
device
)
max_length
=
30
# input_ids = torch.randint(0, 100, (1, 10), dtype=torch.long, device='cuda')
# max_length = input_ids.shape[1] + 40
...
...
@@ -84,50 +89,87 @@ def test_tensor_parallel(model_name, rotary, fused_ft_kernel, world_size):
cur_input_ids
=
input_ids
with
torch
.
inference_mode
():
logits
,
_
=
all_gather_raw
(
model
(
cur_input_ids
).
logits
[:,
-
1
],
process_group
)
logits
=
rearrange
(
logits
,
'(n b) d -> b (n d)'
,
b
=
input_ids
.
shape
[
0
])[...,
:
config
.
vocab_size
]
logits
=
rearrange
(
logits
,
"(n b) d -> b (n d)"
,
b
=
input_ids
.
shape
[
0
])[
...,
:
config
.
vocab_size
]
scores
.
append
(
logits
)
sequences
.
append
(
scores
[
-
1
].
argmax
(
dim
=-
1
))
for
_
in
range
(
input_ids
.
shape
[
1
]
+
1
,
max_length
):
cur_input_ids
=
torch
.
cat
([
cur_input_ids
,
rearrange
(
sequences
[
-
1
],
'
b -> b 1
'
)],
dim
=-
1
)
cur_input_ids
=
torch
.
cat
([
cur_input_ids
,
rearrange
(
sequences
[
-
1
],
"
b -> b 1
"
)],
dim
=-
1
)
logits
,
_
=
all_gather_raw
(
model
(
cur_input_ids
).
logits
[:,
-
1
],
process_group
)
logits
=
rearrange
(
logits
,
'(n b) d -> b (n d)'
,
b
=
input_ids
.
shape
[
0
])[...,
:
config
.
vocab_size
]
logits
=
rearrange
(
logits
,
"(n b) d -> b (n d)"
,
b
=
input_ids
.
shape
[
0
])[
...,
:
config
.
vocab_size
]
scores
.
append
(
logits
)
sequences
.
append
(
scores
[
-
1
].
argmax
(
dim
=-
1
))
sequences
=
torch
.
cat
([
input_ids
,
torch
.
stack
(
sequences
,
dim
=
1
)],
dim
=
1
)
scores
=
tuple
(
scores
)
print
(
sequences
)
out
=
model
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
tensor_parallel
=
world_size
,
vocab_size
=
config
.
vocab_size
,
fused_ft_kernel
=
fused_ft_kernel
,
return_dict_in_generate
=
True
,
output_scores
=
True
,
timing
=
True
)
out
=
model
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
tensor_parallel
=
world_size
,
vocab_size
=
config
.
vocab_size
,
fused_ft_kernel
=
fused_ft_kernel
,
return_dict_in_generate
=
True
,
output_scores
=
True
,
timing
=
True
,
)
print
(
out
.
sequences
)
if
fused_ft_kernel
:
out_cg
=
model
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
tensor_parallel
=
world_size
,
vocab_size
=
config
.
vocab_size
,
fused_ft_kernel
=
fused_ft_kernel
,
cg
=
True
,
return_dict_in_generate
=
True
,
output_scores
=
True
,
timing
=
True
)
input_ids
=
input_ids
,
max_length
=
max_length
,
tensor_parallel
=
world_size
,
vocab_size
=
config
.
vocab_size
,
fused_ft_kernel
=
fused_ft_kernel
,
cg
=
True
,
return_dict_in_generate
=
True
,
output_scores
=
True
,
timing
=
True
,
)
print
(
out_cg
.
sequences
)
if
not
rotary
:
out_hf
=
model_hf
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
return_dict_in_generate
=
True
,
output_scores
=
True
)
out_ref
=
model_ref
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
return_dict_in_generate
=
True
,
output_scores
=
True
)
print
(
f
'Scores max diff:
{
(
torch
.
stack
(
out
.
scores
,
1
)
-
torch
.
stack
(
out_ref
.
scores
,
1
)).
abs
().
max
().
item
()
}
'
)
print
(
f
'Scores mean diff:
{
(
torch
.
stack
(
out
.
scores
,
1
)
-
torch
.
stack
(
out_ref
.
scores
,
1
)).
abs
().
mean
().
item
()
}
'
)
print
(
f
'HF fp16 max diff:
{
(
torch
.
stack
(
out_hf
.
scores
,
1
)
-
torch
.
stack
(
out_ref
.
scores
,
1
)).
abs
().
max
().
item
()
}
'
)
print
(
f
'HF fp16 mean diff:
{
(
torch
.
stack
(
out_hf
.
scores
,
1
)
-
torch
.
stack
(
out_ref
.
scores
,
1
)).
abs
().
mean
().
item
()
}
'
)
out_hf
=
model_hf
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
return_dict_in_generate
=
True
,
output_scores
=
True
,
)
out_ref
=
model_ref
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
return_dict_in_generate
=
True
,
output_scores
=
True
,
)
print
(
f
"Scores max diff:
{
(
torch
.
stack
(
out
.
scores
,
1
)
-
torch
.
stack
(
out_ref
.
scores
,
1
)).
abs
().
max
().
item
()
}
"
)
print
(
f
"Scores mean diff:
{
(
torch
.
stack
(
out
.
scores
,
1
)
-
torch
.
stack
(
out_ref
.
scores
,
1
)).
abs
().
mean
().
item
()
}
"
)
print
(
f
"HF fp16 max diff:
{
(
torch
.
stack
(
out_hf
.
scores
,
1
)
-
torch
.
stack
(
out_ref
.
scores
,
1
)).
abs
().
max
().
item
()
}
"
)
print
(
f
"HF fp16 mean diff:
{
(
torch
.
stack
(
out_hf
.
scores
,
1
)
-
torch
.
stack
(
out_ref
.
scores
,
1
)).
abs
().
mean
().
item
()
}
"
)
assert
torch
.
all
(
out
.
sequences
==
sequences
)
assert
torch
.
allclose
(
torch
.
stack
(
out
.
scores
,
dim
=
1
),
torch
.
stack
(
scores
,
dim
=
1
),
rtol
=
rtol
,
atol
=
atol
)
assert
torch
.
allclose
(
torch
.
stack
(
out
.
scores
,
dim
=
1
),
torch
.
stack
(
scores
,
dim
=
1
),
rtol
=
rtol
,
atol
=
atol
)
if
not
rotary
:
assert
torch
.
all
(
out
.
sequences
==
out_ref
.
sequences
)
assert
torch
.
all
(
out
.
sequences
==
out_hf
.
sequences
)
assert
(
torch
.
stack
(
out
.
scores
,
1
)
-
torch
.
stack
(
out_ref
.
scores
,
1
)).
abs
().
max
().
item
()
<
3
*
(
torch
.
stack
(
out_hf
.
scores
,
1
)
-
torch
.
stack
(
out_ref
.
scores
,
1
)).
abs
().
max
().
item
()
assert
(
torch
.
stack
(
out
.
scores
,
1
)
-
torch
.
stack
(
out_ref
.
scores
,
1
)
).
abs
().
max
().
item
()
<
3
*
(
torch
.
stack
(
out_hf
.
scores
,
1
)
-
torch
.
stack
(
out_ref
.
scores
,
1
)
).
abs
().
max
().
item
()
parallel_state
.
destroy_model_parallel
()
tests/models/test_gpt_neox.py
View file @
0e8c46ae
...
...
@@ -2,37 +2,37 @@
import
time
import
torch
import
pytest
from
transformers
import
GPTNeoXConfig
,
AutoTokenizer
from
transformers.models.gpt_neox.modeling_gpt_neox
import
GPTNeoXForCausalLM
import
torch
from
flash_attn.models.gpt
import
GPTLMHeadModel
from
flash_attn.models.gpt_neox
import
remap_state_dict_hf_gpt_neox
,
gpt_neox_config_to_gpt2_config
from
flash_attn.utils.pretrained
import
state_dict_from_pretrained
from
flash_attn.models.gpt_neox
import
gpt_neox_config_to_gpt2_config
,
remap_state_dict_hf_gpt_neox
from
flash_attn.utils.generation
import
update_graph_cache
from
flash_attn.utils.pretrained
import
state_dict_from_pretrained
from
transformers
import
AutoTokenizer
,
GPTNeoXConfig
from
transformers.models.gpt_neox.modeling_gpt_neox
import
GPTNeoXForCausalLM
@
pytest
.
mark
.
parametrize
(
'
model_name
'
,
[
"EleutherAI/gpt-neox-20b"
])
@
pytest
.
mark
.
parametrize
(
"
model_name
"
,
[
"EleutherAI/gpt-neox-20b"
])
def
test_gptj_state_dict
(
model_name
):
config
=
gpt_neox_config_to_gpt2_config
(
GPTNeoXConfig
.
from_pretrained
(
model_name
))
pretrained_state_dict
=
remap_state_dict_hf_gpt_neox
(
state_dict_from_pretrained
(
model_name
),
config
)
model
=
GPTLMHeadModel
(
config
,
device
=
'meta'
)
# Without device='meta' init is very slow
pretrained_state_dict
=
remap_state_dict_hf_gpt_neox
(
state_dict_from_pretrained
(
model_name
),
config
)
model
=
GPTLMHeadModel
(
config
,
device
=
"meta"
)
# Without device='meta' init is very slow
state_dict
=
model
.
state_dict
()
assert
state_dict
.
keys
()
==
pretrained_state_dict
.
keys
()
for
k
in
state_dict
.
keys
():
assert
state_dict
[
k
].
shape
==
pretrained_state_dict
[
k
].
shape
@
pytest
.
mark
.
parametrize
(
'
model_name
'
,
[
"EleutherAI/gpt-neox-20b"
])
@
pytest
.
mark
.
parametrize
(
"
model_name
"
,
[
"EleutherAI/gpt-neox-20b"
])
def
test_gpt_neox_optimized
(
model_name
):
"""Check that our implementation of GPT-NeoX (with all optimizations enabled) matches the
HF implementation: the output of our forward pass in fp16 should be around the same as the HF
forward pass in fp16, when compared to the HF forward pass in fp32.
"""
dtype
=
torch
.
float16
device
=
'
cuda
'
device
=
"
cuda
"
config
=
gpt_neox_config_to_gpt2_config
(
GPTNeoXConfig
.
from_pretrained
(
model_name
))
config
.
use_flash_attn
=
True
config
.
fused_bias_fc
=
True
...
...
@@ -47,8 +47,9 @@ def test_gpt_neox_optimized(model_name):
batch_size
=
2
max_seqlen
=
256
seqlens
=
torch
.
randint
(
max_seqlen
//
2
,
max_seqlen
+
1
,
(
batch_size
,),
device
=
device
)
input_ids
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
max_seqlen
),
dtype
=
torch
.
long
,
device
=
device
)
input_ids
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
max_seqlen
),
dtype
=
torch
.
long
,
device
=
device
)
with
torch
.
no_grad
():
out
=
model
.
transformer
(
input_ids
)
logits
=
model
(
input_ids
).
logits
...
...
@@ -56,31 +57,36 @@ def test_gpt_neox_optimized(model_name):
# Need at least 2 GPUs, otherwise we'll OOM
# Without device_map, the model is loaded on the CPU, which is very slow
model_ref
=
GPTNeoXForCausalLM
.
from_pretrained
(
model_name
,
device_map
=
'
auto
'
)
model_ref
=
GPTNeoXForCausalLM
.
from_pretrained
(
model_name
,
device_map
=
"
auto
"
)
model_ref
.
eval
()
with
torch
.
no_grad
():
out_ref
=
model_ref
.
gpt_neox
(
input_ids
).
last_hidden_state
.
to
(
device
=
device
)
logits_ref
=
model_ref
(
input_ids
).
logits
.
to
(
device
=
device
)
del
model_ref
model_hf
=
GPTNeoXForCausalLM
.
from_pretrained
(
model_name
,
torch_dtype
=
dtype
,
device_map
=
{
""
:
device
})
model_hf
=
GPTNeoXForCausalLM
.
from_pretrained
(
model_name
,
torch_dtype
=
dtype
,
device_map
=
{
""
:
device
}
)
model_hf
.
eval
()
with
torch
.
no_grad
():
out_hf
=
model_hf
.
gpt_neox
(
input_ids
).
last_hidden_state
logits_hf
=
model_hf
(
input_ids
).
logits
del
model_hf
print
(
f
'
Output max diff:
{
(
out
-
out_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'
Output mean diff:
{
(
out
-
out_ref
).
abs
().
mean
().
item
()
}
'
)
print
(
f
'
HF fp16 max diff:
{
(
out_hf
-
out_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'
HF fp16 mean diff:
{
(
out_hf
-
out_ref
).
abs
().
mean
().
item
()
}
'
)
print
(
f
"
Output max diff:
{
(
out
-
out_ref
).
abs
().
max
().
item
()
}
"
)
print
(
f
"
Output mean diff:
{
(
out
-
out_ref
).
abs
().
mean
().
item
()
}
"
)
print
(
f
"
HF fp16 max diff:
{
(
out_hf
-
out_ref
).
abs
().
max
().
item
()
}
"
)
print
(
f
"
HF fp16 mean diff:
{
(
out_hf
-
out_ref
).
abs
().
mean
().
item
()
}
"
)
assert
(
out
-
out_ref
).
abs
().
max
().
item
()
<
2
*
(
out_hf
-
out_ref
).
abs
().
max
().
item
()
assert
(
out
-
out_ref
).
abs
().
mean
().
item
()
<
2
*
(
out_hf
-
out_ref
).
abs
().
mean
().
item
()
print
(
f
'Logits max diff:
{
(
logits
-
logits_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'Logits mean diff:
{
(
logits
-
logits_ref
).
abs
().
mean
().
item
()
}
'
)
print
(
f
'HF fp16 max diff:
{
(
logits_hf
-
logits_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'HF fp16 mean diff:
{
(
logits_hf
-
logits_ref
).
abs
().
mean
().
item
()
}
'
)
assert
(
logits
-
logits_ref
).
abs
().
max
().
item
()
<
2
*
(
logits_hf
-
logits_ref
).
abs
().
max
().
item
()
assert
(
logits
-
logits_ref
).
abs
().
mean
().
item
()
<
2
*
(
logits_hf
-
logits_ref
).
abs
().
mean
().
item
()
print
(
f
"Logits max diff:
{
(
logits
-
logits_ref
).
abs
().
max
().
item
()
}
"
)
print
(
f
"Logits mean diff:
{
(
logits
-
logits_ref
).
abs
().
mean
().
item
()
}
"
)
print
(
f
"HF fp16 max diff:
{
(
logits_hf
-
logits_ref
).
abs
().
max
().
item
()
}
"
)
print
(
f
"HF fp16 mean diff:
{
(
logits_hf
-
logits_ref
).
abs
().
mean
().
item
()
}
"
)
assert
(
logits
-
logits_ref
).
abs
().
max
().
item
()
<
2
*
(
logits_hf
-
logits_ref
).
abs
().
max
().
item
()
assert
(
logits
-
logits_ref
).
abs
().
mean
().
item
()
<
2
*
(
logits_hf
-
logits_ref
).
abs
().
mean
().
item
()
tests/models/test_gpt_parallel.py
View file @
0e8c46ae
...
...
@@ -3,33 +3,29 @@
import
math
import
pytest
import
torch
import
torch.nn
as
nn
import
torch.nn.functional
as
F
import
pytest
from
einops
import
rearrange
from
transformers
import
GPT2Config
from
apex.transformer
import
parallel_state
from
flash_attn.models.gpt
import
GPTLMHeadModel
,
shard_state_dict_tp
from
einops
import
rearrange
from
flash_attn.losses.cross_entropy
import
CrossEntropyLoss
from
flash_attn.models.gpt
import
GPTLMHeadModel
,
shard_state_dict_tp
from
flash_attn.utils.distributed
import
allreduce_sequence_parallel_grad
from
transformers
import
GPT2Config
is_sm8x
=
torch
.
cuda
.
get_device_capability
(
'
cuda
'
)[
0
]
>=
8
is_sm8x
=
torch
.
cuda
.
get_device_capability
(
"
cuda
"
)[
0
]
>=
8
@
pytest
.
mark
.
parametrize
(
'
dtype
'
,
[
torch
.
float16
]
+
([
torch
.
bfloat16
]
if
is_sm8x
else
[]))
@
pytest
.
mark
.
parametrize
(
"
dtype
"
,
[
torch
.
float16
]
+
([
torch
.
bfloat16
]
if
is_sm8x
else
[]))
# @pytest.mark.parametrize('dtype', [torch.bfloat16])
@
pytest
.
mark
.
parametrize
(
'
world_size
'
,
[
1
,
2
,
4
,
8
])
@
pytest
.
mark
.
parametrize
(
"
world_size
"
,
[
1
,
2
,
4
,
8
])
# @pytest.mark.parametrize('world_size', [2])
@
pytest
.
mark
.
parametrize
(
'
sequence_parallel
'
,
[
True
,
False
])
@
pytest
.
mark
.
parametrize
(
"
sequence_parallel
"
,
[
True
,
False
])
# @pytest.mark.parametrize('sequence_parallel', [False])
@
pytest
.
mark
.
parametrize
(
'
has_pos_emb
'
,
[
True
,
False
])
@
pytest
.
mark
.
parametrize
(
"
has_pos_emb
"
,
[
True
,
False
])
# @pytest.mark.parametrize('has_pos_emb', [True])
@
pytest
.
mark
.
parametrize
(
'
dim
'
,
[
1024
])
@
pytest
.
mark
.
parametrize
(
"
dim
"
,
[
1024
])
def
test_gpt_parallel
(
dim
,
has_pos_emb
,
sequence_parallel
,
world_size
,
dtype
):
head_dim
=
64
assert
dim
%
head_dim
==
0
...
...
@@ -40,8 +36,8 @@ def test_gpt_parallel(dim, has_pos_emb, sequence_parallel, world_size, dtype):
num_layers
=
2
rtol
,
atol
=
(
3e-3
,
1e-1
)
if
dtype
==
torch
.
bfloat16
else
(
3e-3
,
1e-2
)
if
not
torch
.
distributed
.
is_initialized
():
torch
.
distributed
.
init_process_group
(
backend
=
'
nccl
'
,
init_method
=
'
env://
'
)
device
=
f
'
cuda:
{
torch
.
distributed
.
get_rank
()
}
'
torch
.
distributed
.
init_process_group
(
backend
=
"
nccl
"
,
init_method
=
"
env://
"
)
device
=
f
"
cuda:
{
torch
.
distributed
.
get_rank
()
}
"
assert
world_size
<=
torch
.
distributed
.
get_world_size
()
parallel_state
.
initialize_model_parallel
(
tensor_model_parallel_size_
=
world_size
)
rank
=
parallel_state
.
get_tensor_model_parallel_rank
()
...
...
@@ -57,15 +53,25 @@ def test_gpt_parallel(dim, has_pos_emb, sequence_parallel, world_size, dtype):
# as rank 0 will have an extra bias that changes the RNG.
g
=
torch
.
randn
(
batch_size
*
seqlen
,
device
=
device
)
config
=
GPT2Config
(
n_embd
=
dim
,
n_head
=
num_heads
,
n_layer
=
num_layers
,
n_positions
=
seqlen
if
has_pos_emb
else
0
,
vocab_size
=
50257
,
resid_pdrop
=
0.0
,
embd_pdrop
=
0.0
,
attn_pdrop
=
0.0
,
scale_attn_by_inverse_layer_idx
=
True
,
use_flash_attn
=
True
,
fused_mlp
=
True
,
fused_bias_fc
=
True
,
fused_dropout_add_ln
=
True
,
residual_in_fp32
=
True
,
rotary_emb_fraction
=
0.0
if
has_pos_emb
else
0.5
,
pad_vocab_size_multiple
=
8
*
world_size
,
sequence_parallel
=
sequence_parallel
)
config
=
GPT2Config
(
n_embd
=
dim
,
n_head
=
num_heads
,
n_layer
=
num_layers
,
n_positions
=
seqlen
if
has_pos_emb
else
0
,
vocab_size
=
50257
,
resid_pdrop
=
0.0
,
embd_pdrop
=
0.0
,
attn_pdrop
=
0.0
,
scale_attn_by_inverse_layer_idx
=
True
,
use_flash_attn
=
True
,
fused_mlp
=
True
,
fused_bias_fc
=
True
,
fused_dropout_add_ln
=
True
,
residual_in_fp32
=
True
,
rotary_emb_fraction
=
0.0
if
has_pos_emb
else
0.5
,
pad_vocab_size_multiple
=
8
*
world_size
,
sequence_parallel
=
sequence_parallel
,
)
config
.
vocab_size
=
math
.
ceil
(
config
.
vocab_size
/
(
8
*
world_size
))
*
(
8
*
world_size
)
model_pt
=
GPTLMHeadModel
(
config
,
device
=
device
)
...
...
@@ -73,6 +79,7 @@ def test_gpt_parallel(dim, has_pos_emb, sequence_parallel, world_size, dtype):
if
isinstance
(
module
,
nn
.
LayerNorm
):
nn
.
init
.
normal_
(
module
.
weight
)
nn
.
init
.
normal_
(
module
.
bias
)
model_pt
.
apply
(
init_layer_norm
)
model
=
GPTLMHeadModel
(
config
,
process_group
=
process_group
,
device
=
device
)
...
...
@@ -82,15 +89,17 @@ def test_gpt_parallel(dim, has_pos_emb, sequence_parallel, world_size, dtype):
torch
.
distributed
.
all_gather_into_tensor
(
sharded_nparams_all
,
torch
.
tensor
([
sharded_nparams
],
device
=
device
),
group
=
process_group
)
shared_nparams
=
sum
(
p
.
numel
()
for
p
in
model
.
parameters
()
if
getattr
(
p
,
'_shared_params'
,
False
))
shared_nparams
=
sum
(
p
.
numel
()
for
p
in
model
.
parameters
()
if
getattr
(
p
,
"_shared_params"
,
False
)
)
shared_nparams_all
=
torch
.
empty
(
world_size
,
dtype
=
torch
.
long
,
device
=
device
)
torch
.
distributed
.
all_gather_into_tensor
(
shared_nparams_all
,
torch
.
tensor
([
shared_nparams
],
device
=
device
),
group
=
process_group
)
assert
torch
.
all
(
shared_nparams_all
==
shared_nparams
)
assert
total_nparams
==
((
sharded_nparams_all
-
shared_nparams_all
).
sum
().
item
()
+
shared_nparams
)
assert
total_nparams
==
(
(
sharded_nparams_all
-
shared_nparams_all
).
sum
().
item
()
+
shared_nparams
)
# vocab_size has been rounded up here
partition_vocab_size
=
config
.
vocab_size
//
world_size
...
...
@@ -100,18 +109,20 @@ def test_gpt_parallel(dim, has_pos_emb, sequence_parallel, world_size, dtype):
model
.
load_state_dict
(
shard_state_dict_tp
(
model_pt
.
state_dict
(),
config
,
world_size
,
rank
))
model
.
tie_weights
()
with
torch
.
autocast
(
device_type
=
'
cuda
'
,
dtype
=
dtype
):
with
torch
.
autocast
(
device_type
=
"
cuda
"
,
dtype
=
dtype
):
out
=
model
(
input_ids
[:,
:
-
1
]).
logits
if
not
sequence_parallel
:
out
=
rearrange
(
out
,
'
b s d -> (b s) d
'
)
out_pt
=
rearrange
(
model_pt
(
input_ids
[:,
:
-
1
]).
logits
,
'
b s d -> (b s) d
'
)
out
=
rearrange
(
out
,
"
b s d -> (b s) d
"
)
out_pt
=
rearrange
(
model_pt
(
input_ids
[:,
:
-
1
]).
logits
,
"
b s d -> (b s) d
"
)
partition_batch_dim
=
batch_size
*
seqlen
//
world_size
assert
torch
.
allclose
(
out
,
out_pt
[:,
rank
*
partition_vocab_size
:(
rank
+
1
)
*
partition_vocab_size
],
rtol
=
rtol
,
atol
=
atol
out
,
out_pt
[:,
rank
*
partition_vocab_size
:
(
rank
+
1
)
*
partition_vocab_size
],
rtol
=
rtol
,
atol
=
atol
,
)
loss_fn
=
CrossEntropyLoss
(
inplace_backward
=
True
,
reduction
=
'
none
'
,
process_group
=
process_group
)
loss_fn_pt
=
CrossEntropyLoss
(
inplace_backward
=
True
,
reduction
=
'
none
'
)
loss_fn
=
CrossEntropyLoss
(
inplace_backward
=
True
,
reduction
=
"
none
"
,
process_group
=
process_group
)
loss_fn_pt
=
CrossEntropyLoss
(
inplace_backward
=
True
,
reduction
=
"
none
"
)
loss
=
loss_fn
(
out
,
input_ids
[:,
1
:].
flatten
())
loss_pt
=
loss_fn_pt
(
out_pt
,
input_ids
[:,
1
:].
flatten
())
assert
torch
.
allclose
(
loss
,
loss_pt
,
rtol
=
rtol
,
atol
=
atol
)
...
...
@@ -121,73 +132,105 @@ def test_gpt_parallel(dim, has_pos_emb, sequence_parallel, world_size, dtype):
allreduce_sequence_parallel_grad
(
model
,
process_group
)
parallel_state
.
destroy_model_parallel
()
grad_dict
=
shard_state_dict_tp
({
k
:
v
.
grad
for
k
,
v
in
model_pt
.
named_parameters
()},
config
,
world_size
,
rank
)
grad_dict
=
shard_state_dict_tp
(
{
k
:
v
.
grad
for
k
,
v
in
model_pt
.
named_parameters
()},
config
,
world_size
,
rank
)
assert
torch
.
allclose
(
model
.
transformer
.
embeddings
.
word_embeddings
.
weight
.
grad
,
grad_dict
[
'transformer.embeddings.word_embeddings.weight'
],
rtol
=
rtol
,
atol
=
atol
*
5
grad_dict
[
"transformer.embeddings.word_embeddings.weight"
],
rtol
=
rtol
,
atol
=
atol
*
5
,
)
if
has_pos_emb
:
assert
torch
.
allclose
(
model
.
transformer
.
embeddings
.
position_embeddings
.
weight
.
grad
,
grad_dict
[
'transformer.embeddings.position_embeddings.weight'
],
rtol
=
rtol
,
atol
=
atol
grad_dict
[
"transformer.embeddings.position_embeddings.weight"
],
rtol
=
rtol
,
atol
=
atol
,
)
assert
torch
.
allclose
(
model
.
transformer
.
ln_f
.
weight
.
grad
,
grad_dict
[
'transformer.ln_f.weight'
],
rtol
=
rtol
,
atol
=
atol
)
assert
torch
.
allclose
(
model
.
transformer
.
ln_f
.
bias
.
grad
,
grad_dict
[
'transformer.ln_f.bias'
],
rtol
=
rtol
,
atol
=
atol
)
assert
torch
.
allclose
(
model
.
transformer
.
ln_f
.
weight
.
grad
,
grad_dict
[
"transformer.ln_f.weight"
],
rtol
=
rtol
,
atol
=
atol
,
)
assert
torch
.
allclose
(
model
.
transformer
.
ln_f
.
bias
.
grad
,
grad_dict
[
"transformer.ln_f.bias"
],
rtol
=
rtol
,
atol
=
atol
)
for
i
in
range
(
num_layers
):
assert
torch
.
allclose
(
model
.
transformer
.
layers
[
i
].
mixer
.
Wqkv
.
weight
.
grad
,
grad_dict
[
f
'transformer.layers.
{
i
}
.mixer.Wqkv.weight'
],
rtol
=
rtol
,
atol
=
atol
*
10
grad_dict
[
f
"transformer.layers.
{
i
}
.mixer.Wqkv.weight"
],
rtol
=
rtol
,
atol
=
atol
*
10
,
)
assert
torch
.
allclose
(
model
.
transformer
.
layers
[
i
].
mixer
.
Wqkv
.
bias
.
grad
,
grad_dict
[
f
'transformer.layers.
{
i
}
.mixer.Wqkv.bias'
],
rtol
=
rtol
,
atol
=
atol
*
10
grad_dict
[
f
"transformer.layers.
{
i
}
.mixer.Wqkv.bias"
],
rtol
=
rtol
,
atol
=
atol
*
10
,
)
assert
torch
.
allclose
(
model
.
transformer
.
layers
[
i
].
mixer
.
out_proj
.
weight
.
grad
,
grad_dict
[
f
'transformer.layers.
{
i
}
.mixer.out_proj.weight'
],
rtol
=
rtol
,
atol
=
atol
*
10
grad_dict
[
f
"transformer.layers.
{
i
}
.mixer.out_proj.weight"
],
rtol
=
rtol
,
atol
=
atol
*
10
,
)
if
rank
==
0
:
assert
torch
.
allclose
(
model
.
transformer
.
layers
[
i
].
mixer
.
out_proj
.
bias
.
grad
,
grad_dict
[
f
'transformer.layers.
{
i
}
.mixer.out_proj.bias'
],
rtol
=
rtol
,
atol
=
atol
*
5
)
assert
torch
.
allclose
(
model
.
transformer
.
layers
[
i
].
mixer
.
out_proj
.
bias
.
grad
,
grad_dict
[
f
"transformer.layers.
{
i
}
.mixer.out_proj.bias"
],
rtol
=
rtol
,
atol
=
atol
*
5
,
)
assert
torch
.
allclose
(
model
.
transformer
.
layers
[
i
].
mlp
.
fc1
.
weight
.
grad
,
grad_dict
[
f
'transformer.layers.
{
i
}
.mlp.fc1.weight'
],
rtol
=
rtol
,
atol
=
atol
*
10
grad_dict
[
f
"transformer.layers.
{
i
}
.mlp.fc1.weight"
],
rtol
=
rtol
,
atol
=
atol
*
10
,
)
assert
torch
.
allclose
(
model
.
transformer
.
layers
[
i
].
mlp
.
fc1
.
bias
.
grad
,
grad_dict
[
f
'transformer.layers.
{
i
}
.mlp.fc1.bias'
],
rtol
=
rtol
,
atol
=
atol
*
10
grad_dict
[
f
"transformer.layers.
{
i
}
.mlp.fc1.bias"
],
rtol
=
rtol
,
atol
=
atol
*
10
,
)
assert
torch
.
allclose
(
model
.
transformer
.
layers
[
i
].
mlp
.
fc2
.
weight
.
grad
,
grad_dict
[
f
'transformer.layers.
{
i
}
.mlp.fc2.weight'
],
rtol
=
rtol
,
atol
=
atol
*
10
grad_dict
[
f
"transformer.layers.
{
i
}
.mlp.fc2.weight"
],
rtol
=
rtol
,
atol
=
atol
*
10
,
)
if
rank
==
0
:
assert
torch
.
allclose
(
model
.
transformer
.
layers
[
i
].
mlp
.
fc2
.
bias
.
grad
,
grad_dict
[
f
'transformer.layers.
{
i
}
.mlp.fc2.bias'
],
rtol
=
rtol
,
atol
=
atol
*
5
)
assert
torch
.
allclose
(
model
.
transformer
.
layers
[
i
].
norm1
.
weight
.
grad
,
grad_dict
[
f
'transformer.layers.
{
i
}
.norm1.weight'
],
rtol
=
rtol
,
atol
=
atol
)
assert
torch
.
allclose
(
model
.
transformer
.
layers
[
i
].
norm1
.
bias
.
grad
,
grad_dict
[
f
'transformer.layers.
{
i
}
.norm1.bias'
],
rtol
=
rtol
,
atol
=
atol
)
assert
torch
.
allclose
(
model
.
transformer
.
layers
[
i
].
norm2
.
weight
.
grad
,
grad_dict
[
f
'transformer.layers.
{
i
}
.norm2.weight'
],
rtol
=
rtol
,
atol
=
atol
)
assert
torch
.
allclose
(
model
.
transformer
.
layers
[
i
].
norm2
.
bias
.
grad
,
grad_dict
[
f
'transformer.layers.
{
i
}
.norm2.bias'
],
rtol
=
rtol
,
atol
=
atol
)
assert
torch
.
allclose
(
model
.
transformer
.
layers
[
i
].
mlp
.
fc2
.
bias
.
grad
,
grad_dict
[
f
"transformer.layers.
{
i
}
.mlp.fc2.bias"
],
rtol
=
rtol
,
atol
=
atol
*
5
,
)
assert
torch
.
allclose
(
model
.
transformer
.
layers
[
i
].
norm1
.
weight
.
grad
,
grad_dict
[
f
"transformer.layers.
{
i
}
.norm1.weight"
],
rtol
=
rtol
,
atol
=
atol
,
)
assert
torch
.
allclose
(
model
.
transformer
.
layers
[
i
].
norm1
.
bias
.
grad
,
grad_dict
[
f
"transformer.layers.
{
i
}
.norm1.bias"
],
rtol
=
rtol
,
atol
=
atol
,
)
assert
torch
.
allclose
(
model
.
transformer
.
layers
[
i
].
norm2
.
weight
.
grad
,
grad_dict
[
f
"transformer.layers.
{
i
}
.norm2.weight"
],
rtol
=
rtol
,
atol
=
atol
,
)
assert
torch
.
allclose
(
model
.
transformer
.
layers
[
i
].
norm2
.
bias
.
grad
,
grad_dict
[
f
"transformer.layers.
{
i
}
.norm2.bias"
],
rtol
=
rtol
,
atol
=
atol
,
)
tests/models/test_gptj.py
View file @
0e8c46ae
...
...
@@ -2,37 +2,35 @@
import
time
import
torch
import
pytest
from
transformers
import
GPTJConfig
,
AutoTokenizer
from
transformers.models.gptj.modeling_gptj
import
GPTJForCausalLM
import
torch
from
flash_attn.models.gpt
import
GPTLMHeadModel
from
flash_attn.models.gptj
import
remap_state_dict_hf_gptj
,
gptj_config_to_gpt2_config
from
flash_attn.utils.pretrained
import
state_dict_from_pretrained
from
flash_attn.models.gptj
import
gptj_config_to_gpt2_config
,
remap_state_dict_hf_gptj
from
flash_attn.utils.generation
import
update_graph_cache
from
flash_attn.utils.pretrained
import
state_dict_from_pretrained
from
transformers
import
AutoTokenizer
,
GPTJConfig
from
transformers.models.gptj.modeling_gptj
import
GPTJForCausalLM
@
pytest
.
mark
.
parametrize
(
'
model_name
'
,
[
"EleutherAI/gpt-j-6B"
])
@
pytest
.
mark
.
parametrize
(
"
model_name
"
,
[
"EleutherAI/gpt-j-6B"
])
def
test_gptj_state_dict
(
model_name
):
config
=
gptj_config_to_gpt2_config
(
GPTJConfig
.
from_pretrained
(
model_name
))
pretrained_state_dict
=
remap_state_dict_hf_gptj
(
state_dict_from_pretrained
(
model_name
),
config
)
model
=
GPTLMHeadModel
(
config
,
device
=
'
meta
'
)
# Without device='meta' init is very slow
model
=
GPTLMHeadModel
(
config
,
device
=
"
meta
"
)
# Without device='meta' init is very slow
state_dict
=
model
.
state_dict
()
assert
state_dict
.
keys
()
==
pretrained_state_dict
.
keys
()
for
k
in
state_dict
.
keys
():
assert
state_dict
[
k
].
shape
==
pretrained_state_dict
[
k
].
shape
@
pytest
.
mark
.
parametrize
(
'
model_name
'
,
[
"EleutherAI/gpt-j-6B"
])
@
pytest
.
mark
.
parametrize
(
"
model_name
"
,
[
"EleutherAI/gpt-j-6B"
])
def
test_gptj_optimized
(
model_name
):
"""Check that our implementation of GPT-J (with all optimizations enabled) matches the
HF implementation: the output of our forward pass in fp16 should be around the same as the HF
forward pass in fp16, when compared to the HF forward pass in fp32.
"""
dtype
=
torch
.
float16
device
=
'
cuda
'
device
=
"
cuda
"
config
=
gptj_config_to_gpt2_config
(
GPTJConfig
.
from_pretrained
(
model_name
))
config
.
use_flash_attn
=
True
# FlashAttention-2 supports headdim 256
config
.
fused_bias_fc
=
True
...
...
@@ -46,8 +44,9 @@ def test_gptj_optimized(model_name):
torch
.
manual_seed
(
0
)
batch_size
=
2
max_seqlen
=
256
input_ids
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
max_seqlen
),
dtype
=
torch
.
long
,
device
=
device
)
input_ids
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
max_seqlen
),
dtype
=
torch
.
long
,
device
=
device
)
with
torch
.
no_grad
():
out
=
model
.
transformer
(
input_ids
)
logits
=
model
(
input_ids
).
logits
...
...
@@ -61,34 +60,37 @@ def test_gptj_optimized(model_name):
logits_ref
=
model_ref
(
input_ids
).
logits
del
model_ref
model_hf
=
GPTJForCausalLM
.
from_pretrained
(
model_name
,
torch_dtype
=
dtype
,
device_map
=
{
""
:
device
})
model_hf
=
GPTJForCausalLM
.
from_pretrained
(
model_name
,
torch_dtype
=
dtype
,
device_map
=
{
""
:
device
}
)
model_hf
.
eval
()
out_hf
=
model_hf
.
transformer
(
input_ids
).
last_hidden_state
logits_hf
=
model_hf
(
input_ids
).
logits
del
model_hf
print
(
f
'
Output max diff:
{
(
out
-
out_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'
Output mean diff:
{
(
out
-
out_ref
).
abs
().
mean
().
item
()
}
'
)
print
(
f
'
HF fp16 max diff:
{
(
out_hf
-
out_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'
HF fp16 mean diff:
{
(
out_hf
-
out_ref
).
abs
().
mean
().
item
()
}
'
)
print
(
f
"
Output max diff:
{
(
out
-
out_ref
).
abs
().
max
().
item
()
}
"
)
print
(
f
"
Output mean diff:
{
(
out
-
out_ref
).
abs
().
mean
().
item
()
}
"
)
print
(
f
"
HF fp16 max diff:
{
(
out_hf
-
out_ref
).
abs
().
max
().
item
()
}
"
)
print
(
f
"
HF fp16 mean diff:
{
(
out_hf
-
out_ref
).
abs
().
mean
().
item
()
}
"
)
assert
(
out
-
out_ref
).
abs
().
max
().
item
()
<
3
*
(
out_hf
-
out_ref
).
abs
().
max
().
item
()
print
(
f
'Logits max diff:
{
(
logits
-
logits_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'Logits mean diff:
{
(
logits
-
logits_ref
).
abs
().
mean
().
item
()
}
'
)
print
(
f
'HF fp16 max diff:
{
(
logits_hf
-
logits_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'HF fp16 mean diff:
{
(
logits_hf
-
logits_ref
).
abs
().
mean
().
item
()
}
'
)
assert
(
logits
-
logits_ref
).
abs
().
max
().
item
()
<
3
*
(
logits_hf
-
logits_ref
).
abs
().
max
().
item
()
print
(
f
"Logits max diff:
{
(
logits
-
logits_ref
).
abs
().
max
().
item
()
}
"
)
print
(
f
"Logits mean diff:
{
(
logits
-
logits_ref
).
abs
().
mean
().
item
()
}
"
)
print
(
f
"HF fp16 max diff:
{
(
logits_hf
-
logits_ref
).
abs
().
max
().
item
()
}
"
)
print
(
f
"HF fp16 mean diff:
{
(
logits_hf
-
logits_ref
).
abs
().
mean
().
item
()
}
"
)
assert
(
logits
-
logits_ref
).
abs
().
max
().
item
()
<
3
*
(
logits_hf
-
logits_ref
).
abs
().
max
().
item
()
@
pytest
.
mark
.
parametrize
(
'
model_name
'
,
[
"EleutherAI/gpt-j-6B"
])
@
pytest
.
mark
.
parametrize
(
"
model_name
"
,
[
"EleutherAI/gpt-j-6B"
])
def
test_gptj_generation
(
model_name
):
"""Check that our implementation of GPT-J (with all optimizations enabled) matches the
HF implementation: the output of our forward pass in fp16 should be around the same as the HF
forward pass in fp16, when compared to the HF forward pass in fp32.
"""
dtype
=
torch
.
float16
device
=
'
cuda
'
device
=
"
cuda
"
config
=
gptj_config_to_gpt2_config
(
GPTJConfig
.
from_pretrained
(
model_name
))
config
.
use_flash_attn
=
True
# FlashAttention-2 supports headdim 256
config
.
fused_bias_fc
=
True
...
...
@@ -104,56 +106,71 @@ def test_gptj_generation(model_name):
batch_size
=
1
seqlen
=
100
max_length
=
150
input_ids
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
seqlen
),
dtype
=
torch
.
long
,
device
=
device
)
input_ids
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
seqlen
),
dtype
=
torch
.
long
,
device
=
device
)
model_hf
=
GPTJForCausalLM
.
from_pretrained
(
model_name
,
torch_dtype
=
dtype
,
device_map
=
{
""
:
device
})
model_hf
=
GPTJForCausalLM
.
from_pretrained
(
model_name
,
torch_dtype
=
dtype
,
device_map
=
{
""
:
device
}
)
model_hf
.
eval
()
print
(
"HF fp16"
)
torch
.
cuda
.
synchronize
()
start
=
time
.
time
()
out_hf
=
model_hf
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
return_dict_in_generate
=
True
,
output_scores
=
True
)
out_hf
=
model_hf
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
return_dict_in_generate
=
True
,
output_scores
=
True
)
torch
.
cuda
.
synchronize
()
print
(
f
'
Prompt processing + decoding time:
{
(
time
.
time
()
-
start
)
*
1000
:.
0
f
}
ms
'
)
print
(
f
"
Prompt processing + decoding time:
{
(
time
.
time
()
-
start
)
*
1000
:.
0
f
}
ms
"
)
del
model_hf
model_ref
=
GPTJForCausalLM
.
from_pretrained
(
model_name
,
device_map
=
{
""
:
device
})
model_ref
.
eval
()
with
torch
.
no_grad
():
logits_ref
=
model_ref
(
out_hf
.
sequences
).
logits
[:,
(
seqlen
-
1
)
:
-
1
]
logits_ref
=
model_ref
(
out_hf
.
sequences
).
logits
[:,
(
seqlen
-
1
)
:
-
1
]
del
model_ref
model
=
GPTLMHeadModel
.
from_pretrained
(
model_name
,
config
,
device
=
device
,
dtype
=
dtype
)
model
.
eval
()
print
(
'
Without CUDA graph
'
)
print
(
"
Without CUDA graph
"
)
torch
.
cuda
.
synchronize
()
start
=
time
.
time
()
out
=
model
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
eos_token_id
=
eos_token_id
,
fused_ft_kernel
=
True
,
# eos_token_id=eos_token_id, fused_ft_kernel=False,
return_dict_in_generate
=
True
,
output_scores
=
True
,
timing
=
True
,
teacher_outputs
=
out_hf
.
sequences
)
out
=
model
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
eos_token_id
=
eos_token_id
,
fused_ft_kernel
=
True
,
# eos_token_id=eos_token_id, fused_ft_kernel=False,
return_dict_in_generate
=
True
,
output_scores
=
True
,
timing
=
True
,
teacher_outputs
=
out_hf
.
sequences
,
)
torch
.
cuda
.
synchronize
()
print
(
f
'
Prompt processing + decoding time:
{
(
time
.
time
()
-
start
)
*
1000
:.
0
f
}
ms
'
)
print
(
f
"
Prompt processing + decoding time:
{
(
time
.
time
()
-
start
)
*
1000
:.
0
f
}
ms
"
)
# Capture graph outside the timing loop
batch_size
,
seqlen_og
=
input_ids
.
shape
model
.
_decoding_cache
=
update_graph_cache
(
model
,
None
,
batch_size
,
seqlen_og
,
max_length
)
print
(
'
With CUDA graph
'
)
print
(
"
With CUDA graph
"
)
torch
.
cuda
.
synchronize
()
start
=
time
.
time
()
out_cg
=
model
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
fused_ft_kernel
=
True
,
cg
=
True
,
return_dict_in_generate
=
True
,
output_scores
=
True
,
timing
=
True
,
teacher_outputs
=
out_hf
.
sequences
)
out_cg
=
model
.
generate
(
input_ids
=
input_ids
,
max_length
=
max_length
,
fused_ft_kernel
=
True
,
cg
=
True
,
return_dict_in_generate
=
True
,
output_scores
=
True
,
timing
=
True
,
teacher_outputs
=
out_hf
.
sequences
,
)
torch
.
cuda
.
synchronize
()
print
(
f
'
Prompt processing + decoding time:
{
(
time
.
time
()
-
start
)
*
1000
:.
0
f
}
ms
'
)
print
(
f
"
Prompt processing + decoding time:
{
(
time
.
time
()
-
start
)
*
1000
:.
0
f
}
ms
"
)
with
torch
.
no_grad
():
logits_parallel
=
model
(
out_hf
.
sequences
).
logits
[:,
(
seqlen
-
1
)
:
-
1
]
logits_parallel
=
model
(
out_hf
.
sequences
).
logits
[:,
(
seqlen
-
1
)
:
-
1
]
logits_hf
=
torch
.
stack
(
out_hf
.
scores
,
dim
=
1
)
logits
=
torch
.
stack
(
out
.
scores
,
dim
=
1
)
logits_cg
=
torch
.
stack
(
out_cg
.
scores
,
dim
=
1
)
...
...
@@ -163,8 +180,8 @@ def test_gptj_generation(model_name):
hf_error
=
(
logits_hf
-
logits_ref
).
abs
().
max
().
item
()
assert
(
logits_parallel
-
logits_ref
).
abs
().
max
().
item
()
<
2
*
hf_error
print
(
f
'
HF fp16 logits max diff:
{
hf_error
}
'
)
print
(
f
'
Logits max diff:
{
(
logits
-
logits_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
"
HF fp16 logits max diff:
{
hf_error
}
"
)
print
(
f
"
Logits max diff:
{
(
logits
-
logits_ref
).
abs
().
max
().
item
()
}
"
)
assert
(
logits
-
logits_ref
).
abs
().
max
().
item
()
<
2
*
hf_error
print
(
f
'
Logits CG max diff:
{
(
logits_cg
-
logits_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
"
Logits CG max diff:
{
(
logits_cg
-
logits_ref
).
abs
().
max
().
item
()
}
"
)
assert
torch
.
equal
(
logits_cg
,
logits
)
tests/models/test_llama.py
View file @
0e8c46ae
...
...
@@ -11,26 +11,25 @@ from pathlib import Path
current_dir
=
Path
(
__file__
).
parent
.
absolute
()
import
torch
import
pytest
import
shutil
import
pytest
import
torch
from
einops
import
rearrange
from
transformers
import
LlamaTokenizer
,
LlamaConfig
from
transformers.models.llama.modeling_llama
import
LlamaForCausalLM
from
flash_attn.models.gpt
import
GPTLMHeadModel
,
combine_state_dicts_tp
,
shard_state_dict_tp
from
flash_attn.models.llama
import
(
remap_state_dict_meta_llama
,
config_from_checkpoint
,
inv_remap_state_dict_hf_llama
,
llama_config_to_gpt2_config
,
remap_state_dict_hf_llama
,
inv_remap_state_dict_hf_llama
,
remap_state_dict_meta_llama
,
state_dicts_from_checkpoint
,
)
from
flash_attn.models.llama
import
config_from_checkpoint
,
state_dicts_from_checkpoint
from
flash_attn.utils.distributed
import
all_gather_raw
from
flash_attn.utils.pretrained
import
state_dict_from_pretrained
from
flash_attn.utils.generation
import
update_graph_cache
from
flash_attn.utils.pretrained
import
state_dict_from_pretrained
from
transformers
import
LlamaConfig
,
LlamaTokenizer
from
transformers.models.llama.modeling_llama
import
LlamaForCausalLM
def
_pretrained_state_dict_from_checkpoint
(
checkpoint_path
,
model_name
,
config
,
checkpoint_format
):
...
...
tests/models/test_opt.py
View file @
0e8c46ae
import
re
import
torch
import
pytest
from
transformers
import
OPTConfig
from
transformers.models.opt.modeling_opt
import
OPTForCausalLM
import
torch
from
flash_attn.models.gpt
import
GPTLMHeadModel
from
flash_attn.models.opt
import
remap_state_dict_hf_opt
,
opt_config_to_gpt2_config
from
flash_attn.models.opt
import
opt_config_to_gpt2_config
,
remap_state_dict_hf_opt
from
flash_attn.utils.pretrained
import
state_dict_from_pretrained
from
transformers
import
OPTConfig
from
transformers.models.opt.modeling_opt
import
OPTForCausalLM
@
pytest
.
mark
.
parametrize
(
'model_name'
,
[
"facebook/opt-125m"
,
"facebook/opt-350m"
,
"facebook/opt-1.3b"
])
@
pytest
.
mark
.
parametrize
(
"model_name"
,
[
"facebook/opt-125m"
,
"facebook/opt-350m"
,
"facebook/opt-1.3b"
]
)
# @pytest.mark.parametrize('model_name', ["facebook/opt-350m"])
def
test_opt_state_dict
(
model_name
):
config
=
opt_config_to_gpt2_config
(
OPTConfig
.
from_pretrained
(
model_name
))
...
...
@@ -23,7 +23,9 @@ def test_opt_state_dict(model_name):
assert
state_dict
[
k
].
shape
==
pretrained_state_dict
[
k
].
shape
@
pytest
.
mark
.
parametrize
(
'model_name'
,
[
"facebook/opt-125m"
,
"facebook/opt-350m"
,
"facebook/opt-1.3b"
])
@
pytest
.
mark
.
parametrize
(
"model_name"
,
[
"facebook/opt-125m"
,
"facebook/opt-350m"
,
"facebook/opt-1.3b"
]
)
# @pytest.mark.parametrize('model_name', ["facebook/opt-350m"])
def
test_opt_optimized
(
model_name
):
"""Check that our implementation of OPT (without all optimizations enabled) matches the
...
...
@@ -31,14 +33,14 @@ def test_opt_optimized(model_name):
forward pass in fp16, when compared to the HF forward pass in fp32.
"""
dtype
=
torch
.
float16
device
=
'
cuda
'
device
=
"
cuda
"
config
=
opt_config_to_gpt2_config
(
OPTConfig
.
from_pretrained
(
model_name
))
config
.
use_flash_attn
=
True
config
.
fused_bias_fc
=
True
config
.
fused_mlp
=
True
config
.
fused_dropout_add_ln
=
True
# Only prenorm supports residual_in_fp32
config
.
residual_in_fp32
=
getattr
(
config
,
'
prenorm
'
,
True
)
config
.
residual_in_fp32
=
getattr
(
config
,
"
prenorm
"
,
True
)
config
.
pad_vocab_size_multiple
=
8
model
=
GPTLMHeadModel
.
from_pretrained
(
model_name
,
config
,
device
=
device
,
dtype
=
dtype
)
...
...
@@ -53,26 +55,29 @@ def test_opt_optimized(model_name):
torch
.
manual_seed
(
0
)
batch_size
=
2
max_seqlen
=
256
seqlens
=
torch
.
randint
(
max_seqlen
//
2
,
max_seqlen
+
1
,
(
batch_size
,),
device
=
'cuda'
)
input_ids
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
max_seqlen
),
dtype
=
torch
.
long
,
device
=
'cuda'
)
if
model_name
!=
'facebook/opt-350m'
:
# The OPT-350m projects the embeddings to dimension 512
seqlens
=
torch
.
randint
(
max_seqlen
//
2
,
max_seqlen
+
1
,
(
batch_size
,),
device
=
"cuda"
)
input_ids
=
torch
.
randint
(
0
,
config
.
vocab_size
,
(
batch_size
,
max_seqlen
),
dtype
=
torch
.
long
,
device
=
"cuda"
)
if
model_name
!=
"facebook/opt-350m"
:
# The OPT-350m projects the embeddings to dimension 512
out
=
model
.
transformer
(
input_ids
)
out_hf
=
model_hf
.
model
(
input_ids
).
last_hidden_state
out_ref
=
model_ref
.
model
(
input_ids
).
last_hidden_state
print
(
f
'
Output max diff:
{
(
out
-
out_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'
Output mean diff:
{
(
out
-
out_ref
).
abs
().
mean
().
item
()
}
'
)
print
(
f
'
HF fp16 max diff:
{
(
out_hf
-
out_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'
HF fp16 mean diff:
{
(
out_hf
-
out_ref
).
abs
().
mean
().
item
()
}
'
)
print
(
f
"
Output max diff:
{
(
out
-
out_ref
).
abs
().
max
().
item
()
}
"
)
print
(
f
"
Output mean diff:
{
(
out
-
out_ref
).
abs
().
mean
().
item
()
}
"
)
print
(
f
"
HF fp16 max diff:
{
(
out_hf
-
out_ref
).
abs
().
max
().
item
()
}
"
)
print
(
f
"
HF fp16 mean diff:
{
(
out_hf
-
out_ref
).
abs
().
mean
().
item
()
}
"
)
assert
(
out
-
out_ref
).
abs
().
max
().
item
()
<
3
*
(
out_hf
-
out_ref
).
abs
().
max
().
item
()
logits
=
model
(
input_ids
).
logits
logits_hf
=
model_hf
(
input_ids
).
logits
logits_ref
=
model_ref
(
input_ids
).
logits
print
(
f
'Logits max diff:
{
(
logits
-
logits_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'Logits mean diff:
{
(
logits
-
logits_ref
).
abs
().
mean
().
item
()
}
'
)
print
(
f
'HF fp16 max diff:
{
(
logits_hf
-
logits_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'HF fp16 mean diff:
{
(
logits_hf
-
logits_ref
).
abs
().
mean
().
item
()
}
'
)
assert
(
logits
-
logits_ref
).
abs
().
max
().
item
()
<
3
*
(
logits_hf
-
logits_ref
).
abs
().
max
().
item
()
print
(
f
"Logits max diff:
{
(
logits
-
logits_ref
).
abs
().
max
().
item
()
}
"
)
print
(
f
"Logits mean diff:
{
(
logits
-
logits_ref
).
abs
().
mean
().
item
()
}
"
)
print
(
f
"HF fp16 max diff:
{
(
logits_hf
-
logits_ref
).
abs
().
max
().
item
()
}
"
)
print
(
f
"HF fp16 mean diff:
{
(
logits_hf
-
logits_ref
).
abs
().
mean
().
item
()
}
"
)
assert
(
logits
-
logits_ref
).
abs
().
max
().
item
()
<
3
*
(
logits_hf
-
logits_ref
).
abs
().
max
().
item
()
tests/models/test_vit.py
View file @
0e8c46ae
import
re
import
torch
import
pytest
from
timm.models.vision_transformer
import
vit_base_patch16_224
import
torch
from
flash_attn.models.vit
import
vit_base_patch16_224
as
flash_vit_base_patch16_224
from
timm.models.vision_transformer
import
vit_base_patch16_224
@
pytest
.
mark
.
parametrize
(
'
fused_mlp
'
,
[
False
,
True
])
@
pytest
.
mark
.
parametrize
(
"
fused_mlp
"
,
[
False
,
True
])
# @pytest.mark.parametrize('fused_mlp', [False])
@
pytest
.
mark
.
parametrize
(
'
optimized
'
,
[
False
,
True
])
@
pytest
.
mark
.
parametrize
(
"
optimized
"
,
[
False
,
True
])
# @pytest.mark.parametrize('optimized', [True])
def
test_vit
(
optimized
,
fused_mlp
):
"""Check that our implementation of ViT matches the timm's implementation:
...
...
@@ -18,12 +16,12 @@ def test_vit(optimized, fused_mlp):
timm' forward pass in fp16, when compared to timm's forward pass in fp32.
"""
dtype
=
torch
.
float16
device
=
'
cuda
'
device
=
"
cuda
"
kwargs
=
{}
if
optimized
:
kwargs
=
dict
(
use_flash_attn
=
True
,
fused_bias_fc
=
True
,
fused_dropout_add_ln
=
True
)
kwargs
[
'
fused_mlp
'
]
=
fused_mlp
kwargs
[
"
fused_mlp
"
]
=
fused_mlp
model
=
flash_vit_base_patch16_224
(
**
kwargs
).
to
(
device
=
device
,
dtype
=
dtype
)
model_ref
=
vit_base_patch16_224
(
pretrained
=
True
).
to
(
device
=
device
)
...
...
@@ -42,9 +40,9 @@ def test_vit(optimized, fused_mlp):
out_timm
=
model_timm
(
x
)
out_ref
=
model_ref
(
x
.
float
())
print
(
f
'
Output max diff:
{
(
out
-
out_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'
Output mean diff:
{
(
out
-
out_ref
).
abs
().
mean
().
item
()
}
'
)
print
(
f
'
timm fp16 max diff:
{
(
out_timm
-
out_ref
).
abs
().
max
().
item
()
}
'
)
print
(
f
'
timm fp16 mean diff:
{
(
out_timm
-
out_ref
).
abs
().
mean
().
item
()
}
'
)
print
(
f
"
Output max diff:
{
(
out
-
out_ref
).
abs
().
max
().
item
()
}
"
)
print
(
f
"
Output mean diff:
{
(
out
-
out_ref
).
abs
().
mean
().
item
()
}
"
)
print
(
f
"
timm fp16 max diff:
{
(
out_timm
-
out_ref
).
abs
().
max
().
item
()
}
"
)
print
(
f
"
timm fp16 mean diff:
{
(
out_timm
-
out_ref
).
abs
().
mean
().
item
()
}
"
)
rtol
=
2
if
not
fused_mlp
else
8
assert
(
out
-
out_ref
).
abs
().
max
().
item
()
<
rtol
*
(
out_timm
-
out_ref
).
abs
().
max
().
item
()
tests/modules/test_block_parallel.py
View file @
0e8c46ae
...
...
@@ -4,31 +4,27 @@
import
math
from
functools
import
partial
import
pytest
import
torch
import
torch.nn
as
nn
import
torch.nn.functional
as
F
import
pytest
from
apex.transformer
import
parallel_state
,
tensor_parallel
from
einops
import
rearrange
from
apex.transformer
import
parallel_state
from
apex.transformer
import
tensor_parallel
from
flash_attn.modules.block
import
Block
from
flash_attn.modules.mha
import
MHA
,
ParallelMHA
from
flash_attn.modules.mlp
import
FusedMLP
,
ParallelFusedMLP
from
flash_attn.modules.block
import
Block
from
flash_attn.utils.distributed
import
allreduce_sequence_parallel_grad
is_sm8x
=
torch
.
cuda
.
get_device_capability
(
'
cuda
'
)[
0
]
>=
8
is_sm8x
=
torch
.
cuda
.
get_device_capability
(
"
cuda
"
)[
0
]
>=
8
@
pytest
.
mark
.
parametrize
(
'
dtype
'
,
[
torch
.
float16
]
+
([
torch
.
bfloat16
]
if
is_sm8x
else
[]))
@
pytest
.
mark
.
parametrize
(
"
dtype
"
,
[
torch
.
float16
]
+
([
torch
.
bfloat16
]
if
is_sm8x
else
[]))
# @pytest.mark.parametrize('dtype', [torch.float16])
@
pytest
.
mark
.
parametrize
(
'
world_size
'
,
[
1
,
2
,
4
,
8
])
@
pytest
.
mark
.
parametrize
(
"
world_size
"
,
[
1
,
2
,
4
,
8
])
# @pytest.mark.parametrize('world_size', [2])
@
pytest
.
mark
.
parametrize
(
'
sequence_parallel
'
,
[
True
,
False
])
@
pytest
.
mark
.
parametrize
(
"
sequence_parallel
"
,
[
True
,
False
])
# @pytest.mark.parametrize('sequence_parallel', [True])
@
pytest
.
mark
.
parametrize
(
'
dim
'
,
[
1024
])
@
pytest
.
mark
.
parametrize
(
"
dim
"
,
[
1024
])
def
test_block_parallel
(
dim
,
sequence_parallel
,
world_size
,
dtype
):
head_dim
=
64
assert
dim
%
head_dim
==
0
...
...
@@ -36,8 +32,8 @@ def test_block_parallel(dim, sequence_parallel, world_size, dtype):
assert
num_heads
%
world_size
==
0
rtol
,
atol
=
(
3e-3
,
5e-2
)
if
dtype
==
torch
.
bfloat16
else
(
3e-3
,
3e-3
)
if
not
torch
.
distributed
.
is_initialized
():
torch
.
distributed
.
init_process_group
(
backend
=
'
nccl
'
,
init_method
=
'
env://
'
)
device
=
f
'
cuda:
{
torch
.
distributed
.
get_rank
()
}
'
torch
.
distributed
.
init_process_group
(
backend
=
"
nccl
"
,
init_method
=
"
env://
"
)
device
=
f
"
cuda:
{
torch
.
distributed
.
get_rank
()
}
"
assert
world_size
<=
torch
.
distributed
.
get_world_size
()
parallel_state
.
initialize_model_parallel
(
tensor_model_parallel_size_
=
world_size
)
rank
=
parallel_state
.
get_tensor_model_parallel_rank
()
...
...
@@ -46,22 +42,37 @@ def test_block_parallel(dim, sequence_parallel, world_size, dtype):
batch_size
=
2
seqlen
=
1024
assert
(
batch_size
*
seqlen
)
%
world_size
==
0
x_pt
=
torch
.
randn
(
batch_size
*
seqlen
,
dim
,
device
=
device
,
dtype
=
dtype
,
requires_grad
=
True
)
x_pt
=
torch
.
randn
(
batch_size
*
seqlen
,
dim
,
device
=
device
,
dtype
=
dtype
,
requires_grad
=
True
)
residual_pt
=
torch
.
randn
(
batch_size
*
seqlen
,
dim
,
device
=
device
,
requires_grad
=
True
)
# We need to generate g here so that all processes get the same gradient,
# as rank 0 will have an extra bias that changes the RNG.
# If we don't divide by batch_size, the gradient gets a bit too large.
g
=
torch
.
randn_like
(
x_pt
)
/
32
if
sequence_parallel
:
x
=
tensor_parallel
.
scatter_to_sequence_parallel_region
(
x_pt
).
detach
().
clone
().
requires_grad_
()
residual
=
tensor_parallel
.
scatter_to_sequence_parallel_region
(
residual_pt
).
detach
().
clone
().
requires_grad_
()
x
=
(
tensor_parallel
.
scatter_to_sequence_parallel_region
(
x_pt
)
.
detach
()
.
clone
()
.
requires_grad_
()
)
residual
=
(
tensor_parallel
.
scatter_to_sequence_parallel_region
(
residual_pt
)
.
detach
()
.
clone
()
.
requires_grad_
()
)
else
:
x
=
x_pt
.
detach
().
clone
().
requires_grad_
()
residual
=
residual_pt
.
detach
().
clone
().
requires_grad_
()
mixer_cls_pt
=
partial
(
MHA
,
num_heads
=
num_heads
,
rotary_emb_dim
=
int
(
head_dim
//
2
),
use_flash_attn
=
True
,
device
=
device
,
dtype
=
dtype
)
mixer_cls_pt
=
partial
(
MHA
,
num_heads
=
num_heads
,
rotary_emb_dim
=
int
(
head_dim
//
2
),
use_flash_attn
=
True
,
device
=
device
,
dtype
=
dtype
,
)
mlp_cls_pt
=
partial
(
FusedMLP
,
hidden_features
=
4
*
dim
,
device
=
device
,
dtype
=
dtype
)
norm_cls
=
partial
(
nn
.
LayerNorm
,
device
=
device
,
dtype
=
dtype
)
model_pt
=
Block
(
dim
,
mixer_cls_pt
,
mlp_cls_pt
,
norm_cls
,
fused_dropout_add_ln
=
True
)
...
...
@@ -71,40 +82,68 @@ def test_block_parallel(dim, sequence_parallel, world_size, dtype):
nn
.
init
.
normal_
(
model_pt
.
norm2
.
weight
)
nn
.
init
.
normal_
(
model_pt
.
norm2
.
bias
)
mixer_cls
=
partial
(
ParallelMHA
,
num_heads
=
num_heads
,
process_group
=
parallel_state
.
get_tensor_model_parallel_group
(),
rotary_emb_dim
=
int
(
head_dim
//
2
),
use_flash_attn
=
True
,
sequence_parallel
=
sequence_parallel
,
device
=
device
,
dtype
=
dtype
)
mlp_cls
=
partial
(
ParallelFusedMLP
,
hidden_features
=
4
*
dim
,
process_group
=
parallel_state
.
get_tensor_model_parallel_group
(),
sequence_parallel
=
sequence_parallel
,
device
=
device
,
dtype
=
dtype
)
model
=
Block
(
dim
,
mixer_cls
,
mlp_cls
,
norm_cls
,
fused_dropout_add_ln
=
True
,
sequence_parallel
=
sequence_parallel
,
mark_shared_params
=
True
)
mixer_cls
=
partial
(
ParallelMHA
,
num_heads
=
num_heads
,
process_group
=
parallel_state
.
get_tensor_model_parallel_group
(),
rotary_emb_dim
=
int
(
head_dim
//
2
),
use_flash_attn
=
True
,
sequence_parallel
=
sequence_parallel
,
device
=
device
,
dtype
=
dtype
,
)
mlp_cls
=
partial
(
ParallelFusedMLP
,
hidden_features
=
4
*
dim
,
process_group
=
parallel_state
.
get_tensor_model_parallel_group
(),
sequence_parallel
=
sequence_parallel
,
device
=
device
,
dtype
=
dtype
,
)
model
=
Block
(
dim
,
mixer_cls
,
mlp_cls
,
norm_cls
,
fused_dropout_add_ln
=
True
,
sequence_parallel
=
sequence_parallel
,
mark_shared_params
=
True
,
)
partition_dim
=
dim
//
world_size
partition_hidden_dim
=
4
*
dim
//
world_size
with
torch
.
no_grad
():
model
.
mixer
.
Wqkv
.
weight
.
copy_
(
rearrange
(
rearrange
(
model_pt
.
mixer
.
Wqkv
.
weight
,
'(three o) i -> three o i'
,
three
=
3
)[:,
rank
*
partition_dim
:(
rank
+
1
)
*
partition_dim
],
'three o i -> (three o) i'
)
rearrange
(
rearrange
(
model_pt
.
mixer
.
Wqkv
.
weight
,
"(three o) i -> three o i"
,
three
=
3
)[
:,
rank
*
partition_dim
:
(
rank
+
1
)
*
partition_dim
],
"three o i -> (three o) i"
,
)
)
model
.
mixer
.
Wqkv
.
bias
.
copy_
(
rearrange
(
rearrange
(
model_pt
.
mixer
.
Wqkv
.
bias
,
'(three o) -> three o'
,
three
=
3
)[:,
rank
*
partition_dim
:(
rank
+
1
)
*
partition_dim
],
'three o -> (three o)'
)
rearrange
(
rearrange
(
model_pt
.
mixer
.
Wqkv
.
bias
,
"(three o) -> three o"
,
three
=
3
)[
:,
rank
*
partition_dim
:
(
rank
+
1
)
*
partition_dim
],
"three o -> (three o)"
,
)
)
model
.
mixer
.
out_proj
.
weight
.
copy_
(
model_pt
.
mixer
.
out_proj
.
weight
[:,
rank
*
partition_dim
:
(
rank
+
1
)
*
partition_dim
]
model_pt
.
mixer
.
out_proj
.
weight
[:,
rank
*
partition_dim
:
(
rank
+
1
)
*
partition_dim
]
)
if
rank
==
0
:
model
.
mixer
.
out_proj
.
bias
.
copy_
(
model_pt
.
mixer
.
out_proj
.
bias
)
model
.
mlp
.
fc1
.
weight
.
copy_
(
model_pt
.
mlp
.
fc1
.
weight
[
rank
*
partition_hidden_dim
:
(
rank
+
1
)
*
partition_hidden_dim
]
model_pt
.
mlp
.
fc1
.
weight
[
rank
*
partition_hidden_dim
:
(
rank
+
1
)
*
partition_hidden_dim
]
)
model
.
mlp
.
fc1
.
bias
.
copy_
(
model_pt
.
mlp
.
fc1
.
bias
[
rank
*
partition_hidden_dim
:
(
rank
+
1
)
*
partition_hidden_dim
]
model_pt
.
mlp
.
fc1
.
bias
[
rank
*
partition_hidden_dim
:
(
rank
+
1
)
*
partition_hidden_dim
]
)
model
.
mlp
.
fc2
.
weight
.
copy_
(
model_pt
.
mlp
.
fc2
.
weight
[:,
rank
*
partition_hidden_dim
:(
rank
+
1
)
*
partition_hidden_dim
]
model_pt
.
mlp
.
fc2
.
weight
[
:,
rank
*
partition_hidden_dim
:
(
rank
+
1
)
*
partition_hidden_dim
]
)
if
rank
==
0
:
model
.
mlp
.
fc2
.
bias
.
copy_
(
model_pt
.
mlp
.
fc2
.
bias
)
...
...
@@ -113,83 +152,122 @@ def test_block_parallel(dim, sequence_parallel, world_size, dtype):
model
.
norm2
.
weight
.
copy_
(
model_pt
.
norm2
.
weight
)
model
.
norm2
.
bias
.
copy_
(
model_pt
.
norm2
.
bias
)
mixer_kwargs
=
{
'
seqlen
'
:
seqlen
}
mixer_kwargs
=
{
"
seqlen
"
:
seqlen
}
out
,
out_residual
=
model
(
x
,
residual
,
mixer_kwargs
=
mixer_kwargs
)
out_pt
,
out_residual_pt
=
model_pt
(
rearrange
(
x_pt
,
'(b s) d -> b s d'
,
s
=
seqlen
),
rearrange
(
residual_pt
,
'(b s) d -> b s d'
,
s
=
seqlen
))
out_pt
,
out_residual_pt
=
[
rearrange
(
x
,
'b s d -> (b s) d'
)
for
x
in
[
out_pt
,
out_residual_pt
]]
out_pt
,
out_residual_pt
=
model_pt
(
rearrange
(
x_pt
,
"(b s) d -> b s d"
,
s
=
seqlen
),
rearrange
(
residual_pt
,
"(b s) d -> b s d"
,
s
=
seqlen
),
)
out_pt
,
out_residual_pt
=
[
rearrange
(
x
,
"b s d -> (b s) d"
)
for
x
in
[
out_pt
,
out_residual_pt
]]
partition_batch_dim
=
batch_size
*
seqlen
//
world_size
assert
torch
.
allclose
(
out
,
out_pt
[
rank
*
partition_batch_dim
:(
rank
+
1
)
*
partition_batch_dim
]
if
sequence_parallel
else
out_pt
,
rtol
=
rtol
,
atol
=
atol
out_pt
[
rank
*
partition_batch_dim
:
(
rank
+
1
)
*
partition_batch_dim
]
if
sequence_parallel
else
out_pt
,
rtol
=
rtol
,
atol
=
atol
,
)
assert
torch
.
allclose
(
out_residual
,
out_residual_pt
[
rank
*
partition_batch_dim
:(
rank
+
1
)
*
partition_batch_dim
]
if
sequence_parallel
else
out_residual_pt
,
rtol
=
rtol
,
atol
=
atol
out_residual_pt
[
rank
*
partition_batch_dim
:
(
rank
+
1
)
*
partition_batch_dim
]
if
sequence_parallel
else
out_residual_pt
,
rtol
=
rtol
,
atol
=
atol
,
)
(
out_pt
+
2
*
out_residual_pt
).
backward
(
g
)
(
out
+
2
*
out_residual
).
backward
(
g
[
rank
*
partition_batch_dim
:(
rank
+
1
)
*
partition_batch_dim
]
if
sequence_parallel
else
g
)
(
out
+
2
*
out_residual
).
backward
(
g
[
rank
*
partition_batch_dim
:
(
rank
+
1
)
*
partition_batch_dim
]
if
sequence_parallel
else
g
)
allreduce_sequence_parallel_grad
(
model
,
parallel_state
.
get_tensor_model_parallel_group
())
parallel_state
.
destroy_model_parallel
()
assert
torch
.
allclose
(
x
.
grad
,
x_pt
.
grad
[
rank
*
partition_batch_dim
:(
rank
+
1
)
*
partition_batch_dim
]
if
sequence_parallel
else
x_pt
.
grad
,
rtol
=
rtol
,
atol
=
atol
/
10
# magnitude of x.grad is quite small
x_pt
.
grad
[
rank
*
partition_batch_dim
:
(
rank
+
1
)
*
partition_batch_dim
]
if
sequence_parallel
else
x_pt
.
grad
,
rtol
=
rtol
,
atol
=
atol
/
10
,
# magnitude of x.grad is quite small
)
assert
torch
.
allclose
(
residual
.
grad
,
residual_pt
.
grad
[
rank
*
partition_batch_dim
:(
rank
+
1
)
*
partition_batch_dim
]
if
sequence_parallel
else
residual_pt
.
grad
,
rtol
=
rtol
,
atol
=
atol
residual_pt
.
grad
[
rank
*
partition_batch_dim
:
(
rank
+
1
)
*
partition_batch_dim
]
if
sequence_parallel
else
residual_pt
.
grad
,
rtol
=
rtol
,
atol
=
atol
,
)
# The error for d_weight and d_bias is quite a bit higher
assert
torch
.
allclose
(
model
.
mixer
.
Wqkv
.
weight
.
grad
,
rearrange
(
rearrange
(
model_pt
.
mixer
.
Wqkv
.
weight
.
grad
,
'(three o) i -> three o i'
,
three
=
3
)[:,
rank
*
partition_dim
:(
rank
+
1
)
*
partition_dim
],
'three o i -> (three o) i'
),
rtol
=
rtol
,
atol
=
atol
*
10
rearrange
(
rearrange
(
model_pt
.
mixer
.
Wqkv
.
weight
.
grad
,
"(three o) i -> three o i"
,
three
=
3
)[
:,
rank
*
partition_dim
:
(
rank
+
1
)
*
partition_dim
],
"three o i -> (three o) i"
,
),
rtol
=
rtol
,
atol
=
atol
*
10
,
)
assert
torch
.
allclose
(
model
.
mixer
.
Wqkv
.
bias
.
grad
,
rearrange
(
rearrange
(
model_pt
.
mixer
.
Wqkv
.
bias
.
grad
,
'(three o) -> three o'
,
three
=
3
)[:,
rank
*
partition_dim
:(
rank
+
1
)
*
partition_dim
],
'three o -> (three o)'
),
rtol
=
rtol
,
atol
=
atol
*
5
rearrange
(
rearrange
(
model_pt
.
mixer
.
Wqkv
.
bias
.
grad
,
"(three o) -> three o"
,
three
=
3
)[
:,
rank
*
partition_dim
:
(
rank
+
1
)
*
partition_dim
],
"three o -> (three o)"
,
),
rtol
=
rtol
,
atol
=
atol
*
5
,
)
assert
torch
.
allclose
(
model
.
mixer
.
out_proj
.
weight
.
grad
,
model_pt
.
mixer
.
out_proj
.
weight
.
grad
[:,
rank
*
partition_dim
:(
rank
+
1
)
*
partition_dim
],
rtol
=
rtol
,
atol
=
atol
*
10
model_pt
.
mixer
.
out_proj
.
weight
.
grad
[:,
rank
*
partition_dim
:
(
rank
+
1
)
*
partition_dim
],
rtol
=
rtol
,
atol
=
atol
*
10
,
)
if
rank
==
0
:
assert
torch
.
allclose
(
model
.
mixer
.
out_proj
.
bias
.
grad
,
model_pt
.
mixer
.
out_proj
.
bias
.
grad
,
rtol
=
rtol
,
atol
=
atol
*
5
)
assert
torch
.
allclose
(
model
.
mixer
.
out_proj
.
bias
.
grad
,
model_pt
.
mixer
.
out_proj
.
bias
.
grad
,
rtol
=
rtol
,
atol
=
atol
*
5
,
)
assert
torch
.
allclose
(
model
.
mlp
.
fc1
.
weight
.
grad
,
model_pt
.
mlp
.
fc1
.
weight
.
grad
[
rank
*
partition_hidden_dim
:(
rank
+
1
)
*
partition_hidden_dim
],
rtol
=
rtol
,
atol
=
atol
*
10
model_pt
.
mlp
.
fc1
.
weight
.
grad
[
rank
*
partition_hidden_dim
:
(
rank
+
1
)
*
partition_hidden_dim
],
rtol
=
rtol
,
atol
=
atol
*
10
,
)
assert
torch
.
allclose
(
model
.
mlp
.
fc1
.
bias
.
grad
,
model_pt
.
mlp
.
fc1
.
bias
.
grad
[
rank
*
partition_hidden_dim
:(
rank
+
1
)
*
partition_hidden_dim
],
rtol
=
rtol
,
atol
=
atol
*
5
model_pt
.
mlp
.
fc1
.
bias
.
grad
[
rank
*
partition_hidden_dim
:
(
rank
+
1
)
*
partition_hidden_dim
],
rtol
=
rtol
,
atol
=
atol
*
5
,
)
assert
torch
.
allclose
(
model
.
mlp
.
fc2
.
weight
.
grad
,
model_pt
.
mlp
.
fc2
.
weight
.
grad
[:,
rank
*
partition_hidden_dim
:(
rank
+
1
)
*
partition_hidden_dim
],
rtol
=
rtol
,
atol
=
atol
*
10
model_pt
.
mlp
.
fc2
.
weight
.
grad
[
:,
rank
*
partition_hidden_dim
:
(
rank
+
1
)
*
partition_hidden_dim
],
rtol
=
rtol
,
atol
=
atol
*
10
,
)
if
rank
==
0
:
assert
torch
.
allclose
(
model
.
mlp
.
fc2
.
bias
.
grad
,
model_pt
.
mlp
.
fc2
.
bias
.
grad
,
rtol
=
rtol
,
atol
=
atol
*
5
)
assert
torch
.
allclose
(
model
.
mlp
.
fc2
.
bias
.
grad
,
model_pt
.
mlp
.
fc2
.
bias
.
grad
,
rtol
=
rtol
,
atol
=
atol
*
5
)
assert
torch
.
allclose
(
model
.
norm1
.
weight
.
grad
,
model_pt
.
norm1
.
weight
.
grad
,
rtol
=
rtol
,
atol
=
atol
*
5
)
assert
torch
.
allclose
(
model
.
norm1
.
weight
.
grad
,
model_pt
.
norm1
.
weight
.
grad
,
rtol
=
rtol
,
atol
=
atol
*
5
)
assert
torch
.
allclose
(
model
.
norm1
.
bias
.
grad
,
model_pt
.
norm1
.
bias
.
grad
,
rtol
=
rtol
,
atol
=
atol
*
5
)
assert
torch
.
allclose
(
model
.
norm2
.
weight
.
grad
,
model_pt
.
norm2
.
weight
.
grad
,
rtol
=
rtol
,
atol
=
atol
*
5
)
assert
torch
.
allclose
(
model
.
norm2
.
weight
.
grad
,
model_pt
.
norm2
.
weight
.
grad
,
rtol
=
rtol
,
atol
=
atol
*
5
)
assert
torch
.
allclose
(
model
.
norm2
.
bias
.
grad
,
model_pt
.
norm2
.
bias
.
grad
,
rtol
=
rtol
,
atol
=
atol
*
5
)
tests/modules/test_embedding_parallel.py
View file @
0e8c46ae
# Run test with:
# torchrun --no_python --nproc_per_node=8 pytest -q -s tests/modules/test_embedding_parallel.py
import
pytest
import
torch
import
torch.nn
as
nn
import
torch.nn.functional
as
F
import
pytest
from
einops
import
rearrange
from
apex.transformer
import
parallel_state
from
einops
import
rearrange
from
flash_attn.modules.embedding
import
GPT2Embeddings
,
ParallelGPT2Embeddings
is_sm8x
=
torch
.
cuda
.
get_device_capability
(
'
cuda
'
)[
0
]
>=
8
is_sm8x
=
torch
.
cuda
.
get_device_capability
(
"
cuda
"
)[
0
]
>=
8
@
pytest
.
mark
.
parametrize
(
'
dtype
'
,
[
torch
.
float16
]
+
([
torch
.
bfloat16
]
if
is_sm8x
else
[]))
@
pytest
.
mark
.
parametrize
(
"
dtype
"
,
[
torch
.
float16
]
+
([
torch
.
bfloat16
]
if
is_sm8x
else
[]))
# @pytest.mark.parametrize('dtype', [torch.bfloat16])
@
pytest
.
mark
.
parametrize
(
'
world_size
'
,
[
1
,
2
,
4
,
8
])
@
pytest
.
mark
.
parametrize
(
"
world_size
"
,
[
1
,
2
,
4
,
8
])
# @pytest.mark.parametrize('world_size', [2])
@
pytest
.
mark
.
parametrize
(
'
sequence_parallel
'
,
[
True
,
False
])
@
pytest
.
mark
.
parametrize
(
"
sequence_parallel
"
,
[
True
,
False
])
# @pytest.mark.parametrize('sequence_parallel', [False])
@
pytest
.
mark
.
parametrize
(
'
has_pos_emb
'
,
[
True
,
False
])
@
pytest
.
mark
.
parametrize
(
"
has_pos_emb
"
,
[
True
,
False
])
# @pytest.mark.parametrize('has_pos_emb', [True])
@
pytest
.
mark
.
parametrize
(
'
dim
'
,
[
1024
])
@
pytest
.
mark
.
parametrize
(
"
dim
"
,
[
1024
])
def
test_embedding_parallel
(
dim
,
has_pos_emb
,
sequence_parallel
,
world_size
,
dtype
):
vocab_size
=
50264
seqlen
=
2048
...
...
@@ -31,8 +28,8 @@ def test_embedding_parallel(dim, has_pos_emb, sequence_parallel, world_size, dty
assert
dim
%
world_size
==
0
rtol
,
atol
=
(
3e-3
,
5e-2
)
if
dtype
==
torch
.
bfloat16
else
(
3e-3
,
3e-3
)
if
not
torch
.
distributed
.
is_initialized
():
torch
.
distributed
.
init_process_group
(
backend
=
'
nccl
'
,
init_method
=
'
env://
'
)
device
=
f
'
cuda:
{
torch
.
distributed
.
get_rank
()
}
'
torch
.
distributed
.
init_process_group
(
backend
=
"
nccl
"
,
init_method
=
"
env://
"
)
device
=
f
"
cuda:
{
torch
.
distributed
.
get_rank
()
}
"
assert
world_size
<=
torch
.
distributed
.
get_world_size
()
parallel_state
.
initialize_model_parallel
(
tensor_model_parallel_size_
=
world_size
)
rank
=
parallel_state
.
get_tensor_model_parallel_rank
()
...
...
@@ -44,46 +41,66 @@ def test_embedding_parallel(dim, has_pos_emb, sequence_parallel, world_size, dty
input_ids_pt
=
torch
.
randint
(
0
,
vocab_size
,
(
batch_size
,
seqlen
),
device
=
device
)
input_ids
=
input_ids_pt
.
detach
().
clone
()
model_pt
=
GPT2Embeddings
(
dim
,
vocab_size
,
seqlen
if
has_pos_emb
else
0
,
device
=
device
,
dtype
=
dtype
)
model
=
ParallelGPT2Embeddings
(
dim
,
vocab_size
,
seqlen
if
has_pos_emb
else
0
,
parallel_state
.
get_tensor_model_parallel_group
(),
sequence_parallel
=
sequence_parallel
,
device
=
device
,
dtype
=
dtype
)
model_pt
=
GPT2Embeddings
(
dim
,
vocab_size
,
seqlen
if
has_pos_emb
else
0
,
device
=
device
,
dtype
=
dtype
)
model
=
ParallelGPT2Embeddings
(
dim
,
vocab_size
,
seqlen
if
has_pos_emb
else
0
,
parallel_state
.
get_tensor_model_parallel_group
(),
sequence_parallel
=
sequence_parallel
,
device
=
device
,
dtype
=
dtype
,
)
partition_vocab_size
=
vocab_size
//
world_size
partition_dim
=
dim
//
world_size
with
torch
.
no_grad
():
model
.
word_embeddings
.
weight
.
copy_
(
model_pt
.
word_embeddings
.
weight
[
rank
*
partition_vocab_size
:(
rank
+
1
)
*
partition_vocab_size
]
model_pt
.
word_embeddings
.
weight
[
rank
*
partition_vocab_size
:
(
rank
+
1
)
*
partition_vocab_size
]
)
if
has_pos_emb
:
model
.
position_embeddings
.
weight
.
copy_
(
model_pt
.
position_embeddings
.
weight
[:,
rank
*
partition_dim
:(
rank
+
1
)
*
partition_dim
]
model_pt
.
position_embeddings
.
weight
[
:,
rank
*
partition_dim
:
(
rank
+
1
)
*
partition_dim
]
)
out
=
model
(
input_ids
,
combine_batch_seqlen_dim
=
True
)
out_pt
=
rearrange
(
model_pt
(
input_ids
),
'
b s d -> (b s) d
'
)
out_pt
=
rearrange
(
model_pt
(
input_ids
),
"
b s d -> (b s) d
"
)
partition_batch_dim
=
batch_size
*
seqlen
//
world_size
assert
torch
.
allclose
(
out
,
out_pt
[
rank
*
partition_batch_dim
:(
rank
+
1
)
*
partition_batch_dim
]
if
sequence_parallel
else
out_pt
,
rtol
=
rtol
,
atol
=
atol
out_pt
[
rank
*
partition_batch_dim
:
(
rank
+
1
)
*
partition_batch_dim
]
if
sequence_parallel
else
out_pt
,
rtol
=
rtol
,
atol
=
atol
,
)
g
=
torch
.
randn_like
(
out_pt
)
out_pt
.
backward
(
g
)
out
.
backward
(
g
[
rank
*
partition_batch_dim
:(
rank
+
1
)
*
partition_batch_dim
]
if
sequence_parallel
else
g
)
out
.
backward
(
g
[
rank
*
partition_batch_dim
:
(
rank
+
1
)
*
partition_batch_dim
]
if
sequence_parallel
else
g
)
parallel_state
.
destroy_model_parallel
()
assert
torch
.
allclose
(
model
.
word_embeddings
.
weight
.
grad
,
model_pt
.
word_embeddings
.
weight
.
grad
[
rank
*
partition_vocab_size
:(
rank
+
1
)
*
partition_vocab_size
],
rtol
=
rtol
,
atol
=
atol
model_pt
.
word_embeddings
.
weight
.
grad
[
rank
*
partition_vocab_size
:
(
rank
+
1
)
*
partition_vocab_size
],
rtol
=
rtol
,
atol
=
atol
,
)
if
has_pos_emb
:
assert
torch
.
allclose
(
model
.
position_embeddings
.
weight
.
grad
,
model_pt
.
position_embeddings
.
weight
.
grad
[:,
rank
*
partition_dim
:(
rank
+
1
)
*
partition_dim
],
rtol
=
rtol
,
atol
=
atol
model_pt
.
position_embeddings
.
weight
.
grad
[
:,
rank
*
partition_dim
:
(
rank
+
1
)
*
partition_dim
],
rtol
=
rtol
,
atol
=
atol
,
)
tests/modules/test_mha_parallel.py
View file @
0e8c46ae
...
...
@@ -3,29 +3,25 @@
import
math
import
pytest
import
torch
import
torch.nn.functional
as
F
import
pytest
from
apex.transformer
import
parallel_state
,
tensor_parallel
from
einops
import
rearrange
from
apex.transformer
import
parallel_state
from
apex.transformer
import
tensor_parallel
from
flash_attn.modules.mha
import
MHA
,
ParallelMHA
is_sm8x
=
torch
.
cuda
.
get_device_capability
(
'
cuda
'
)[
0
]
>=
8
is_sm8x
=
torch
.
cuda
.
get_device_capability
(
"
cuda
"
)[
0
]
>=
8
@
pytest
.
mark
.
parametrize
(
'
dtype
'
,
[
torch
.
float16
]
+
([
torch
.
bfloat16
]
if
is_sm8x
else
[]))
@
pytest
.
mark
.
parametrize
(
"
dtype
"
,
[
torch
.
float16
]
+
([
torch
.
bfloat16
]
if
is_sm8x
else
[]))
# @pytest.mark.parametrize('dtype', [torch.float16])
@
pytest
.
mark
.
parametrize
(
'
world_size
'
,
[
1
,
2
,
4
,
8
])
@
pytest
.
mark
.
parametrize
(
"
world_size
"
,
[
1
,
2
,
4
,
8
])
# @pytest.mark.parametrize('world_size', [2])
@
pytest
.
mark
.
parametrize
(
'
sequence_parallel
'
,
[
True
,
False
])
@
pytest
.
mark
.
parametrize
(
"
sequence_parallel
"
,
[
True
,
False
])
# @pytest.mark.parametrize('sequence_parallel', [False])
@
pytest
.
mark
.
parametrize
(
'
head_dim
'
,
[
64
,
128
])
@
pytest
.
mark
.
parametrize
(
"
head_dim
"
,
[
64
,
128
])
# @pytest.mark.parametrize('head_dim', [64])
@
pytest
.
mark
.
parametrize
(
'
embed_dim
'
,
[
1024
,
4096
])
@
pytest
.
mark
.
parametrize
(
"
embed_dim
"
,
[
1024
,
4096
])
# @pytest.mark.parametrize('embed_dim', [1024])
def
test_mha_parallel
(
embed_dim
,
head_dim
,
sequence_parallel
,
world_size
,
dtype
):
assert
embed_dim
%
head_dim
==
0
...
...
@@ -33,8 +29,8 @@ def test_mha_parallel(embed_dim, head_dim, sequence_parallel, world_size, dtype)
assert
num_heads
%
world_size
==
0
rtol
,
atol
=
(
3e-3
,
1e-2
)
if
dtype
==
torch
.
bfloat16
else
(
3e-3
,
1e-3
)
if
not
torch
.
distributed
.
is_initialized
():
torch
.
distributed
.
init_process_group
(
backend
=
'
nccl
'
,
init_method
=
'
env://
'
)
device
=
f
'
cuda:
{
torch
.
distributed
.
get_rank
()
}
'
torch
.
distributed
.
init_process_group
(
backend
=
"
nccl
"
,
init_method
=
"
env://
"
)
device
=
f
"
cuda:
{
torch
.
distributed
.
get_rank
()
}
"
assert
world_size
<=
torch
.
distributed
.
get_world_size
()
parallel_state
.
initialize_model_parallel
(
tensor_model_parallel_size_
=
world_size
)
rank
=
parallel_state
.
get_tensor_model_parallel_rank
()
...
...
@@ -43,77 +39,122 @@ def test_mha_parallel(embed_dim, head_dim, sequence_parallel, world_size, dtype)
batch_size
=
2
seqlen
=
1024
assert
(
batch_size
*
seqlen
)
%
world_size
==
0
x_pt
=
torch
.
randn
(
batch_size
*
seqlen
,
embed_dim
,
device
=
device
,
dtype
=
dtype
,
requires_grad
=
True
)
x_pt
=
torch
.
randn
(
batch_size
*
seqlen
,
embed_dim
,
device
=
device
,
dtype
=
dtype
,
requires_grad
=
True
)
# We need to generate g here so that all processes get the same gradient,
# as rank 0 will have an extra bias that changes the RNG.
# If we don't divide by batch_size, the gradient gets a bit too large.
g
=
torch
.
randn_like
(
x_pt
)
/
32
if
sequence_parallel
:
x
=
tensor_parallel
.
scatter_to_sequence_parallel_region
(
x_pt
).
detach
().
clone
().
requires_grad_
()
x
=
(
tensor_parallel
.
scatter_to_sequence_parallel_region
(
x_pt
)
.
detach
()
.
clone
()
.
requires_grad_
()
)
else
:
x
=
x_pt
.
detach
().
clone
().
requires_grad_
()
model_pt
=
MHA
(
embed_dim
,
num_heads
,
rotary_emb_dim
=
int
(
head_dim
//
2
),
use_flash_attn
=
True
,
device
=
device
,
dtype
=
dtype
)
model_pt
=
MHA
(
embed_dim
,
num_heads
,
rotary_emb_dim
=
int
(
head_dim
//
2
),
use_flash_attn
=
True
,
device
=
device
,
dtype
=
dtype
,
)
partition_dim
=
embed_dim
//
world_size
model
=
ParallelMHA
(
embed_dim
,
num_heads
,
parallel_state
.
get_tensor_model_parallel_group
(),
rotary_emb_dim
=
int
(
head_dim
//
2
),
use_flash_attn
=
True
,
sequence_parallel
=
sequence_parallel
,
device
=
device
,
dtype
=
dtype
)
model
=
ParallelMHA
(
embed_dim
,
num_heads
,
parallel_state
.
get_tensor_model_parallel_group
(),
rotary_emb_dim
=
int
(
head_dim
//
2
),
use_flash_attn
=
True
,
sequence_parallel
=
sequence_parallel
,
device
=
device
,
dtype
=
dtype
,
)
with
torch
.
no_grad
():
model
.
Wqkv
.
weight
.
copy_
(
rearrange
(
rearrange
(
model_pt
.
Wqkv
.
weight
,
'(three o) i -> three o i'
,
three
=
3
)[:,
rank
*
partition_dim
:(
rank
+
1
)
*
partition_dim
],
'three o i -> (three o) i'
)
rearrange
(
rearrange
(
model_pt
.
Wqkv
.
weight
,
"(three o) i -> three o i"
,
three
=
3
)[
:,
rank
*
partition_dim
:
(
rank
+
1
)
*
partition_dim
],
"three o i -> (three o) i"
,
)
)
model
.
Wqkv
.
bias
.
copy_
(
rearrange
(
rearrange
(
model_pt
.
Wqkv
.
bias
,
'(three o) -> three o'
,
three
=
3
)[:,
rank
*
partition_dim
:(
rank
+
1
)
*
partition_dim
],
'three o -> (three o)'
)
rearrange
(
rearrange
(
model_pt
.
Wqkv
.
bias
,
"(three o) -> three o"
,
three
=
3
)[
:,
rank
*
partition_dim
:
(
rank
+
1
)
*
partition_dim
],
"three o -> (three o)"
,
)
)
model
.
out_proj
.
weight
.
copy_
(
model_pt
.
out_proj
.
weight
[:,
rank
*
partition_dim
:
(
rank
+
1
)
*
partition_dim
]
model_pt
.
out_proj
.
weight
[:,
rank
*
partition_dim
:
(
rank
+
1
)
*
partition_dim
]
)
if
rank
==
0
:
model
.
out_proj
.
bias
.
copy_
(
model_pt
.
out_proj
.
bias
)
out
=
model
(
x
,
seqlen
=
seqlen
)
out_pt
=
rearrange
(
model_pt
(
rearrange
(
x_pt
,
'
(b s) d -> b s d
'
,
s
=
seqlen
)),
'
b s d -> (b s) d
'
)
out_pt
=
rearrange
(
model_pt
(
rearrange
(
x_pt
,
"
(b s) d -> b s d
"
,
s
=
seqlen
)),
"
b s d -> (b s) d
"
)
partition_batch_dim
=
batch_size
*
seqlen
//
world_size
assert
torch
.
allclose
(
out
,
out_pt
[
rank
*
partition_batch_dim
:(
rank
+
1
)
*
partition_batch_dim
]
if
sequence_parallel
else
out_pt
,
rtol
=
rtol
,
atol
=
atol
out_pt
[
rank
*
partition_batch_dim
:
(
rank
+
1
)
*
partition_batch_dim
]
if
sequence_parallel
else
out_pt
,
rtol
=
rtol
,
atol
=
atol
,
)
out_pt
.
backward
(
g
)
out
.
backward
(
g
[
rank
*
partition_batch_dim
:(
rank
+
1
)
*
partition_batch_dim
]
if
sequence_parallel
else
g
)
out
.
backward
(
g
[
rank
*
partition_batch_dim
:
(
rank
+
1
)
*
partition_batch_dim
]
if
sequence_parallel
else
g
)
parallel_state
.
destroy_model_parallel
()
assert
torch
.
allclose
(
x
.
grad
,
x_pt
.
grad
[
rank
*
partition_batch_dim
:(
rank
+
1
)
*
partition_batch_dim
]
if
sequence_parallel
else
x_pt
.
grad
,
rtol
=
rtol
,
atol
=
atol
/
100
# magnitude of x.grad is quite small
x_pt
.
grad
[
rank
*
partition_batch_dim
:
(
rank
+
1
)
*
partition_batch_dim
]
if
sequence_parallel
else
x_pt
.
grad
,
rtol
=
rtol
,
atol
=
atol
/
100
,
# magnitude of x.grad is quite small
)
# The error for d_weight and d_bias is quite a bit higher
assert
torch
.
allclose
(
model
.
Wqkv
.
weight
.
grad
,
rearrange
(
rearrange
(
model_pt
.
Wqkv
.
weight
.
grad
,
'(three o) i -> three o i'
,
three
=
3
)[:,
rank
*
partition_dim
:(
rank
+
1
)
*
partition_dim
],
'three o i -> (three o) i'
),
rtol
=
rtol
,
atol
=
atol
*
10
rearrange
(
rearrange
(
model_pt
.
Wqkv
.
weight
.
grad
,
"(three o) i -> three o i"
,
three
=
3
)[
:,
rank
*
partition_dim
:
(
rank
+
1
)
*
partition_dim
],
"three o i -> (three o) i"
,
),
rtol
=
rtol
,
atol
=
atol
*
10
,
)
assert
torch
.
allclose
(
model
.
Wqkv
.
bias
.
grad
,
rearrange
(
rearrange
(
model_pt
.
Wqkv
.
bias
.
grad
,
'(three o) -> three o'
,
three
=
3
)[:,
rank
*
partition_dim
:(
rank
+
1
)
*
partition_dim
],
'three o -> (three o)'
),
rtol
=
rtol
,
atol
=
atol
*
5
rearrange
(
rearrange
(
model_pt
.
Wqkv
.
bias
.
grad
,
"(three o) -> three o"
,
three
=
3
)[
:,
rank
*
partition_dim
:
(
rank
+
1
)
*
partition_dim
],
"three o -> (three o)"
,
),
rtol
=
rtol
,
atol
=
atol
*
5
,
)
assert
torch
.
allclose
(
model
.
out_proj
.
weight
.
grad
,
model_pt
.
out_proj
.
weight
.
grad
[:,
rank
*
partition_dim
:(
rank
+
1
)
*
partition_dim
],
rtol
=
rtol
,
atol
=
atol
*
10
model_pt
.
out_proj
.
weight
.
grad
[:,
rank
*
partition_dim
:
(
rank
+
1
)
*
partition_dim
],
rtol
=
rtol
,
atol
=
atol
*
10
,
)
if
rank
==
0
:
assert
torch
.
allclose
(
model
.
out_proj
.
bias
.
grad
,
model_pt
.
out_proj
.
bias
.
grad
,
rtol
=
rtol
,
atol
=
atol
*
5
)
assert
torch
.
allclose
(
model
.
out_proj
.
bias
.
grad
,
model_pt
.
out_proj
.
bias
.
grad
,
rtol
=
rtol
,
atol
=
atol
*
5
)
tests/modules/test_mlp_parallel.py
View file @
0e8c46ae
# Run test with:
# torchrun --no_python --nproc_per_node=8 pytest -q -s tests/modules/test_mlp_parallel.py
import
pytest
import
torch
import
torch.nn.functional
as
F
import
pytest
from
apex.transformer
import
parallel_state
,
tensor_parallel
from
einops
import
rearrange
from
apex.transformer
import
parallel_state
from
apex.transformer
import
tensor_parallel
from
flash_attn.modules.mlp
import
GatedMlp
,
ParallelGatedMlp
is_sm8x
=
torch
.
cuda
.
get_device_capability
(
'
cuda
'
)[
0
]
>=
8
is_sm8x
=
torch
.
cuda
.
get_device_capability
(
"
cuda
"
)[
0
]
>=
8
@
pytest
.
mark
.
parametrize
(
'
dtype
'
,
[
torch
.
float16
]
+
([
torch
.
bfloat16
]
if
is_sm8x
else
[]))
@
pytest
.
mark
.
parametrize
(
"
dtype
"
,
[
torch
.
float16
]
+
([
torch
.
bfloat16
]
if
is_sm8x
else
[]))
# @pytest.mark.parametrize('dtype', [torch.float16])
@
pytest
.
mark
.
parametrize
(
'
world_size
'
,
[
1
,
2
,
4
,
8
])
@
pytest
.
mark
.
parametrize
(
"
world_size
"
,
[
1
,
2
,
4
,
8
])
# @pytest.mark.parametrize('world_size', [2])
@
pytest
.
mark
.
parametrize
(
'
sequence_parallel
'
,
[
True
,
False
])
@
pytest
.
mark
.
parametrize
(
"
sequence_parallel
"
,
[
True
,
False
])
# @pytest.mark.parametrize('sequence_parallel', [False])
@
pytest
.
mark
.
parametrize
(
'
activation
'
,
[
F
.
silu
,
F
.
sigmoid
])
@
pytest
.
mark
.
parametrize
(
"
activation
"
,
[
F
.
silu
,
F
.
sigmoid
])
# @pytest.mark.parametrize('activation', [F.silu])
@
pytest
.
mark
.
parametrize
(
'
dim
'
,
[
1024
,
4096
])
@
pytest
.
mark
.
parametrize
(
"
dim
"
,
[
1024
,
4096
])
# @pytest.mark.parametrize('dim', [1024])
def
test_mlp_parallel
(
dim
,
activation
,
sequence_parallel
,
world_size
,
dtype
):
rtol
,
atol
=
(
3e-3
,
3e-2
)
if
dtype
==
torch
.
bfloat16
else
(
3e-3
,
3e-3
)
if
not
torch
.
distributed
.
is_initialized
():
torch
.
distributed
.
init_process_group
(
backend
=
'
nccl
'
,
init_method
=
'
env://
'
)
device
=
f
'
cuda:
{
torch
.
distributed
.
get_rank
()
}
'
torch
.
distributed
.
init_process_group
(
backend
=
"
nccl
"
,
init_method
=
"
env://
"
)
device
=
f
"
cuda:
{
torch
.
distributed
.
get_rank
()
}
"
assert
world_size
<=
torch
.
distributed
.
get_world_size
()
parallel_state
.
initialize_model_parallel
(
tensor_model_parallel_size_
=
world_size
)
rank
=
parallel_state
.
get_tensor_model_parallel_rank
()
...
...
@@ -39,34 +35,51 @@ def test_mlp_parallel(dim, activation, sequence_parallel, world_size, dtype):
batch_size
=
2
seqlen
=
1024
assert
(
batch_size
*
seqlen
)
%
world_size
==
0
x_pt
=
torch
.
randn
(
batch_size
*
seqlen
,
dim
,
device
=
device
,
dtype
=
dtype
,
requires_grad
=
True
)
x_pt
=
torch
.
randn
(
batch_size
*
seqlen
,
dim
,
device
=
device
,
dtype
=
dtype
,
requires_grad
=
True
)
# We need to generate g here so that all processes get the same gradient,
# as rank 0 will have an extra bias that changes the RNG.
# If we don't divide by batch_size, the gradient gets a bit too large.
g
=
torch
.
randn_like
(
x_pt
)
/
32
if
sequence_parallel
:
x
=
tensor_parallel
.
scatter_to_sequence_parallel_region
(
x_pt
).
detach
().
clone
().
requires_grad_
()
x
=
(
tensor_parallel
.
scatter_to_sequence_parallel_region
(
x_pt
)
.
detach
()
.
clone
()
.
requires_grad_
()
)
else
:
x
=
x_pt
.
detach
().
clone
().
requires_grad_
()
model_pt
=
GatedMlp
(
dim
,
activation
=
activation
,
device
=
device
,
dtype
=
dtype
)
partition_dim
=
model_pt
.
fc1
.
weight
.
shape
[
0
]
//
2
//
world_size
model
=
ParallelGatedMlp
(
dim
,
parallel_state
.
get_tensor_model_parallel_group
(),
activation
=
activation
,
sequence_parallel
=
sequence_parallel
,
device
=
device
,
dtype
=
dtype
)
model
=
ParallelGatedMlp
(
dim
,
parallel_state
.
get_tensor_model_parallel_group
(),
activation
=
activation
,
sequence_parallel
=
sequence_parallel
,
device
=
device
,
dtype
=
dtype
,
)
with
torch
.
no_grad
():
model
.
fc1
.
weight
.
copy_
(
rearrange
(
rearrange
(
model_pt
.
fc1
.
weight
,
'(two o) i -> two o i'
,
two
=
2
)[:,
rank
*
partition_dim
:(
rank
+
1
)
*
partition_dim
],
'two o i -> (two o) i'
)
rearrange
(
rearrange
(
model_pt
.
fc1
.
weight
,
"(two o) i -> two o i"
,
two
=
2
)[
:,
rank
*
partition_dim
:
(
rank
+
1
)
*
partition_dim
],
"two o i -> (two o) i"
,
)
)
model
.
fc1
.
bias
.
copy_
(
rearrange
(
rearrange
(
model_pt
.
fc1
.
bias
,
'(two o) -> two o'
,
two
=
2
)[:,
rank
*
partition_dim
:(
rank
+
1
)
*
partition_dim
],
'two o -> (two o)'
)
rearrange
(
rearrange
(
model_pt
.
fc1
.
bias
,
"(two o) -> two o"
,
two
=
2
)[
:,
rank
*
partition_dim
:
(
rank
+
1
)
*
partition_dim
],
"two o -> (two o)"
,
)
)
model
.
fc2
.
weight
.
copy_
(
model_pt
.
fc2
.
weight
[:,
rank
*
partition_dim
:
(
rank
+
1
)
*
partition_dim
]
model_pt
.
fc2
.
weight
[:,
rank
*
partition_dim
:
(
rank
+
1
)
*
partition_dim
]
)
if
rank
==
0
:
model
.
fc2
.
bias
.
copy_
(
model_pt
.
fc2
.
bias
)
...
...
@@ -76,39 +89,55 @@ def test_mlp_parallel(dim, activation, sequence_parallel, world_size, dtype):
partition_batch_dim
=
batch_size
*
seqlen
//
world_size
assert
torch
.
allclose
(
out
,
out_pt
[
rank
*
partition_batch_dim
:(
rank
+
1
)
*
partition_batch_dim
]
if
sequence_parallel
else
out_pt
,
rtol
=
rtol
,
atol
=
atol
out_pt
[
rank
*
partition_batch_dim
:
(
rank
+
1
)
*
partition_batch_dim
]
if
sequence_parallel
else
out_pt
,
rtol
=
rtol
,
atol
=
atol
,
)
out_pt
.
backward
(
g
)
out
.
backward
(
g
[
rank
*
partition_batch_dim
:(
rank
+
1
)
*
partition_batch_dim
]
if
sequence_parallel
else
g
)
out
.
backward
(
g
[
rank
*
partition_batch_dim
:
(
rank
+
1
)
*
partition_batch_dim
]
if
sequence_parallel
else
g
)
parallel_state
.
destroy_model_parallel
()
assert
torch
.
allclose
(
x
.
grad
,
x_pt
.
grad
[
rank
*
partition_batch_dim
:(
rank
+
1
)
*
partition_batch_dim
]
if
sequence_parallel
else
x_pt
.
grad
,
rtol
=
rtol
,
atol
=
atol
x_pt
.
grad
[
rank
*
partition_batch_dim
:
(
rank
+
1
)
*
partition_batch_dim
]
if
sequence_parallel
else
x_pt
.
grad
,
rtol
=
rtol
,
atol
=
atol
,
)
assert
torch
.
allclose
(
model
.
fc1
.
weight
.
grad
,
rearrange
(
rearrange
(
model_pt
.
fc1
.
weight
.
grad
,
'(two o) i -> two o i'
,
two
=
2
)[:,
rank
*
partition_dim
:(
rank
+
1
)
*
partition_dim
],
'two o i -> (two o) i'
),
rtol
=
rtol
,
atol
=
atol
rearrange
(
rearrange
(
model_pt
.
fc1
.
weight
.
grad
,
"(two o) i -> two o i"
,
two
=
2
)[
:,
rank
*
partition_dim
:
(
rank
+
1
)
*
partition_dim
],
"two o i -> (two o) i"
,
),
rtol
=
rtol
,
atol
=
atol
,
)
assert
torch
.
allclose
(
model
.
fc1
.
bias
.
grad
,
rearrange
(
rearrange
(
model_pt
.
fc1
.
bias
.
grad
,
'(two o) -> two o'
,
two
=
2
)[:,
rank
*
partition_dim
:(
rank
+
1
)
*
partition_dim
],
'two o -> (two o)'
),
rtol
=
rtol
,
atol
=
atol
rearrange
(
rearrange
(
model_pt
.
fc1
.
bias
.
grad
,
"(two o) -> two o"
,
two
=
2
)[
:,
rank
*
partition_dim
:
(
rank
+
1
)
*
partition_dim
],
"two o -> (two o)"
,
),
rtol
=
rtol
,
atol
=
atol
,
)
assert
torch
.
allclose
(
model
.
fc2
.
weight
.
grad
,
model_pt
.
fc2
.
weight
.
grad
[:,
rank
*
partition_dim
:(
rank
+
1
)
*
partition_dim
],
rtol
=
rtol
,
atol
=
atol
model_pt
.
fc2
.
weight
.
grad
[:,
rank
*
partition_dim
:
(
rank
+
1
)
*
partition_dim
],
rtol
=
rtol
,
atol
=
atol
,
)
if
rank
==
0
:
assert
torch
.
allclose
(
model
.
fc2
.
bias
.
grad
,
model_pt
.
fc2
.
bias
.
grad
,
rtol
=
rtol
,
atol
=
atol
)
tests/ops/test_dropout_layer_norm.py
View file @
0e8c46ae
import
math
import
pytest
import
torch
import
torch.nn.functional
as
F
import
pytest
from
einops
import
rearrange
,
repeat
from
flash_attn.ops.layer_norm
import
DropoutAddLayerNorm
,
dropout_add_layer_norm
from
flash_attn.ops.layer_norm
import
dropout_add_layer_norm_subset
from
flash_attn.ops.rms_norm
import
DropoutAddRMSNorm
,
dropout_add_rms_norm
from
flash_attn.ops.rms_norm
import
dropout_add_rms_norm_subset
from
flash_attn.ops.layer_norm
import
dropout_add_layer_norm_parallel_residual
from
flash_attn.ops.rms_norm
import
dropout_add_rms_norm_parallel_residual
from
flash_attn.ops.layer_norm
import
(
DropoutAddLayerNorm
,
dropout_add_layer_norm
,
dropout_add_layer_norm_parallel_residual
,
dropout_add_layer_norm_subset
,
)
from
flash_attn.ops.rms_norm
import
(
DropoutAddRMSNorm
,
dropout_add_rms_norm
,
dropout_add_rms_norm_parallel_residual
,
dropout_add_rms_norm_subset
,
)
try
:
from
apex.normalization
import
FusedRMSNorm
...
...
@@ -20,28 +24,42 @@ except:
FusedRMSNorm
,
fused_rms_norm_affine
=
None
,
None
is_sm8x
=
torch
.
cuda
.
get_device_capability
(
'
cuda
'
)[
0
]
>=
8
is_sm8x
=
torch
.
cuda
.
get_device_capability
(
"
cuda
"
)[
0
]
>=
8
@
pytest
.
mark
.
parametrize
(
'is_rms_norm'
,
[
False
,
True
])
@
pytest
.
mark
.
parametrize
(
'has_colscale'
,
[
True
,
False
])
@
pytest
.
mark
.
parametrize
(
"is_rms_norm"
,
[
False
,
True
])
@
pytest
.
mark
.
parametrize
(
"has_colscale"
,
[
True
,
False
])
# @pytest.mark.parametrize('has_colscale', [False])
@
pytest
.
mark
.
parametrize
(
'
has_rowscale
'
,
[
True
,
False
])
@
pytest
.
mark
.
parametrize
(
"
has_rowscale
"
,
[
True
,
False
])
# @pytest.mark.parametrize('has_rowscale', [True])
@
pytest
.
mark
.
parametrize
(
'
has_residual
'
,
[
True
,
False
])
@
pytest
.
mark
.
parametrize
(
"
has_residual
"
,
[
True
,
False
])
# @pytest.mark.parametrize('has_residual', [False])
@
pytest
.
mark
.
parametrize
(
'
dropout_p
'
,
[
0.37
,
0.0
])
@
pytest
.
mark
.
parametrize
(
"
dropout_p
"
,
[
0.37
,
0.0
])
# @pytest.mark.parametrize('dropout_p', [0.0])
@
pytest
.
mark
.
parametrize
(
'
weight_dtype
'
,
[
torch
.
float32
,
torch
.
float16
])
@
pytest
.
mark
.
parametrize
(
"
weight_dtype
"
,
[
torch
.
float32
,
torch
.
float16
])
# @pytest.mark.parametrize('weight_dtype', [torch.float32])
@
pytest
.
mark
.
parametrize
(
'input_dtype,residual_dtype'
,
[(
torch
.
float16
,
torch
.
float16
),
(
torch
.
float16
,
torch
.
float32
),
(
torch
.
float32
,
torch
.
float32
)]
+
([(
torch
.
bfloat16
,
torch
.
bfloat16
),
(
torch
.
bfloat16
,
torch
.
float32
)]
if
is_sm8x
else
[]))
@
pytest
.
mark
.
parametrize
(
"input_dtype,residual_dtype"
,
[(
torch
.
float16
,
torch
.
float16
),
(
torch
.
float16
,
torch
.
float32
),
(
torch
.
float32
,
torch
.
float32
)]
+
([(
torch
.
bfloat16
,
torch
.
bfloat16
),
(
torch
.
bfloat16
,
torch
.
float32
)]
if
is_sm8x
else
[]),
)
# @pytest.mark.parametrize('input_dtype,residual_dtype', [(torch.float16, torch.float32)])
@
pytest
.
mark
.
parametrize
(
'hidden_size'
,
[
192
,
256
,
384
,
768
,
1024
,
1280
,
1536
,
1600
,
2048
,
2560
,
3000
,
3072
,
4096
,
5120
,
6144
])
@
pytest
.
mark
.
parametrize
(
"hidden_size"
,
[
192
,
256
,
384
,
768
,
1024
,
1280
,
1536
,
1600
,
2048
,
2560
,
3000
,
3072
,
4096
,
5120
,
6144
],
)
# @pytest.mark.parametrize('hidden_size', [256])
def
test_dropout_layer_norm_training
(
hidden_size
,
input_dtype
,
residual_dtype
,
weight_dtype
,
dropout_p
,
has_residual
,
has_rowscale
,
has_colscale
,
is_rms_norm
):
def
test_dropout_layer_norm_training
(
hidden_size
,
input_dtype
,
residual_dtype
,
weight_dtype
,
dropout_p
,
has_residual
,
has_rowscale
,
has_colscale
,
is_rms_norm
,
):
if
weight_dtype
==
torch
.
float16
and
input_dtype
==
torch
.
bfloat16
:
pytest
.
skip
()
# Not supported
if
is_rms_norm
and
FusedRMSNorm
is
None
:
...
...
@@ -49,15 +67,16 @@ def test_dropout_layer_norm_training(hidden_size, input_dtype, residual_dtype, w
layer_norm_cls
=
torch
.
nn
.
LayerNorm
if
not
is_rms_norm
else
FusedRMSNorm
our_layer_norm_cls
=
DropoutAddLayerNorm
if
not
is_rms_norm
else
DropoutAddRMSNorm
our_layer_norm_func
=
dropout_add_layer_norm
if
not
is_rms_norm
else
dropout_add_rms_norm
device
=
'
cuda
'
device
=
"
cuda
"
# rtol, atol = (1e-5, 1e-6) if input_dtype == torch.float32 else (1e-3, 1e-4)
rtol
,
atol
=
(
1e-3
,
1e-4
)
# set seed
torch
.
random
.
manual_seed
(
0
)
batch_size
=
8
seqlen
=
512
x0_pt
=
torch
.
randn
(
batch_size
,
seqlen
,
hidden_size
,
device
=
device
,
dtype
=
input_dtype
,
requires_grad
=
True
)
x0_pt
=
torch
.
randn
(
batch_size
,
seqlen
,
hidden_size
,
device
=
device
,
dtype
=
input_dtype
,
requires_grad
=
True
)
x0
=
x0_pt
.
detach
().
clone
().
requires_grad_
()
x0_ref
=
x0_pt
.
detach
().
clone
().
float
().
requires_grad_
()
if
has_colscale
:
...
...
@@ -76,8 +95,8 @@ def test_dropout_layer_norm_training(hidden_size, input_dtype, residual_dtype, w
rowscale
=
torch
.
empty
(
batch_size
,
seqlen
,
device
=
device
,
dtype
=
input_dtype
)
survival_rate
=
0.87
rowscale
=
rowscale
.
bernoulli_
(
survival_rate
)
/
survival_rate
x0_scaled_pt
=
x0_pt
*
rearrange
(
rowscale
,
'
... -> ... 1
'
)
x0_scaled_ref
=
x0_ref
*
rearrange
(
rowscale
,
'
... -> ... 1
'
)
x0_scaled_pt
=
x0_pt
*
rearrange
(
rowscale
,
"
... -> ... 1
"
)
x0_scaled_ref
=
x0_ref
*
rearrange
(
rowscale
,
"
... -> ... 1
"
)
else
:
rowscale
=
None
x0_scaled_pt
=
x0_pt
...
...
@@ -98,16 +117,29 @@ def test_dropout_layer_norm_training(hidden_size, input_dtype, residual_dtype, w
model
.
bias
.
copy_
(
model_pt
.
bias
)
model_ref
.
bias
.
copy_
(
model_pt
.
bias
)
residual_in_fp32
=
(
not
has_residual
)
and
residual_dtype
==
torch
.
float32
out
,
dmask
=
our_layer_norm_func
(
x0
,
res
,
model
.
weight
,
model
.
bias
,
model
.
p
,
model
.
eps
,
rowscale
=
rowscale
,
layerscale
=
colscale
,
residual_in_fp32
=
residual_in_fp32
,
return_dropout_mask
=
True
)
out
,
dmask
=
our_layer_norm_func
(
x0
,
res
,
model
.
weight
,
model
.
bias
,
model
.
p
,
model
.
eps
,
rowscale
=
rowscale
,
layerscale
=
colscale
,
residual_in_fp32
=
residual_in_fp32
,
return_dropout_mask
=
True
,
)
assert
out
.
dtype
==
input_dtype
print
(
f
'
Actual dropout fraction:
{
1
-
dmask
.
float
().
mean
().
item
()
}
'
)
print
(
f
"
Actual dropout fraction:
{
1
-
dmask
.
float
().
mean
().
item
()
}
"
)
if
has_residual
:
residual_pt
=
((
x0_scaled_pt
.
float
()
*
dmask
.
float
())
/
(
1
-
dropout_p
)
+
res_pt
.
float
()).
to
(
dtype
=
residual_dtype
)
residual_pt
=
(
(
x0_scaled_pt
.
float
()
*
dmask
.
float
())
/
(
1
-
dropout_p
)
+
res_pt
.
float
()
).
to
(
dtype
=
residual_dtype
)
residual_ref
=
(
x0_scaled_ref
*
dmask
.
float
())
/
(
1
-
dropout_p
)
+
res_ref
else
:
residual_pt
=
((
x0_scaled_pt
.
float
()
*
dmask
.
float
())
/
(
1
-
dropout_p
)).
to
(
dtype
=
residual_dtype
)
residual_pt
=
((
x0_scaled_pt
.
float
()
*
dmask
.
float
())
/
(
1
-
dropout_p
)).
to
(
dtype
=
residual_dtype
)
residual_ref
=
(
x0_scaled_ref
*
dmask
.
float
())
/
(
1
-
dropout_p
)
out_pt
=
model_pt
(
residual_pt
.
to
(
dtype
=
weight_dtype
)).
to
(
dtype
=
input_dtype
)
out_ref
=
model_ref
(
residual_ref
)
...
...
@@ -119,24 +151,33 @@ def test_dropout_layer_norm_training(hidden_size, input_dtype, residual_dtype, w
out_ref
.
backward
(
g
)
assert
(
x0
.
grad
-
x0_ref
.
grad
).
abs
().
max
()
<=
4
*
(
x0_pt
.
grad
-
x0_ref
.
grad
).
abs
().
max
()
+
1e-4
if
has_residual
:
assert
(
res
.
grad
-
res_ref
.
grad
).
abs
().
max
()
<=
4
*
(
res_pt
.
grad
-
res_ref
.
grad
).
abs
().
max
()
+
1e-4
assert
(
model
.
weight
.
grad
-
model_ref
.
weight
.
grad
).
abs
().
max
()
<=
3
*
(
model_pt
.
weight
.
grad
-
model_ref
.
weight
.
grad
).
abs
().
max
()
+
3e-5
assert
(
res
.
grad
-
res_ref
.
grad
).
abs
().
max
()
<=
4
*
(
res_pt
.
grad
-
res_ref
.
grad
).
abs
().
max
()
+
1e-4
assert
(
model
.
weight
.
grad
-
model_ref
.
weight
.
grad
).
abs
().
max
()
<=
3
*
(
model_pt
.
weight
.
grad
-
model_ref
.
weight
.
grad
).
abs
().
max
()
+
3e-5
if
not
is_rms_norm
:
assert
(
model
.
bias
.
grad
-
model_ref
.
bias
.
grad
).
abs
().
max
()
<=
2
*
(
model_pt
.
bias
.
grad
-
model_ref
.
bias
.
grad
).
abs
().
max
()
+
3e-5
assert
(
model
.
bias
.
grad
-
model_ref
.
bias
.
grad
).
abs
().
max
()
<=
2
*
(
model_pt
.
bias
.
grad
-
model_ref
.
bias
.
grad
).
abs
().
max
()
+
3e-5
if
has_colscale
:
assert
(
colscale
.
grad
-
colscale_ref
.
grad
).
abs
().
max
()
<=
2
*
(
colscale_pt
.
grad
-
colscale_ref
.
grad
).
abs
().
max
()
+
2e-4
assert
(
colscale
.
grad
-
colscale_ref
.
grad
).
abs
().
max
()
<=
2
*
(
colscale_pt
.
grad
-
colscale_ref
.
grad
).
abs
().
max
()
+
2e-4
@
pytest
.
mark
.
parametrize
(
'weight_dtype'
,
[
torch
.
float32
,
torch
.
float16
])
@
pytest
.
mark
.
parametrize
(
'input_dtype,residual_dtype'
,
[(
torch
.
float16
,
torch
.
float16
),
(
torch
.
float16
,
torch
.
float32
),
(
torch
.
float32
,
torch
.
float32
)]
+
([(
torch
.
bfloat16
,
torch
.
bfloat16
),
(
torch
.
bfloat16
,
torch
.
float32
)]
if
is_sm8x
else
[]))
@
pytest
.
mark
.
parametrize
(
'hidden_size'
,
[
768
,
1024
,
1280
,
1536
,
1600
,
2048
,
2560
,
3072
,
4096
,
5120
])
@
pytest
.
mark
.
parametrize
(
"weight_dtype"
,
[
torch
.
float32
,
torch
.
float16
])
@
pytest
.
mark
.
parametrize
(
"input_dtype,residual_dtype"
,
[(
torch
.
float16
,
torch
.
float16
),
(
torch
.
float16
,
torch
.
float32
),
(
torch
.
float32
,
torch
.
float32
)]
+
([(
torch
.
bfloat16
,
torch
.
bfloat16
),
(
torch
.
bfloat16
,
torch
.
float32
)]
if
is_sm8x
else
[]),
)
@
pytest
.
mark
.
parametrize
(
"hidden_size"
,
[
768
,
1024
,
1280
,
1536
,
1600
,
2048
,
2560
,
3072
,
4096
,
5120
])
def
test_dropout_layer_norm_eval
(
hidden_size
,
input_dtype
,
residual_dtype
,
weight_dtype
):
if
weight_dtype
==
torch
.
float16
and
input_dtype
==
torch
.
bfloat16
:
pytest
.
skip
()
# Not supported
device
=
'
cuda
'
device
=
"
cuda
"
# rtol, atol = (1e-5, 1e-6) if dtype == torch.float32 else (1e-3, 1e-4)
rtol
,
atol
=
(
1e-3
,
1e-4
)
dropout_p
=
0.37
...
...
@@ -144,8 +185,9 @@ def test_dropout_layer_norm_eval(hidden_size, input_dtype, residual_dtype, weigh
torch
.
random
.
manual_seed
(
0
)
batch_size
=
32
seqlen
=
512
x0_pt
=
torch
.
randn
(
batch_size
,
seqlen
,
hidden_size
,
device
=
device
,
dtype
=
input_dtype
,
requires_grad
=
True
)
x0_pt
=
torch
.
randn
(
batch_size
,
seqlen
,
hidden_size
,
device
=
device
,
dtype
=
input_dtype
,
requires_grad
=
True
)
x0
=
x0_pt
.
detach
().
clone
().
requires_grad_
()
x0_ref
=
x0_pt
.
detach
().
clone
().
float
().
requires_grad_
()
res_pt
=
torch
.
randn_like
(
x0
,
dtype
=
residual_dtype
,
requires_grad
=
True
)
...
...
@@ -172,27 +214,39 @@ def test_dropout_layer_norm_eval(hidden_size, input_dtype, residual_dtype, weigh
assert
(
out
-
out_ref
).
abs
().
max
()
<=
4
*
(
out_pt
-
out_ref
).
abs
().
max
()
+
1e-4
@
pytest
.
mark
.
parametrize
(
'is_rms_norm'
,
[
False
,
True
])
@
pytest
.
mark
.
parametrize
(
'has_colscale'
,
[
True
,
False
])
@
pytest
.
mark
.
parametrize
(
'has_rowscale'
,
[
True
,
False
])
@
pytest
.
mark
.
parametrize
(
'has_residual'
,
[
True
,
False
])
@
pytest
.
mark
.
parametrize
(
'dropout_p'
,
[
0.37
,
0.0
])
@
pytest
.
mark
.
parametrize
(
'weight_dtype'
,
[
torch
.
float32
,
torch
.
float16
])
@
pytest
.
mark
.
parametrize
(
'input_dtype,residual_dtype'
,
[(
torch
.
float16
,
torch
.
float16
),
(
torch
.
float16
,
torch
.
float32
),
(
torch
.
float32
,
torch
.
float32
)]
+
([(
torch
.
bfloat16
,
torch
.
bfloat16
),
(
torch
.
bfloat16
,
torch
.
float32
)]
if
is_sm8x
else
[]))
@
pytest
.
mark
.
parametrize
(
"is_rms_norm"
,
[
False
,
True
])
@
pytest
.
mark
.
parametrize
(
"has_colscale"
,
[
True
,
False
])
@
pytest
.
mark
.
parametrize
(
"has_rowscale"
,
[
True
,
False
])
@
pytest
.
mark
.
parametrize
(
"has_residual"
,
[
True
,
False
])
@
pytest
.
mark
.
parametrize
(
"dropout_p"
,
[
0.37
,
0.0
])
@
pytest
.
mark
.
parametrize
(
"weight_dtype"
,
[
torch
.
float32
,
torch
.
float16
])
@
pytest
.
mark
.
parametrize
(
"input_dtype,residual_dtype"
,
[(
torch
.
float16
,
torch
.
float16
),
(
torch
.
float16
,
torch
.
float32
),
(
torch
.
float32
,
torch
.
float32
)]
+
([(
torch
.
bfloat16
,
torch
.
bfloat16
),
(
torch
.
bfloat16
,
torch
.
float32
)]
if
is_sm8x
else
[]),
)
# @pytest.mark.parametrize('has_colscale', [True])
# @pytest.mark.parametrize('has_rowscale', [False])
# @pytest.mark.parametrize('has_residual', [True])
# @pytest.mark.parametrize('dropout_p', [0.0])
# @pytest.mark.parametrize('weight_dtype', [torch.float32])
# @pytest.mark.parametrize('input_dtype,residual_dtype', [(torch.float32, torch.float32)])
@
pytest
.
mark
.
parametrize
(
'hidden_size'
,
[
192
,
256
,
384
,
768
,
1024
,
1280
,
1536
,
1600
,
2048
,
2560
,
3000
,
3072
,
4096
,
5120
,
6144
])
@
pytest
.
mark
.
parametrize
(
"hidden_size"
,
[
192
,
256
,
384
,
768
,
1024
,
1280
,
1536
,
1600
,
2048
,
2560
,
3000
,
3072
,
4096
,
5120
,
6144
],
)
# @pytest.mark.parametrize('hidden_size', [256])
def
test_dropout_layer_norm_prenorm_training
(
hidden_size
,
input_dtype
,
residual_dtype
,
weight_dtype
,
dropout_p
,
has_residual
,
has_rowscale
,
has_colscale
,
is_rms_norm
):
def
test_dropout_layer_norm_prenorm_training
(
hidden_size
,
input_dtype
,
residual_dtype
,
weight_dtype
,
dropout_p
,
has_residual
,
has_rowscale
,
has_colscale
,
is_rms_norm
,
):
if
weight_dtype
==
torch
.
float16
and
input_dtype
==
torch
.
bfloat16
:
pytest
.
skip
()
# Not supported
if
is_rms_norm
and
FusedRMSNorm
is
None
:
...
...
@@ -200,15 +254,16 @@ def test_dropout_layer_norm_prenorm_training(hidden_size, input_dtype, residual_
layer_norm_cls
=
torch
.
nn
.
LayerNorm
if
not
is_rms_norm
else
FusedRMSNorm
our_layer_norm_cls
=
DropoutAddLayerNorm
if
not
is_rms_norm
else
DropoutAddRMSNorm
our_layer_norm_func
=
dropout_add_layer_norm
if
not
is_rms_norm
else
dropout_add_rms_norm
device
=
'
cuda
'
device
=
"
cuda
"
# rtol, atol = (1e-5, 1e-6) if input_dtype == torch.float32 else (1e-3, 1e-4)
rtol
,
atol
=
(
1e-3
,
2e-4
)
# set seed
torch
.
random
.
manual_seed
(
0
)
batch_size
=
8
seqlen
=
512
x0_pt
=
torch
.
randn
(
batch_size
,
seqlen
,
hidden_size
,
device
=
device
,
dtype
=
input_dtype
,
requires_grad
=
True
)
x0_pt
=
torch
.
randn
(
batch_size
,
seqlen
,
hidden_size
,
device
=
device
,
dtype
=
input_dtype
,
requires_grad
=
True
)
x0
=
x0_pt
.
detach
().
clone
().
requires_grad_
()
x0_ref
=
x0_pt
.
detach
().
clone
().
float
().
requires_grad_
()
if
has_colscale
:
...
...
@@ -227,8 +282,8 @@ def test_dropout_layer_norm_prenorm_training(hidden_size, input_dtype, residual_
rowscale
=
torch
.
empty
(
batch_size
,
seqlen
,
device
=
device
,
dtype
=
input_dtype
)
survival_rate
=
0.87
rowscale
=
rowscale
.
bernoulli_
(
survival_rate
)
/
survival_rate
x0_scaled_pt
=
x0_pt
*
rearrange
(
rowscale
,
'
... -> ... 1
'
)
x0_scaled_ref
=
x0_ref
*
rearrange
(
rowscale
,
'
... -> ... 1
'
)
x0_scaled_pt
=
x0_pt
*
rearrange
(
rowscale
,
"
... -> ... 1
"
)
x0_scaled_ref
=
x0_ref
*
rearrange
(
rowscale
,
"
... -> ... 1
"
)
else
:
rowscale
=
None
x0_scaled_pt
=
x0_pt
...
...
@@ -241,8 +296,9 @@ def test_dropout_layer_norm_prenorm_training(hidden_size, input_dtype, residual_
if
not
is_rms_norm
:
torch
.
nn
.
init
.
normal_
(
model_pt
.
bias
)
model_ref
=
layer_norm_cls
(
hidden_size
).
to
(
device
=
device
,
dtype
=
torch
.
float32
)
model
=
our_layer_norm_cls
(
hidden_size
,
prenorm
=
True
,
p
=
dropout_p
,
device
=
device
,
dtype
=
weight_dtype
)
model
=
our_layer_norm_cls
(
hidden_size
,
prenorm
=
True
,
p
=
dropout_p
,
device
=
device
,
dtype
=
weight_dtype
)
with
torch
.
no_grad
():
model
.
weight
.
copy_
(
model_pt
.
weight
)
model_ref
.
weight
.
copy_
(
model_pt
.
weight
)
...
...
@@ -250,24 +306,38 @@ def test_dropout_layer_norm_prenorm_training(hidden_size, input_dtype, residual_
model
.
bias
.
copy_
(
model_pt
.
bias
)
model_ref
.
bias
.
copy_
(
model_pt
.
bias
)
residual_in_fp32
=
(
not
has_residual
)
and
residual_dtype
==
torch
.
float32
out
,
residual
,
dmask
=
our_layer_norm_func
(
x0
,
res
,
model
.
weight
,
model
.
bias
,
model
.
p
,
model
.
eps
,
rowscale
=
rowscale
,
layerscale
=
colscale
,
prenorm
=
True
,
residual_in_fp32
=
residual_in_fp32
,
return_dropout_mask
=
True
)
print
(
f
'Actual dropout fraction:
{
1
-
dmask
.
float
().
mean
().
item
()
}
'
)
out
,
residual
,
dmask
=
our_layer_norm_func
(
x0
,
res
,
model
.
weight
,
model
.
bias
,
model
.
p
,
model
.
eps
,
rowscale
=
rowscale
,
layerscale
=
colscale
,
prenorm
=
True
,
residual_in_fp32
=
residual_in_fp32
,
return_dropout_mask
=
True
,
)
print
(
f
"Actual dropout fraction:
{
1
-
dmask
.
float
().
mean
().
item
()
}
"
)
if
has_residual
:
residual_pt
=
((
x0_scaled_pt
.
float
()
*
dmask
.
float
())
/
(
1
-
dropout_p
)
+
res_pt
.
float
()).
to
(
dtype
=
residual_dtype
)
residual_pt
=
(
(
x0_scaled_pt
.
float
()
*
dmask
.
float
())
/
(
1
-
dropout_p
)
+
res_pt
.
float
()
).
to
(
dtype
=
residual_dtype
)
residual_ref
=
(
x0_scaled_ref
*
dmask
.
float
())
/
(
1
-
dropout_p
)
+
res_ref
else
:
residual_pt
=
((
x0_scaled_pt
.
float
()
*
dmask
.
float
())
/
(
1
-
dropout_p
)).
to
(
dtype
=
residual_dtype
)
residual_pt
=
((
x0_scaled_pt
.
float
()
*
dmask
.
float
())
/
(
1
-
dropout_p
)).
to
(
dtype
=
residual_dtype
)
residual_ref
=
(
x0_scaled_ref
*
dmask
.
float
())
/
(
1
-
dropout_p
)
out_pt
=
model_pt
(
residual_pt
.
to
(
dtype
=
weight_dtype
)).
to
(
dtype
=
input_dtype
)
out_ref
=
model_ref
(
residual_ref
)
assert
out
.
dtype
==
input_dtype
assert
residual
.
dtype
==
residual_dtype
assert
(
out
-
out_ref
).
abs
().
max
()
<=
4
*
(
out_pt
-
out_ref
).
abs
().
max
()
+
1e-4
assert
(
residual
-
residual_ref
).
abs
().
max
()
<=
4
*
(
residual_pt
-
residual_ref
).
abs
().
max
()
+
1e-4
assert
(
residual
-
residual_ref
).
abs
().
max
()
<=
4
*
(
residual_pt
-
residual_ref
).
abs
().
max
()
+
1e-4
g
=
torch
.
randn_like
(
out
)
/
batch_size
(
out_pt
*
F
.
sigmoid
(
residual_pt
)).
backward
(
g
)
...
...
@@ -275,24 +345,33 @@ def test_dropout_layer_norm_prenorm_training(hidden_size, input_dtype, residual_
(
out_ref
*
F
.
sigmoid
(
residual_ref
.
to
(
dtype
=
residual_dtype
))).
backward
(
g
)
assert
(
x0
.
grad
-
x0_ref
.
grad
).
abs
().
max
()
<=
4
*
(
x0_pt
.
grad
-
x0_ref
.
grad
).
abs
().
max
()
+
1e-4
if
has_residual
:
assert
(
res
.
grad
-
res_ref
.
grad
).
abs
().
max
()
<=
4
*
(
res_pt
.
grad
-
res_ref
.
grad
).
abs
().
max
()
+
1e-4
assert
(
model
.
weight
.
grad
-
model_ref
.
weight
.
grad
).
abs
().
max
()
<=
2
*
(
model_pt
.
weight
.
grad
-
model_ref
.
weight
.
grad
).
abs
().
max
()
+
2e-4
assert
(
res
.
grad
-
res_ref
.
grad
).
abs
().
max
()
<=
4
*
(
res_pt
.
grad
-
res_ref
.
grad
).
abs
().
max
()
+
1e-4
assert
(
model
.
weight
.
grad
-
model_ref
.
weight
.
grad
).
abs
().
max
()
<=
2
*
(
model_pt
.
weight
.
grad
-
model_ref
.
weight
.
grad
).
abs
().
max
()
+
2e-4
if
not
is_rms_norm
:
assert
(
model
.
bias
.
grad
-
model_ref
.
bias
.
grad
).
abs
().
max
()
<=
2
*
(
model_pt
.
bias
.
grad
-
model_ref
.
bias
.
grad
).
abs
().
max
()
+
2e-4
assert
(
model
.
bias
.
grad
-
model_ref
.
bias
.
grad
).
abs
().
max
()
<=
2
*
(
model_pt
.
bias
.
grad
-
model_ref
.
bias
.
grad
).
abs
().
max
()
+
2e-4
if
has_colscale
:
assert
(
colscale
.
grad
-
colscale_ref
.
grad
).
abs
().
max
()
<=
2
*
(
colscale_pt
.
grad
-
colscale_ref
.
grad
).
abs
().
max
()
+
2e-4
assert
(
colscale
.
grad
-
colscale_ref
.
grad
).
abs
().
max
()
<=
2
*
(
colscale_pt
.
grad
-
colscale_ref
.
grad
).
abs
().
max
()
+
2e-4
@
pytest
.
mark
.
parametrize
(
'weight_dtype'
,
[
torch
.
float32
,
torch
.
float16
])
@
pytest
.
mark
.
parametrize
(
'input_dtype,residual_dtype'
,
[(
torch
.
float16
,
torch
.
float16
),
(
torch
.
float16
,
torch
.
float32
),
(
torch
.
float32
,
torch
.
float32
)]
+
([(
torch
.
bfloat16
,
torch
.
bfloat16
),
(
torch
.
bfloat16
,
torch
.
float32
)]
if
is_sm8x
else
[]))
@
pytest
.
mark
.
parametrize
(
'hidden_size'
,
[
768
,
1024
,
1280
,
1536
,
1600
,
2048
,
2560
,
3072
,
4096
,
5120
])
@
pytest
.
mark
.
parametrize
(
"weight_dtype"
,
[
torch
.
float32
,
torch
.
float16
])
@
pytest
.
mark
.
parametrize
(
"input_dtype,residual_dtype"
,
[(
torch
.
float16
,
torch
.
float16
),
(
torch
.
float16
,
torch
.
float32
),
(
torch
.
float32
,
torch
.
float32
)]
+
([(
torch
.
bfloat16
,
torch
.
bfloat16
),
(
torch
.
bfloat16
,
torch
.
float32
)]
if
is_sm8x
else
[]),
)
@
pytest
.
mark
.
parametrize
(
"hidden_size"
,
[
768
,
1024
,
1280
,
1536
,
1600
,
2048
,
2560
,
3072
,
4096
,
5120
])
def
test_dropout_layer_norm_prenorm_eval
(
hidden_size
,
input_dtype
,
residual_dtype
,
weight_dtype
):
if
weight_dtype
==
torch
.
float16
and
input_dtype
==
torch
.
bfloat16
:
pytest
.
skip
()
# Not supported
device
=
'
cuda
'
device
=
"
cuda
"
# rtol, atol = (1e-5, 1e-6) if dtype == torch.float32 else (1e-3, 1e-4)
rtol
,
atol
=
(
1e-3
,
1e-4
)
dropout_p
=
0.37
...
...
@@ -300,8 +379,9 @@ def test_dropout_layer_norm_prenorm_eval(hidden_size, input_dtype, residual_dtyp
torch
.
random
.
manual_seed
(
0
)
batch_size
=
32
seqlen
=
512
x0_pt
=
torch
.
randn
(
batch_size
,
seqlen
,
hidden_size
,
device
=
device
,
dtype
=
input_dtype
,
requires_grad
=
True
)
x0_pt
=
torch
.
randn
(
batch_size
,
seqlen
,
hidden_size
,
device
=
device
,
dtype
=
input_dtype
,
requires_grad
=
True
)
x0
=
x0_pt
.
detach
().
clone
().
requires_grad_
()
x0_ref
=
x0_pt
.
detach
().
clone
().
float
().
requires_grad_
()
res_pt
=
torch
.
randn_like
(
x0
,
dtype
=
residual_dtype
,
requires_grad
=
True
)
...
...
@@ -310,8 +390,9 @@ def test_dropout_layer_norm_prenorm_eval(hidden_size, input_dtype, residual_dtyp
model_pt
=
torch
.
nn
.
LayerNorm
(
hidden_size
,
device
=
device
,
dtype
=
weight_dtype
)
torch
.
nn
.
init
.
normal_
(
model_pt
.
weight
)
torch
.
nn
.
init
.
normal_
(
model_pt
.
bias
)
model
=
DropoutAddLayerNorm
(
hidden_size
,
prenorm
=
True
,
p
=
dropout_p
,
device
=
device
,
dtype
=
weight_dtype
)
model
=
DropoutAddLayerNorm
(
hidden_size
,
prenorm
=
True
,
p
=
dropout_p
,
device
=
device
,
dtype
=
weight_dtype
)
model_ref
=
torch
.
nn
.
LayerNorm
(
hidden_size
,
device
=
device
,
dtype
=
torch
.
float32
)
with
torch
.
no_grad
():
model
.
weight
.
copy_
(
model_pt
.
weight
)
...
...
@@ -327,30 +408,36 @@ def test_dropout_layer_norm_prenorm_eval(hidden_size, input_dtype, residual_dtyp
out_pt
=
model_pt
(
residual_pt
.
to
(
dtype
=
weight_dtype
)).
to
(
input_dtype
)
out_ref
=
model_ref
(
residual_ref
)
assert
(
out
-
out_ref
).
abs
().
max
()
<=
4
*
(
out_pt
-
out_ref
).
abs
().
max
()
+
1e-4
assert
(
residual
-
residual_ref
).
abs
().
max
()
<=
4
*
(
residual_pt
-
residual_ref
).
abs
().
max
()
+
1e-4
assert
(
residual
-
residual_ref
).
abs
().
max
()
<=
4
*
(
residual_pt
-
residual_ref
).
abs
().
max
()
+
1e-4
@
pytest
.
mark
.
parametrize
(
'has_colscale'
,
[
True
,
False
])
@
pytest
.
mark
.
parametrize
(
'has_residual'
,
[
True
,
False
])
@
pytest
.
mark
.
parametrize
(
'dropout_p'
,
[
0.37
,
0.0
])
@
pytest
.
mark
.
parametrize
(
'weight_dtype'
,
[
torch
.
float32
,
torch
.
float16
])
@
pytest
.
mark
.
parametrize
(
'input_dtype,residual_dtype'
,
[(
torch
.
float16
,
torch
.
float16
),
(
torch
.
float16
,
torch
.
float32
),
(
torch
.
float32
,
torch
.
float32
)]
+
([(
torch
.
bfloat16
,
torch
.
bfloat16
),
(
torch
.
bfloat16
,
torch
.
float32
)]
if
is_sm8x
else
[]))
@
pytest
.
mark
.
parametrize
(
"has_colscale"
,
[
True
,
False
])
@
pytest
.
mark
.
parametrize
(
"has_residual"
,
[
True
,
False
])
@
pytest
.
mark
.
parametrize
(
"dropout_p"
,
[
0.37
,
0.0
])
@
pytest
.
mark
.
parametrize
(
"weight_dtype"
,
[
torch
.
float32
,
torch
.
float16
])
@
pytest
.
mark
.
parametrize
(
"input_dtype,residual_dtype"
,
[(
torch
.
float16
,
torch
.
float16
),
(
torch
.
float16
,
torch
.
float32
),
(
torch
.
float32
,
torch
.
float32
)]
+
([(
torch
.
bfloat16
,
torch
.
bfloat16
),
(
torch
.
bfloat16
,
torch
.
float32
)]
if
is_sm8x
else
[]),
)
# @pytest.mark.parametrize('has_colscale', [True])
# @pytest.mark.parametrize('has_residual', [True])
# @pytest.mark.parametrize('dropout_p', [0.0])
# @pytest.mark.parametrize('weight_dtype', [torch.float32])
# @pytest.mark.parametrize('input_dtype,residual_dtype', [(torch.float32, torch.float32)])
@
pytest
.
mark
.
parametrize
(
'hidden_size'
,
[
192
,
256
,
384
,
768
,
1024
,
1280
,
1536
,
1600
,
2048
,
2560
,
3000
,
3072
,
4096
,
5120
,
6144
])
@
pytest
.
mark
.
parametrize
(
"hidden_size"
,
[
192
,
256
,
384
,
768
,
1024
,
1280
,
1536
,
1600
,
2048
,
2560
,
3000
,
3072
,
4096
,
5120
,
6144
],
)
# @pytest.mark.parametrize('hidden_size', [256])
def
test_dropout_layer_norm_subset_training
(
hidden_size
,
input_dtype
,
residual_dtype
,
weight_dtype
,
dropout_p
,
has_residual
,
has_colscale
):
hidden_size
,
input_dtype
,
residual_dtype
,
weight_dtype
,
dropout_p
,
has_residual
,
has_colscale
):
if
weight_dtype
==
torch
.
float16
and
input_dtype
==
torch
.
bfloat16
:
pytest
.
skip
()
# Not supported
device
=
'
cuda
'
device
=
"
cuda
"
# rtol, atol = (1e-5, 1e-6) if input_dtype == torch.float32 else (1e-3, 1e-4)
rtol
,
atol
=
(
1e-3
,
2e-4
)
# set seed
...
...
@@ -359,23 +446,28 @@ def test_dropout_layer_norm_subset_training(
seqlen
=
512
drop_path_rate
=
0.4
drop_path_scale
=
1
/
(
1
-
drop_path_rate
)
def
generate_droppath_masks
(
batch_size
,
seqlen
,
drop_path_rate
,
device
):
# Do it on CPU so we can get the numrows (with .item()) without GPU-CPU sync
mask_batch
=
torch
.
rand
(
batch_size
)
<
1
-
drop_path_rate
numrows
=
(
mask_batch
).
sum
().
item
()
*
seqlen
mask_batch
=
mask_batch
.
to
(
device
=
device
,
non_blocking
=
True
)
mask_batch_seqlen
=
repeat
(
mask_batch
,
'b -> (b s)'
,
s
=
seqlen
)
subset
=
torch
.
cumsum
(
mask_batch_seqlen
,
dim
=
0
,
dtype
=
torch
.
int32
).
masked_fill_
(
~
mask_batch_seqlen
,
0
)
return
mask_batch
,
numrows
,
rearrange
(
subset
,
'(b s) -> b s'
,
b
=
batch_size
)
x0_mask_batch
,
x0_numrows
,
x0_subset
=
generate_droppath_masks
(
batch_size
,
seqlen
,
drop_path_rate
,
device
)
out_mask_batch
,
out_numrows
,
out_subset
=
generate_droppath_masks
(
batch_size
,
seqlen
,
drop_path_rate
,
device
)
x0_pt
=
torch
.
randn
(
batch_size
,
seqlen
,
hidden_size
,
device
=
device
,
dtype
=
input_dtype
,
requires_grad
=
True
)
mask_batch_seqlen
=
repeat
(
mask_batch
,
"b -> (b s)"
,
s
=
seqlen
)
subset
=
torch
.
cumsum
(
mask_batch_seqlen
,
dim
=
0
,
dtype
=
torch
.
int32
).
masked_fill_
(
~
mask_batch_seqlen
,
0
)
return
mask_batch
,
numrows
,
rearrange
(
subset
,
"(b s) -> b s"
,
b
=
batch_size
)
x0_mask_batch
,
x0_numrows
,
x0_subset
=
generate_droppath_masks
(
batch_size
,
seqlen
,
drop_path_rate
,
device
)
out_mask_batch
,
out_numrows
,
out_subset
=
generate_droppath_masks
(
batch_size
,
seqlen
,
drop_path_rate
,
device
)
x0_pt
=
torch
.
randn
(
batch_size
,
seqlen
,
hidden_size
,
device
=
device
,
dtype
=
input_dtype
,
requires_grad
=
True
)
x0
=
x0_pt
.
detach
().
clone
()[
x0_mask_batch
].
requires_grad_
()
x0_ref
=
x0_pt
.
detach
().
clone
().
float
().
requires_grad_
()
if
has_colscale
:
...
...
@@ -402,8 +494,9 @@ def test_dropout_layer_norm_subset_training(
torch
.
nn
.
init
.
normal_
(
model_pt
.
weight
)
torch
.
nn
.
init
.
normal_
(
model_pt
.
bias
)
model_ref
=
torch
.
nn
.
LayerNorm
(
hidden_size
,
device
=
device
,
dtype
=
torch
.
float32
)
model
=
DropoutAddLayerNorm
(
hidden_size
,
prenorm
=
False
,
p
=
dropout_p
,
device
=
device
,
dtype
=
weight_dtype
)
model
=
DropoutAddLayerNorm
(
hidden_size
,
prenorm
=
False
,
p
=
dropout_p
,
device
=
device
,
dtype
=
weight_dtype
)
with
torch
.
no_grad
():
model
.
weight
.
copy_
(
model_pt
.
weight
)
model
.
bias
.
copy_
(
model_pt
.
bias
)
...
...
@@ -412,25 +505,42 @@ def test_dropout_layer_norm_subset_training(
residual_in_fp32
=
(
not
has_residual
)
and
residual_dtype
==
torch
.
float32
out
,
dmask
=
dropout_add_layer_norm_subset
(
x0
,
res
,
model
.
weight
,
model
.
bias
,
model
.
p
,
model
.
eps
,
layerscale
=
colscale
,
x0_subset
=
x0_subset
,
out_subset
=
out_subset
,
rowscale_const
=
drop_path_scale
,
out_numrows
=
out_numrows
,
prenorm
=
False
,
residual_in_fp32
=
residual_in_fp32
,
return_dropout_mask
=
True
)
print
(
f
'Actual dropout fraction:
{
1
-
dmask
.
float
().
mean
().
item
()
}
'
)
x0_scaled_pt
=
x0_scaled_pt
.
masked_fill
(
repeat
(
~
x0_mask_batch
,
'b -> b s d'
,
s
=
seqlen
,
d
=
hidden_size
),
0
)
*
drop_path_scale
x0_scaled_ref
=
x0_scaled_ref
.
masked_fill
(
repeat
(
~
x0_mask_batch
,
'b -> b s d'
,
s
=
seqlen
,
d
=
hidden_size
),
0
)
*
drop_path_scale
x0
,
res
,
model
.
weight
,
model
.
bias
,
model
.
p
,
model
.
eps
,
layerscale
=
colscale
,
x0_subset
=
x0_subset
,
out_subset
=
out_subset
,
rowscale_const
=
drop_path_scale
,
out_numrows
=
out_numrows
,
prenorm
=
False
,
residual_in_fp32
=
residual_in_fp32
,
return_dropout_mask
=
True
,
)
print
(
f
"Actual dropout fraction:
{
1
-
dmask
.
float
().
mean
().
item
()
}
"
)
x0_scaled_pt
=
(
x0_scaled_pt
.
masked_fill
(
repeat
(
~
x0_mask_batch
,
"b -> b s d"
,
s
=
seqlen
,
d
=
hidden_size
),
0
)
*
drop_path_scale
)
x0_scaled_ref
=
(
x0_scaled_ref
.
masked_fill
(
repeat
(
~
x0_mask_batch
,
"b -> b s d"
,
s
=
seqlen
,
d
=
hidden_size
),
0
)
*
drop_path_scale
)
dmask_expanded
=
torch
.
zeros_like
(
x0_pt
,
dtype
=
torch
.
uint8
)
dmask_expanded
[
x0_mask_batch
]
=
dmask
if
has_residual
:
residual_pt
=
((
x0_scaled_pt
.
float
()
*
dmask_expanded
.
float
())
/
(
1
-
dropout_p
)
+
res_pt
.
float
()).
to
(
dtype
=
residual_dtype
)
residual_pt
=
(
(
x0_scaled_pt
.
float
()
*
dmask_expanded
.
float
())
/
(
1
-
dropout_p
)
+
res_pt
.
float
()
).
to
(
dtype
=
residual_dtype
)
residual_ref
=
(
x0_scaled_ref
*
dmask_expanded
.
float
())
/
(
1
-
dropout_p
)
+
res_ref
else
:
residual_pt
=
((
x0_scaled_pt
.
float
()
*
dmask_expanded
.
float
())
/
(
1
-
dropout_p
)).
to
(
dtype
=
residual_dtype
)
residual_pt
=
((
x0_scaled_pt
.
float
()
*
dmask_expanded
.
float
())
/
(
1
-
dropout_p
)).
to
(
dtype
=
residual_dtype
)
residual_ref
=
(
x0_scaled_ref
*
dmask_expanded
.
float
())
/
(
1
-
dropout_p
)
out_pt
=
model_pt
(
residual_pt
.
to
(
dtype
=
weight_dtype
)).
to
(
dtype
=
input_dtype
)[
out_mask_batch
]
out_ref
=
model_ref
(
residual_ref
)[
out_mask_batch
]
...
...
@@ -441,36 +551,50 @@ def test_dropout_layer_norm_subset_training(
out_pt
.
backward
(
g
)
out
.
backward
(
g
)
out_ref
.
backward
(
g
)
assert
(
x0
.
grad
-
x0_ref
.
grad
[
x0_mask_batch
]).
abs
().
max
()
<=
4
*
(
x0_pt
.
grad
-
x0_ref
.
grad
)[
x0_mask_batch
].
abs
().
max
()
+
1e-4
assert
(
x0
.
grad
-
x0_ref
.
grad
[
x0_mask_batch
]).
abs
().
max
()
<=
4
*
(
x0_pt
.
grad
-
x0_ref
.
grad
)[
x0_mask_batch
].
abs
().
max
()
+
1e-4
if
has_residual
:
assert
(
res
.
grad
-
res_ref
.
grad
).
abs
().
max
()
<=
4
*
(
res_pt
.
grad
-
res_ref
.
grad
).
abs
().
max
()
+
1e-4
assert
(
model
.
weight
.
grad
-
model_ref
.
weight
.
grad
).
abs
().
max
()
<=
2
*
(
model_pt
.
weight
.
grad
-
model_ref
.
weight
.
grad
).
abs
().
max
()
+
2e-4
assert
(
model
.
bias
.
grad
-
model_ref
.
bias
.
grad
).
abs
().
max
()
<=
2
*
(
model_pt
.
bias
.
grad
-
model_ref
.
bias
.
grad
).
abs
().
max
()
+
2e-4
assert
(
res
.
grad
-
res_ref
.
grad
).
abs
().
max
()
<=
4
*
(
res_pt
.
grad
-
res_ref
.
grad
).
abs
().
max
()
+
1e-4
assert
(
model
.
weight
.
grad
-
model_ref
.
weight
.
grad
).
abs
().
max
()
<=
2
*
(
model_pt
.
weight
.
grad
-
model_ref
.
weight
.
grad
).
abs
().
max
()
+
2e-4
assert
(
model
.
bias
.
grad
-
model_ref
.
bias
.
grad
).
abs
().
max
()
<=
2
*
(
model_pt
.
bias
.
grad
-
model_ref
.
bias
.
grad
).
abs
().
max
()
+
2e-4
if
has_colscale
:
assert
(
colscale
.
grad
-
colscale_ref
.
grad
).
abs
().
max
()
<=
2
*
(
colscale_pt
.
grad
-
colscale_ref
.
grad
).
abs
().
max
()
+
2e-4
assert
(
colscale
.
grad
-
colscale_ref
.
grad
).
abs
().
max
()
<=
2
*
(
colscale_pt
.
grad
-
colscale_ref
.
grad
).
abs
().
max
()
+
2e-4
@
pytest
.
mark
.
parametrize
(
'has_colscale'
,
[
True
,
False
])
@
pytest
.
mark
.
parametrize
(
'has_residual'
,
[
True
,
False
])
@
pytest
.
mark
.
parametrize
(
'dropout_p'
,
[
0.37
,
0.0
])
@
pytest
.
mark
.
parametrize
(
'weight_dtype'
,
[
torch
.
float32
,
torch
.
float16
])
@
pytest
.
mark
.
parametrize
(
'input_dtype,residual_dtype'
,
[(
torch
.
float16
,
torch
.
float16
),
(
torch
.
float16
,
torch
.
float32
),
(
torch
.
float32
,
torch
.
float32
)]
+
([(
torch
.
bfloat16
,
torch
.
bfloat16
),
(
torch
.
bfloat16
,
torch
.
float32
)]
if
is_sm8x
else
[]))
@
pytest
.
mark
.
parametrize
(
"has_colscale"
,
[
True
,
False
])
@
pytest
.
mark
.
parametrize
(
"has_residual"
,
[
True
,
False
])
@
pytest
.
mark
.
parametrize
(
"dropout_p"
,
[
0.37
,
0.0
])
@
pytest
.
mark
.
parametrize
(
"weight_dtype"
,
[
torch
.
float32
,
torch
.
float16
])
@
pytest
.
mark
.
parametrize
(
"input_dtype,residual_dtype"
,
[(
torch
.
float16
,
torch
.
float16
),
(
torch
.
float16
,
torch
.
float32
),
(
torch
.
float32
,
torch
.
float32
)]
+
([(
torch
.
bfloat16
,
torch
.
bfloat16
),
(
torch
.
bfloat16
,
torch
.
float32
)]
if
is_sm8x
else
[]),
)
# @pytest.mark.parametrize('has_colscale', [True])
# @pytest.mark.parametrize('has_residual', [True])
# @pytest.mark.parametrize('dropout_p', [0.0])
# @pytest.mark.parametrize('weight_dtype', [torch.float32])
# @pytest.mark.parametrize('input_dtype,residual_dtype', [(torch.float32, torch.float32)])
@
pytest
.
mark
.
parametrize
(
'hidden_size'
,
[
192
,
256
,
384
,
768
,
1024
,
1280
,
1536
,
1600
,
2048
,
2560
,
3000
,
3072
,
4096
,
5120
,
6144
])
@
pytest
.
mark
.
parametrize
(
"hidden_size"
,
[
192
,
256
,
384
,
768
,
1024
,
1280
,
1536
,
1600
,
2048
,
2560
,
3000
,
3072
,
4096
,
5120
,
6144
],
)
# @pytest.mark.parametrize('hidden_size', [256])
def
test_dropout_layer_norm_subset_prenorm_training
(
hidden_size
,
input_dtype
,
residual_dtype
,
weight_dtype
,
dropout_p
,
has_residual
,
has_colscale
):
hidden_size
,
input_dtype
,
residual_dtype
,
weight_dtype
,
dropout_p
,
has_residual
,
has_colscale
):
if
weight_dtype
==
torch
.
float16
and
input_dtype
==
torch
.
bfloat16
:
pytest
.
skip
()
# Not supported
device
=
'
cuda
'
device
=
"
cuda
"
# rtol, atol = (1e-5, 1e-6) if input_dtype == torch.float32 else (1e-3, 1e-4)
rtol
,
atol
=
(
1e-3
,
2e-4
)
# set seed
...
...
@@ -479,23 +603,28 @@ def test_dropout_layer_norm_subset_prenorm_training(
seqlen
=
512
drop_path_rate
=
0.4
drop_path_scale
=
1
/
(
1
-
drop_path_rate
)
def
generate_droppath_masks
(
batch_size
,
seqlen
,
drop_path_rate
,
device
):
# Do it on CPU so we can get the numrows (with .item()) without GPU-CPU sync
mask_batch
=
torch
.
rand
(
batch_size
)
<
1
-
drop_path_rate
numrows
=
(
mask_batch
).
sum
().
item
()
*
seqlen
mask_batch
=
mask_batch
.
to
(
device
=
device
,
non_blocking
=
True
)
mask_batch_seqlen
=
repeat
(
mask_batch
,
'b -> (b s)'
,
s
=
seqlen
)
subset
=
torch
.
cumsum
(
mask_batch_seqlen
,
dim
=
0
,
dtype
=
torch
.
int32
).
masked_fill_
(
~
mask_batch_seqlen
,
0
)
return
mask_batch
,
numrows
,
rearrange
(
subset
,
'(b s) -> b s'
,
b
=
batch_size
)
x0_mask_batch
,
x0_numrows
,
x0_subset
=
generate_droppath_masks
(
batch_size
,
seqlen
,
drop_path_rate
,
device
)
out_mask_batch
,
out_numrows
,
out_subset
=
generate_droppath_masks
(
batch_size
,
seqlen
,
drop_path_rate
,
device
)
x0_pt
=
torch
.
randn
(
batch_size
,
seqlen
,
hidden_size
,
device
=
device
,
dtype
=
input_dtype
,
requires_grad
=
True
)
mask_batch_seqlen
=
repeat
(
mask_batch
,
"b -> (b s)"
,
s
=
seqlen
)
subset
=
torch
.
cumsum
(
mask_batch_seqlen
,
dim
=
0
,
dtype
=
torch
.
int32
).
masked_fill_
(
~
mask_batch_seqlen
,
0
)
return
mask_batch
,
numrows
,
rearrange
(
subset
,
"(b s) -> b s"
,
b
=
batch_size
)
x0_mask_batch
,
x0_numrows
,
x0_subset
=
generate_droppath_masks
(
batch_size
,
seqlen
,
drop_path_rate
,
device
)
out_mask_batch
,
out_numrows
,
out_subset
=
generate_droppath_masks
(
batch_size
,
seqlen
,
drop_path_rate
,
device
)
x0_pt
=
torch
.
randn
(
batch_size
,
seqlen
,
hidden_size
,
device
=
device
,
dtype
=
input_dtype
,
requires_grad
=
True
)
x0
=
x0_pt
.
detach
().
clone
()[
x0_mask_batch
].
requires_grad_
()
x0_ref
=
x0_pt
.
detach
().
clone
().
float
().
requires_grad_
()
if
has_colscale
:
...
...
@@ -522,8 +651,9 @@ def test_dropout_layer_norm_subset_prenorm_training(
torch
.
nn
.
init
.
normal_
(
model_pt
.
weight
)
torch
.
nn
.
init
.
normal_
(
model_pt
.
bias
)
model_ref
=
torch
.
nn
.
LayerNorm
(
hidden_size
,
device
=
device
,
dtype
=
torch
.
float32
)
model
=
DropoutAddLayerNorm
(
hidden_size
,
prenorm
=
True
,
p
=
dropout_p
,
device
=
device
,
dtype
=
weight_dtype
)
model
=
DropoutAddLayerNorm
(
hidden_size
,
prenorm
=
True
,
p
=
dropout_p
,
device
=
device
,
dtype
=
weight_dtype
)
with
torch
.
no_grad
():
model
.
weight
.
copy_
(
model_pt
.
weight
)
model
.
bias
.
copy_
(
model_pt
.
bias
)
...
...
@@ -532,89 +662,139 @@ def test_dropout_layer_norm_subset_prenorm_training(
residual_in_fp32
=
(
not
has_residual
)
and
residual_dtype
==
torch
.
float32
out
,
residual
,
dmask
=
dropout_add_layer_norm_subset
(
x0
,
res
,
model
.
weight
,
model
.
bias
,
model
.
p
,
model
.
eps
,
layerscale
=
colscale
,
x0_subset
=
x0_subset
,
out_subset
=
out_subset
,
rowscale_const
=
drop_path_scale
,
out_numrows
=
out_numrows
,
prenorm
=
True
,
residual_in_fp32
=
residual_in_fp32
,
return_dropout_mask
=
True
)
print
(
f
'Actual dropout fraction:
{
1
-
dmask
.
float
().
mean
().
item
()
}
'
)
x0_scaled_pt
=
x0_scaled_pt
.
masked_fill
(
repeat
(
~
x0_mask_batch
,
'b -> b s d'
,
s
=
seqlen
,
d
=
hidden_size
),
0
)
*
drop_path_scale
x0_scaled_ref
=
x0_scaled_ref
.
masked_fill
(
repeat
(
~
x0_mask_batch
,
'b -> b s d'
,
s
=
seqlen
,
d
=
hidden_size
),
0
)
*
drop_path_scale
x0
,
res
,
model
.
weight
,
model
.
bias
,
model
.
p
,
model
.
eps
,
layerscale
=
colscale
,
x0_subset
=
x0_subset
,
out_subset
=
out_subset
,
rowscale_const
=
drop_path_scale
,
out_numrows
=
out_numrows
,
prenorm
=
True
,
residual_in_fp32
=
residual_in_fp32
,
return_dropout_mask
=
True
,
)
print
(
f
"Actual dropout fraction:
{
1
-
dmask
.
float
().
mean
().
item
()
}
"
)
x0_scaled_pt
=
(
x0_scaled_pt
.
masked_fill
(
repeat
(
~
x0_mask_batch
,
"b -> b s d"
,
s
=
seqlen
,
d
=
hidden_size
),
0
)
*
drop_path_scale
)
x0_scaled_ref
=
(
x0_scaled_ref
.
masked_fill
(
repeat
(
~
x0_mask_batch
,
"b -> b s d"
,
s
=
seqlen
,
d
=
hidden_size
),
0
)
*
drop_path_scale
)
dmask_expanded
=
torch
.
zeros_like
(
x0_pt
,
dtype
=
torch
.
uint8
)
dmask_expanded
[
x0_mask_batch
]
=
dmask
if
has_residual
:
residual_pt
=
((
x0_scaled_pt
.
float
()
*
dmask_expanded
.
float
())
/
(
1
-
dropout_p
)
+
res_pt
.
float
()).
to
(
dtype
=
residual_dtype
)
residual_pt
=
(
(
x0_scaled_pt
.
float
()
*
dmask_expanded
.
float
())
/
(
1
-
dropout_p
)
+
res_pt
.
float
()
).
to
(
dtype
=
residual_dtype
)
residual_ref
=
(
x0_scaled_ref
*
dmask_expanded
.
float
())
/
(
1
-
dropout_p
)
+
res_ref
else
:
residual_pt
=
((
x0_scaled_pt
.
float
()
*
dmask_expanded
.
float
())
/
(
1
-
dropout_p
)).
to
(
dtype
=
residual_dtype
)
residual_pt
=
((
x0_scaled_pt
.
float
()
*
dmask_expanded
.
float
())
/
(
1
-
dropout_p
)).
to
(
dtype
=
residual_dtype
)
residual_ref
=
(
x0_scaled_ref
*
dmask_expanded
.
float
())
/
(
1
-
dropout_p
)
out_pt
=
model_pt
(
residual_pt
.
to
(
dtype
=
weight_dtype
)).
to
(
dtype
=
input_dtype
)[
out_mask_batch
]
out_ref
=
model_ref
(
residual_ref
)[
out_mask_batch
]
assert
out
.
dtype
==
input_dtype
assert
residual
.
dtype
==
residual_dtype
assert
(
out
-
out_ref
).
abs
().
max
()
<=
4
*
(
out_pt
-
out_ref
).
abs
().
max
()
+
1e-4
assert
(
residual
-
residual_ref
).
abs
().
max
()
<=
4
*
(
residual_pt
-
residual_ref
).
abs
().
max
()
+
1e-4
assert
(
residual
-
residual_ref
).
abs
().
max
()
<=
4
*
(
residual_pt
-
residual_ref
).
abs
().
max
()
+
1e-4
g
=
torch
.
randn_like
(
out
)
/
batch_size
(
out_pt
*
F
.
sigmoid
(
residual_pt
[
out_mask_batch
])
+
residual_pt
.
mean
(
0
,
keepdim
=
True
)).
backward
(
g
)
(
out_pt
*
F
.
sigmoid
(
residual_pt
[
out_mask_batch
])
+
residual_pt
.
mean
(
0
,
keepdim
=
True
)).
backward
(
g
)
(
out
*
F
.
sigmoid
(
residual
[
out_mask_batch
])
+
residual
.
mean
(
0
,
keepdim
=
True
)).
backward
(
g
)
(
out_ref
*
F
.
sigmoid
(
residual_ref
[
out_mask_batch
].
to
(
dtype
=
residual_dtype
))
+
residual_ref
.
mean
(
0
,
keepdim
=
True
)).
backward
(
g
)
assert
(
x0
.
grad
-
x0_ref
.
grad
[
x0_mask_batch
]).
abs
().
max
()
<=
4
*
(
x0_pt
.
grad
-
x0_ref
.
grad
)[
x0_mask_batch
].
abs
().
max
()
+
1e-4
(
out_ref
*
F
.
sigmoid
(
residual_ref
[
out_mask_batch
].
to
(
dtype
=
residual_dtype
))
+
residual_ref
.
mean
(
0
,
keepdim
=
True
)
).
backward
(
g
)
assert
(
x0
.
grad
-
x0_ref
.
grad
[
x0_mask_batch
]).
abs
().
max
()
<=
4
*
(
x0_pt
.
grad
-
x0_ref
.
grad
)[
x0_mask_batch
].
abs
().
max
()
+
1e-4
if
has_residual
:
assert
(
res
.
grad
-
res_ref
.
grad
).
abs
().
max
()
<=
4
*
(
res_pt
.
grad
-
res_ref
.
grad
).
abs
().
max
()
+
1e-4
assert
(
model
.
weight
.
grad
-
model_ref
.
weight
.
grad
).
abs
().
max
()
<=
2
*
(
model_pt
.
weight
.
grad
-
model_ref
.
weight
.
grad
).
abs
().
max
()
+
2e-4
assert
(
model
.
bias
.
grad
-
model_ref
.
bias
.
grad
).
abs
().
max
()
<=
2
*
(
model_pt
.
bias
.
grad
-
model_ref
.
bias
.
grad
).
abs
().
max
()
+
2e-4
assert
(
res
.
grad
-
res_ref
.
grad
).
abs
().
max
()
<=
4
*
(
res_pt
.
grad
-
res_ref
.
grad
).
abs
().
max
()
+
1e-4
assert
(
model
.
weight
.
grad
-
model_ref
.
weight
.
grad
).
abs
().
max
()
<=
2
*
(
model_pt
.
weight
.
grad
-
model_ref
.
weight
.
grad
).
abs
().
max
()
+
2e-4
assert
(
model
.
bias
.
grad
-
model_ref
.
bias
.
grad
).
abs
().
max
()
<=
2
*
(
model_pt
.
bias
.
grad
-
model_ref
.
bias
.
grad
).
abs
().
max
()
+
2e-4
if
has_colscale
:
assert
(
colscale
.
grad
-
colscale_ref
.
grad
).
abs
().
max
()
<=
2
*
(
colscale_pt
.
grad
-
colscale_ref
.
grad
).
abs
().
max
()
+
2e-4
assert
(
colscale
.
grad
-
colscale_ref
.
grad
).
abs
().
max
()
<=
2
*
(
colscale_pt
.
grad
-
colscale_ref
.
grad
).
abs
().
max
()
+
2e-4
@
pytest
.
mark
.
parametrize
(
'
is_rms_norm
'
,
[
False
,
True
])
@
pytest
.
mark
.
parametrize
(
"
is_rms_norm
"
,
[
False
,
True
])
# @pytest.mark.parametrize('is_rms_norm', [False])
@
pytest
.
mark
.
parametrize
(
'
tied_norm
'
,
[
False
,
True
])
@
pytest
.
mark
.
parametrize
(
"
tied_norm
"
,
[
False
,
True
])
# @pytest.mark.parametrize('tied_norm', [False])
@
pytest
.
mark
.
parametrize
(
'
has_residual
'
,
[
True
,
False
])
@
pytest
.
mark
.
parametrize
(
"
has_residual
"
,
[
True
,
False
])
# @pytest.mark.parametrize('has_residual', [False])
@
pytest
.
mark
.
parametrize
(
'
has_x1
'
,
[
True
,
False
])
@
pytest
.
mark
.
parametrize
(
"
has_x1
"
,
[
True
,
False
])
# @pytest.mark.parametrize('has_x1', [True])
@
pytest
.
mark
.
parametrize
(
'
dropout_p
'
,
[
0.37
,
0.0
])
@
pytest
.
mark
.
parametrize
(
"
dropout_p
"
,
[
0.37
,
0.0
])
# @pytest.mark.parametrize('dropout_p', [0.0])
@
pytest
.
mark
.
parametrize
(
'
weight_dtype
'
,
[
torch
.
float32
,
torch
.
float16
])
@
pytest
.
mark
.
parametrize
(
"
weight_dtype
"
,
[
torch
.
float32
,
torch
.
float16
])
# @pytest.mark.parametrize('weight_dtype', [torch.float16])
@
pytest
.
mark
.
parametrize
(
'input_dtype,residual_dtype'
,
[(
torch
.
float16
,
torch
.
float16
),
(
torch
.
float16
,
torch
.
float32
),
(
torch
.
float32
,
torch
.
float32
)]
+
([(
torch
.
bfloat16
,
torch
.
bfloat16
),
(
torch
.
bfloat16
,
torch
.
float32
)]
if
is_sm8x
else
[]))
@
pytest
.
mark
.
parametrize
(
"input_dtype,residual_dtype"
,
[(
torch
.
float16
,
torch
.
float16
),
(
torch
.
float16
,
torch
.
float32
),
(
torch
.
float32
,
torch
.
float32
)]
+
([(
torch
.
bfloat16
,
torch
.
bfloat16
),
(
torch
.
bfloat16
,
torch
.
float32
)]
if
is_sm8x
else
[]),
)
# @pytest.mark.parametrize('input_dtype,residual_dtype', [(torch.float16, torch.float32)])
@
pytest
.
mark
.
parametrize
(
'hidden_size'
,
[
192
,
256
,
384
,
768
,
1024
,
1280
,
1536
,
1600
,
2048
,
2560
,
3000
,
3072
,
4096
,
5120
,
6144
])
@
pytest
.
mark
.
parametrize
(
"hidden_size"
,
[
192
,
256
,
384
,
768
,
1024
,
1280
,
1536
,
1600
,
2048
,
2560
,
3000
,
3072
,
4096
,
5120
,
6144
],
)
# @pytest.mark.parametrize('hidden_size', [256])
def
test_dropout_layer_norm_parallel_residual_training
(
hidden_size
,
input_dtype
,
residual_dtype
,
weight_dtype
,
dropout_p
,
has_x1
,
has_residual
,
tied_norm
,
is_rms_norm
hidden_size
,
input_dtype
,
residual_dtype
,
weight_dtype
,
dropout_p
,
has_x1
,
has_residual
,
tied_norm
,
is_rms_norm
,
):
if
weight_dtype
==
torch
.
float16
and
input_dtype
==
torch
.
bfloat16
:
pytest
.
skip
()
# Not supported
if
is_rms_norm
and
fused_rms_norm_affine
is
None
:
pytest
.
skip
()
# We need Apex's FusedRMSNorm to test
our_layer_norm_func
=
(
dropout_add_layer_norm_parallel_residual
if
not
is_rms_norm
else
dropout_add_rms_norm_parallel_residual
)
device
=
'cuda'
our_layer_norm_func
=
(
dropout_add_layer_norm_parallel_residual
if
not
is_rms_norm
else
dropout_add_rms_norm_parallel_residual
)
device
=
"cuda"
# rtol, atol = (1e-5, 1e-6) if input_dtype == torch.float32 else (1e-3, 1e-4)
rtol
,
atol
=
(
1e-3
,
1e-4
)
# set seed
torch
.
random
.
manual_seed
(
0
)
batch_size
=
8
seqlen
=
512
x0_pt
=
torch
.
randn
(
batch_size
,
seqlen
,
hidden_size
,
device
=
device
,
dtype
=
input_dtype
,
requires_grad
=
True
)
x0_pt
=
torch
.
randn
(
batch_size
,
seqlen
,
hidden_size
,
device
=
device
,
dtype
=
input_dtype
,
requires_grad
=
True
)
x0
=
x0_pt
.
detach
().
clone
().
requires_grad_
()
x0_ref
=
x0_pt
.
detach
().
clone
().
float
().
requires_grad_
()
if
has_x1
:
x1_pt
=
torch
.
randn
(
batch_size
,
seqlen
,
hidden_size
,
device
=
device
,
dtype
=
input_dtype
,
requires_grad
=
True
)
x1_pt
=
torch
.
randn
(
batch_size
,
seqlen
,
hidden_size
,
device
=
device
,
dtype
=
input_dtype
,
requires_grad
=
True
)
x1
=
x1_pt
.
detach
().
clone
().
requires_grad_
()
x1_ref
=
x1_pt
.
detach
().
clone
().
float
().
requires_grad_
()
else
:
...
...
@@ -626,16 +806,22 @@ def test_dropout_layer_norm_parallel_residual_training(
else
:
res
=
None
weight0
=
torch
.
randn
(
hidden_size
,
device
=
device
,
dtype
=
weight_dtype
,
requires_grad
=
True
)
bias0
=
(
torch
.
randn
(
hidden_size
,
device
=
device
,
dtype
=
weight_dtype
,
requires_grad
=
True
)
if
not
is_rms_norm
else
None
)
bias0
=
(
torch
.
randn
(
hidden_size
,
device
=
device
,
dtype
=
weight_dtype
,
requires_grad
=
True
)
if
not
is_rms_norm
else
None
)
weight0_pt
=
weight0
.
detach
().
clone
().
requires_grad_
()
weight0_ref
=
weight0
.
detach
().
clone
().
float
().
requires_grad_
()
bias0_pt
=
bias0
.
detach
().
clone
().
requires_grad_
()
if
bias0
is
not
None
else
None
bias0_ref
=
bias0
.
detach
().
clone
().
float
().
requires_grad_
()
if
bias0
is
not
None
else
None
if
not
tied_norm
:
weight1
=
torch
.
randn
(
hidden_size
,
device
=
device
,
dtype
=
weight_dtype
,
requires_grad
=
True
)
bias1
=
(
torch
.
randn
(
hidden_size
,
device
=
device
,
dtype
=
weight_dtype
,
requires_grad
=
True
)
if
not
is_rms_norm
else
None
)
bias1
=
(
torch
.
randn
(
hidden_size
,
device
=
device
,
dtype
=
weight_dtype
,
requires_grad
=
True
)
if
not
is_rms_norm
else
None
)
weight1_pt
=
weight1
.
detach
().
clone
().
requires_grad_
()
weight1_ref
=
weight1
.
detach
().
clone
().
float
().
requires_grad_
()
bias1_pt
=
bias1
.
detach
().
clone
().
requires_grad_
()
if
bias1
is
not
None
else
None
...
...
@@ -646,48 +832,77 @@ def test_dropout_layer_norm_parallel_residual_training(
residual_in_fp32
=
(
not
has_residual
)
and
residual_dtype
==
torch
.
float32
out0
,
out1
,
dmask0
,
dmask1
=
our_layer_norm_func
(
x0
,
x1
,
res
,
weight0
,
bias0
,
weight1
,
bias1
,
dropout_p
,
epsilon
,
residual_in_fp32
=
residual_in_fp32
,
return_dropout_mask
=
True
x0
,
x1
,
res
,
weight0
,
bias0
,
weight1
,
bias1
,
dropout_p
,
epsilon
,
residual_in_fp32
=
residual_in_fp32
,
return_dropout_mask
=
True
,
)
assert
out0
.
dtype
==
input_dtype
if
not
tied_norm
:
assert
out1
.
dtype
==
input_dtype
print
(
f
'
Actual dropout fraction:
{
1
-
dmask0
.
float
().
mean
().
item
()
}
'
)
print
(
f
"
Actual dropout fraction:
{
1
-
dmask0
.
float
().
mean
().
item
()
}
"
)
if
has_residual
:
if
has_x1
:
residual_pt
=
((
x0_pt
.
float
()
*
dmask0
.
float
())
/
(
1
-
dropout_p
)
+
(
x1_pt
.
float
()
*
dmask1
.
float
())
/
(
1
-
dropout_p
)
+
res_pt
.
float
()).
to
(
dtype
=
residual_dtype
)
residual_ref
=
((
x0_ref
*
dmask0
.
float
())
/
(
1
-
dropout_p
)
+
(
x1_ref
*
dmask1
.
float
())
/
(
1
-
dropout_p
))
+
res_ref
residual_pt
=
(
(
x0_pt
.
float
()
*
dmask0
.
float
())
/
(
1
-
dropout_p
)
+
(
x1_pt
.
float
()
*
dmask1
.
float
())
/
(
1
-
dropout_p
)
+
res_pt
.
float
()
).
to
(
dtype
=
residual_dtype
)
residual_ref
=
(
(
x0_ref
*
dmask0
.
float
())
/
(
1
-
dropout_p
)
+
(
x1_ref
*
dmask1
.
float
())
/
(
1
-
dropout_p
)
)
+
res_ref
else
:
residual_pt
=
((
x0_pt
.
float
()
*
dmask0
.
float
())
/
(
1
-
dropout_p
)
+
res_pt
.
float
()).
to
(
dtype
=
residual_dtype
)
residual_pt
=
((
x0_pt
.
float
()
*
dmask0
.
float
())
/
(
1
-
dropout_p
)
+
res_pt
.
float
()).
to
(
dtype
=
residual_dtype
)
residual_ref
=
(
x0_ref
*
dmask0
.
float
())
/
(
1
-
dropout_p
)
+
res_ref
else
:
if
has_x1
:
residual_pt
=
((
x0_pt
.
float
()
*
dmask0
.
float
())
/
(
1
-
dropout_p
)
+
(
x1_pt
.
float
()
*
dmask1
.
float
())
/
(
1
-
dropout_p
)).
to
(
dtype
=
residual_dtype
)
residual_ref
=
((
x0_ref
*
dmask0
.
float
())
/
(
1
-
dropout_p
)
+
(
x1_ref
*
dmask1
.
float
())
/
(
1
-
dropout_p
))
residual_pt
=
(
(
x0_pt
.
float
()
*
dmask0
.
float
())
/
(
1
-
dropout_p
)
+
(
x1_pt
.
float
()
*
dmask1
.
float
())
/
(
1
-
dropout_p
)
).
to
(
dtype
=
residual_dtype
)
residual_ref
=
(
x0_ref
*
dmask0
.
float
())
/
(
1
-
dropout_p
)
+
(
x1_ref
*
dmask1
.
float
()
)
/
(
1
-
dropout_p
)
else
:
residual_pt
=
((
x0_pt
.
float
()
*
dmask0
.
float
())
/
(
1
-
dropout_p
)).
to
(
dtype
=
residual_dtype
)
residual_pt
=
((
x0_pt
.
float
()
*
dmask0
.
float
())
/
(
1
-
dropout_p
)).
to
(
dtype
=
residual_dtype
)
residual_ref
=
(
x0_ref
*
dmask0
.
float
())
/
(
1
-
dropout_p
)
if
not
is_rms_norm
:
out0_pt
=
F
.
layer_norm
(
residual_pt
.
to
(
dtype
=
weight_dtype
),
(
hidden_size
,),
weight0_pt
,
bias0_pt
,
eps
=
epsilon
).
to
(
dtype
=
input_dtype
)
out0_pt
=
F
.
layer_norm
(
residual_pt
.
to
(
dtype
=
weight_dtype
),
(
hidden_size
,),
weight0_pt
,
bias0_pt
,
eps
=
epsilon
).
to
(
dtype
=
input_dtype
)
out0_ref
=
F
.
layer_norm
(
residual_ref
,
(
hidden_size
,),
weight0_ref
,
bias0_ref
,
eps
=
epsilon
)
if
not
tied_norm
:
out1_pt
=
F
.
layer_norm
(
residual_pt
.
to
(
dtype
=
weight_dtype
),
(
hidden_size
,),
weight1_pt
,
bias1_pt
,
eps
=
epsilon
).
to
(
dtype
=
input_dtype
)
out1_ref
=
F
.
layer_norm
(
residual_ref
,
(
hidden_size
,),
weight1_ref
,
bias1_ref
,
eps
=
epsilon
)
out1_pt
=
F
.
layer_norm
(
residual_pt
.
to
(
dtype
=
weight_dtype
),
(
hidden_size
,),
weight1_pt
,
bias1_pt
,
eps
=
epsilon
,
).
to
(
dtype
=
input_dtype
)
out1_ref
=
F
.
layer_norm
(
residual_ref
,
(
hidden_size
,),
weight1_ref
,
bias1_ref
,
eps
=
epsilon
)
else
:
out0_pt
=
fused_rms_norm_affine
(
residual_pt
.
to
(
dtype
=
weight_dtype
),
weight0_pt
,
(
hidden_size
,),
eps
=
epsilon
).
to
(
dtype
=
input_dtype
)
out0_pt
=
fused_rms_norm_affine
(
residual_pt
.
to
(
dtype
=
weight_dtype
),
weight0_pt
,
(
hidden_size
,),
eps
=
epsilon
).
to
(
dtype
=
input_dtype
)
out0_ref
=
fused_rms_norm_affine
(
residual_ref
,
weight0_ref
,
(
hidden_size
,),
eps
=
epsilon
)
if
not
tied_norm
:
out1_pt
=
fused_rms_norm_affine
(
residual_pt
.
to
(
dtype
=
weight_dtype
),
weight1_pt
,
(
hidden_size
,),
eps
=
epsilon
).
to
(
dtype
=
input_dtype
)
out1_pt
=
fused_rms_norm_affine
(
residual_pt
.
to
(
dtype
=
weight_dtype
),
weight1_pt
,
(
hidden_size
,),
eps
=
epsilon
).
to
(
dtype
=
input_dtype
)
out1_ref
=
fused_rms_norm_affine
(
residual_ref
,
weight1_ref
,
(
hidden_size
,),
eps
=
epsilon
)
assert
(
out0
-
out0_ref
).
abs
().
max
()
<=
4
*
(
out0_pt
-
out0_ref
).
abs
().
max
()
+
1e-4
...
...
@@ -706,61 +921,89 @@ def test_dropout_layer_norm_parallel_residual_training(
(
out0_ref
*
g0
+
out1_ref
*
g1
).
sum
().
backward
()
assert
(
x0
.
grad
-
x0_ref
.
grad
).
abs
().
max
()
<=
4
*
(
x0_pt
.
grad
-
x0_ref
.
grad
).
abs
().
max
()
+
1e-4
if
has_x1
:
assert
(
x1
.
grad
-
x1_ref
.
grad
).
abs
().
max
()
<=
4
*
(
x1_pt
.
grad
-
x1_ref
.
grad
).
abs
().
max
()
+
1e-4
assert
(
x1
.
grad
-
x1_ref
.
grad
).
abs
().
max
()
<=
4
*
(
x1_pt
.
grad
-
x1_ref
.
grad
).
abs
().
max
()
+
1e-4
if
has_residual
:
assert
(
res
.
grad
-
res_ref
.
grad
).
abs
().
max
()
<=
4
*
(
res_pt
.
grad
-
res_ref
.
grad
).
abs
().
max
()
+
1e-4
assert
(
weight0
.
grad
-
weight0_ref
.
grad
).
abs
().
max
()
<=
3
*
(
weight0_pt
.
grad
-
weight0_ref
.
grad
).
abs
().
max
()
+
3e-5
assert
(
res
.
grad
-
res_ref
.
grad
).
abs
().
max
()
<=
4
*
(
res_pt
.
grad
-
res_ref
.
grad
).
abs
().
max
()
+
1e-4
assert
(
weight0
.
grad
-
weight0_ref
.
grad
).
abs
().
max
()
<=
3
*
(
weight0_pt
.
grad
-
weight0_ref
.
grad
).
abs
().
max
()
+
3e-5
if
not
is_rms_norm
:
assert
(
bias0
.
grad
-
bias0_ref
.
grad
).
abs
().
max
()
<=
2
*
(
bias0_pt
.
grad
-
bias0_ref
.
grad
).
abs
().
max
()
+
3e-5
assert
(
bias0
.
grad
-
bias0_ref
.
grad
).
abs
().
max
()
<=
2
*
(
bias0_pt
.
grad
-
bias0_ref
.
grad
).
abs
().
max
()
+
3e-5
if
not
tied_norm
:
assert
(
weight1
.
grad
-
weight1_ref
.
grad
).
abs
().
max
()
<=
3
*
(
weight1_pt
.
grad
-
weight1_ref
.
grad
).
abs
().
max
()
+
3e-5
assert
(
weight1
.
grad
-
weight1_ref
.
grad
).
abs
().
max
()
<=
3
*
(
weight1_pt
.
grad
-
weight1_ref
.
grad
).
abs
().
max
()
+
3e-5
if
not
is_rms_norm
:
assert
(
bias1
.
grad
-
bias1_ref
.
grad
).
abs
().
max
()
<=
2
*
(
bias1_pt
.
grad
-
bias1_ref
.
grad
).
abs
().
max
()
+
3e-5
assert
(
bias1
.
grad
-
bias1_ref
.
grad
).
abs
().
max
()
<=
2
*
(
bias1_pt
.
grad
-
bias1_ref
.
grad
).
abs
().
max
()
+
3e-5
@
pytest
.
mark
.
parametrize
(
'
is_rms_norm
'
,
[
False
,
True
])
@
pytest
.
mark
.
parametrize
(
"
is_rms_norm
"
,
[
False
,
True
])
# @pytest.mark.parametrize('is_rms_norm', [False])
@
pytest
.
mark
.
parametrize
(
'
tied_norm
'
,
[
False
,
True
])
@
pytest
.
mark
.
parametrize
(
"
tied_norm
"
,
[
False
,
True
])
# @pytest.mark.parametrize('tied_norm', [False])
@
pytest
.
mark
.
parametrize
(
'
has_residual
'
,
[
True
,
False
])
@
pytest
.
mark
.
parametrize
(
"
has_residual
"
,
[
True
,
False
])
# @pytest.mark.parametrize('has_residual', [False])
@
pytest
.
mark
.
parametrize
(
'
has_x1
'
,
[
True
,
False
])
@
pytest
.
mark
.
parametrize
(
"
has_x1
"
,
[
True
,
False
])
# @pytest.mark.parametrize('has_x1', [True])
@
pytest
.
mark
.
parametrize
(
'
dropout_p
'
,
[
0.37
,
0.0
])
@
pytest
.
mark
.
parametrize
(
"
dropout_p
"
,
[
0.37
,
0.0
])
# @pytest.mark.parametrize('dropout_p', [0.0])
@
pytest
.
mark
.
parametrize
(
'
weight_dtype
'
,
[
torch
.
float32
,
torch
.
float16
])
@
pytest
.
mark
.
parametrize
(
"
weight_dtype
"
,
[
torch
.
float32
,
torch
.
float16
])
# @pytest.mark.parametrize('weight_dtype', [torch.float16])
@
pytest
.
mark
.
parametrize
(
'input_dtype,residual_dtype'
,
[(
torch
.
float16
,
torch
.
float16
),
(
torch
.
float16
,
torch
.
float32
),
(
torch
.
float32
,
torch
.
float32
)]
+
([(
torch
.
bfloat16
,
torch
.
bfloat16
),
(
torch
.
bfloat16
,
torch
.
float32
)]
if
is_sm8x
else
[]))
@
pytest
.
mark
.
parametrize
(
"input_dtype,residual_dtype"
,
[(
torch
.
float16
,
torch
.
float16
),
(
torch
.
float16
,
torch
.
float32
),
(
torch
.
float32
,
torch
.
float32
)]
+
([(
torch
.
bfloat16
,
torch
.
bfloat16
),
(
torch
.
bfloat16
,
torch
.
float32
)]
if
is_sm8x
else
[]),
)
# @pytest.mark.parametrize('input_dtype,residual_dtype', [(torch.float16, torch.float32)])
@
pytest
.
mark
.
parametrize
(
'hidden_size'
,
[
192
,
256
,
384
,
768
,
1024
,
1280
,
1536
,
1600
,
2048
,
2560
,
3000
,
3072
,
4096
,
5120
,
6144
])
@
pytest
.
mark
.
parametrize
(
"hidden_size"
,
[
192
,
256
,
384
,
768
,
1024
,
1280
,
1536
,
1600
,
2048
,
2560
,
3000
,
3072
,
4096
,
5120
,
6144
],
)
# @pytest.mark.parametrize('hidden_size', [256])
def
test_dropout_layer_norm_parallel_residual_prenorm_training
(
hidden_size
,
input_dtype
,
residual_dtype
,
weight_dtype
,
dropout_p
,
has_x1
,
has_residual
,
tied_norm
,
is_rms_norm
hidden_size
,
input_dtype
,
residual_dtype
,
weight_dtype
,
dropout_p
,
has_x1
,
has_residual
,
tied_norm
,
is_rms_norm
,
):
if
weight_dtype
==
torch
.
float16
and
input_dtype
==
torch
.
bfloat16
:
pytest
.
skip
()
# Not supported
if
is_rms_norm
and
fused_rms_norm_affine
is
None
:
pytest
.
skip
()
# We need Apex's FusedRMSNorm to test
our_layer_norm_func
=
(
dropout_add_layer_norm_parallel_residual
if
not
is_rms_norm
else
dropout_add_rms_norm_parallel_residual
)
device
=
'cuda'
our_layer_norm_func
=
(
dropout_add_layer_norm_parallel_residual
if
not
is_rms_norm
else
dropout_add_rms_norm_parallel_residual
)
device
=
"cuda"
# rtol, atol = (1e-5, 1e-6) if input_dtype == torch.float32 else (1e-3, 1e-4)
rtol
,
atol
=
(
1e-3
,
1e-4
)
# set seed
torch
.
random
.
manual_seed
(
0
)
batch_size
=
8
seqlen
=
512
x0_pt
=
torch
.
randn
(
batch_size
,
seqlen
,
hidden_size
,
device
=
device
,
dtype
=
input_dtype
,
requires_grad
=
True
)
x0_pt
=
torch
.
randn
(
batch_size
,
seqlen
,
hidden_size
,
device
=
device
,
dtype
=
input_dtype
,
requires_grad
=
True
)
x0
=
x0_pt
.
detach
().
clone
().
requires_grad_
()
x0_ref
=
x0_pt
.
detach
().
clone
().
float
().
requires_grad_
()
if
has_x1
:
x1_pt
=
torch
.
randn
(
batch_size
,
seqlen
,
hidden_size
,
device
=
device
,
dtype
=
input_dtype
,
requires_grad
=
True
)
x1_pt
=
torch
.
randn
(
batch_size
,
seqlen
,
hidden_size
,
device
=
device
,
dtype
=
input_dtype
,
requires_grad
=
True
)
x1
=
x1_pt
.
detach
().
clone
().
requires_grad_
()
x1_ref
=
x1_pt
.
detach
().
clone
().
float
().
requires_grad_
()
else
:
...
...
@@ -772,16 +1015,22 @@ def test_dropout_layer_norm_parallel_residual_prenorm_training(
else
:
res
=
None
weight0
=
torch
.
randn
(
hidden_size
,
device
=
device
,
dtype
=
weight_dtype
,
requires_grad
=
True
)
bias0
=
(
torch
.
randn
(
hidden_size
,
device
=
device
,
dtype
=
weight_dtype
,
requires_grad
=
True
)
if
not
is_rms_norm
else
None
)
bias0
=
(
torch
.
randn
(
hidden_size
,
device
=
device
,
dtype
=
weight_dtype
,
requires_grad
=
True
)
if
not
is_rms_norm
else
None
)
weight0_pt
=
weight0
.
detach
().
clone
().
requires_grad_
()
weight0_ref
=
weight0
.
detach
().
clone
().
float
().
requires_grad_
()
bias0_pt
=
bias0
.
detach
().
clone
().
requires_grad_
()
if
bias0
is
not
None
else
None
bias0_ref
=
bias0
.
detach
().
clone
().
float
().
requires_grad_
()
if
bias0
is
not
None
else
None
if
not
tied_norm
:
weight1
=
torch
.
randn
(
hidden_size
,
device
=
device
,
dtype
=
weight_dtype
,
requires_grad
=
True
)
bias1
=
(
torch
.
randn
(
hidden_size
,
device
=
device
,
dtype
=
weight_dtype
,
requires_grad
=
True
)
if
not
is_rms_norm
else
None
)
bias1
=
(
torch
.
randn
(
hidden_size
,
device
=
device
,
dtype
=
weight_dtype
,
requires_grad
=
True
)
if
not
is_rms_norm
else
None
)
weight1_pt
=
weight1
.
detach
().
clone
().
requires_grad_
()
weight1_ref
=
weight1
.
detach
().
clone
().
float
().
requires_grad_
()
bias1_pt
=
bias1
.
detach
().
clone
().
requires_grad_
()
if
bias1
is
not
None
else
None
...
...
@@ -792,54 +1041,86 @@ def test_dropout_layer_norm_parallel_residual_prenorm_training(
residual_in_fp32
=
(
not
has_residual
)
and
residual_dtype
==
torch
.
float32
out0
,
out1
,
residual
,
dmask0
,
dmask1
=
our_layer_norm_func
(
x0
,
x1
,
res
,
weight0
,
bias0
,
weight1
,
bias1
,
dropout_p
,
epsilon
,
prenorm
=
True
,
residual_in_fp32
=
residual_in_fp32
,
return_dropout_mask
=
True
x0
,
x1
,
res
,
weight0
,
bias0
,
weight1
,
bias1
,
dropout_p
,
epsilon
,
prenorm
=
True
,
residual_in_fp32
=
residual_in_fp32
,
return_dropout_mask
=
True
,
)
assert
out0
.
dtype
==
input_dtype
if
not
tied_norm
:
assert
out1
.
dtype
==
input_dtype
print
(
f
'
Actual dropout fraction:
{
1
-
dmask0
.
float
().
mean
().
item
()
}
'
)
print
(
f
"
Actual dropout fraction:
{
1
-
dmask0
.
float
().
mean
().
item
()
}
"
)
if
has_residual
:
if
has_x1
:
residual_pt
=
((
x0_pt
.
float
()
*
dmask0
.
float
())
/
(
1
-
dropout_p
)
+
(
x1_pt
.
float
()
*
dmask1
.
float
())
/
(
1
-
dropout_p
)
+
res_pt
.
float
()).
to
(
dtype
=
residual_dtype
)
residual_ref
=
((
x0_ref
*
dmask0
.
float
())
/
(
1
-
dropout_p
)
+
(
x1_ref
*
dmask1
.
float
())
/
(
1
-
dropout_p
))
+
res_ref
residual_pt
=
(
(
x0_pt
.
float
()
*
dmask0
.
float
())
/
(
1
-
dropout_p
)
+
(
x1_pt
.
float
()
*
dmask1
.
float
())
/
(
1
-
dropout_p
)
+
res_pt
.
float
()
).
to
(
dtype
=
residual_dtype
)
residual_ref
=
(
(
x0_ref
*
dmask0
.
float
())
/
(
1
-
dropout_p
)
+
(
x1_ref
*
dmask1
.
float
())
/
(
1
-
dropout_p
)
)
+
res_ref
else
:
residual_pt
=
((
x0_pt
.
float
()
*
dmask0
.
float
())
/
(
1
-
dropout_p
)
+
res_pt
.
float
()).
to
(
dtype
=
residual_dtype
)
residual_pt
=
((
x0_pt
.
float
()
*
dmask0
.
float
())
/
(
1
-
dropout_p
)
+
res_pt
.
float
()).
to
(
dtype
=
residual_dtype
)
residual_ref
=
(
x0_ref
*
dmask0
.
float
())
/
(
1
-
dropout_p
)
+
res_ref
else
:
if
has_x1
:
residual_pt
=
((
x0_pt
.
float
()
*
dmask0
.
float
())
/
(
1
-
dropout_p
)
+
(
x1_pt
.
float
()
*
dmask1
.
float
())
/
(
1
-
dropout_p
)).
to
(
dtype
=
residual_dtype
)
residual_ref
=
((
x0_ref
*
dmask0
.
float
())
/
(
1
-
dropout_p
)
+
(
x1_ref
*
dmask1
.
float
())
/
(
1
-
dropout_p
))
residual_pt
=
(
(
x0_pt
.
float
()
*
dmask0
.
float
())
/
(
1
-
dropout_p
)
+
(
x1_pt
.
float
()
*
dmask1
.
float
())
/
(
1
-
dropout_p
)
).
to
(
dtype
=
residual_dtype
)
residual_ref
=
(
x0_ref
*
dmask0
.
float
())
/
(
1
-
dropout_p
)
+
(
x1_ref
*
dmask1
.
float
()
)
/
(
1
-
dropout_p
)
else
:
residual_pt
=
((
x0_pt
.
float
()
*
dmask0
.
float
())
/
(
1
-
dropout_p
)).
to
(
dtype
=
residual_dtype
)
residual_pt
=
((
x0_pt
.
float
()
*
dmask0
.
float
())
/
(
1
-
dropout_p
)).
to
(
dtype
=
residual_dtype
)
residual_ref
=
(
x0_ref
*
dmask0
.
float
())
/
(
1
-
dropout_p
)
if
not
is_rms_norm
:
out0_pt
=
F
.
layer_norm
(
residual_pt
.
to
(
dtype
=
weight_dtype
),
(
hidden_size
,),
weight0_pt
,
bias0_pt
,
eps
=
epsilon
).
to
(
dtype
=
input_dtype
)
out0_pt
=
F
.
layer_norm
(
residual_pt
.
to
(
dtype
=
weight_dtype
),
(
hidden_size
,),
weight0_pt
,
bias0_pt
,
eps
=
epsilon
).
to
(
dtype
=
input_dtype
)
out0_ref
=
F
.
layer_norm
(
residual_ref
,
(
hidden_size
,),
weight0_ref
,
bias0_ref
,
eps
=
epsilon
)
if
not
tied_norm
:
out1_pt
=
F
.
layer_norm
(
residual_pt
.
to
(
dtype
=
weight_dtype
),
(
hidden_size
,),
weight1_pt
,
bias1_pt
,
eps
=
epsilon
).
to
(
dtype
=
input_dtype
)
out1_ref
=
F
.
layer_norm
(
residual_ref
,
(
hidden_size
,),
weight1_ref
,
bias1_ref
,
eps
=
epsilon
)
out1_pt
=
F
.
layer_norm
(
residual_pt
.
to
(
dtype
=
weight_dtype
),
(
hidden_size
,),
weight1_pt
,
bias1_pt
,
eps
=
epsilon
,
).
to
(
dtype
=
input_dtype
)
out1_ref
=
F
.
layer_norm
(
residual_ref
,
(
hidden_size
,),
weight1_ref
,
bias1_ref
,
eps
=
epsilon
)
else
:
out0_pt
=
fused_rms_norm_affine
(
residual_pt
.
to
(
dtype
=
weight_dtype
),
weight0_pt
,
(
hidden_size
,),
eps
=
epsilon
).
to
(
dtype
=
input_dtype
)
out0_pt
=
fused_rms_norm_affine
(
residual_pt
.
to
(
dtype
=
weight_dtype
),
weight0_pt
,
(
hidden_size
,),
eps
=
epsilon
).
to
(
dtype
=
input_dtype
)
out0_ref
=
fused_rms_norm_affine
(
residual_ref
,
weight0_ref
,
(
hidden_size
,),
eps
=
epsilon
)
if
not
tied_norm
:
out1_pt
=
fused_rms_norm_affine
(
residual_pt
.
to
(
dtype
=
weight_dtype
),
weight1_pt
,
(
hidden_size
,),
eps
=
epsilon
).
to
(
dtype
=
input_dtype
)
out1_pt
=
fused_rms_norm_affine
(
residual_pt
.
to
(
dtype
=
weight_dtype
),
weight1_pt
,
(
hidden_size
,),
eps
=
epsilon
).
to
(
dtype
=
input_dtype
)
out1_ref
=
fused_rms_norm_affine
(
residual_ref
,
weight1_ref
,
(
hidden_size
,),
eps
=
epsilon
)
assert
(
out0
-
out0_ref
).
abs
().
max
()
<=
4
*
(
out0_pt
-
out0_ref
).
abs
().
max
()
+
1e-4
if
not
tied_norm
:
assert
(
out1
-
out1_ref
).
abs
().
max
()
<=
4
*
(
out1_pt
-
out1_ref
).
abs
().
max
()
+
1e-4
assert
(
residual
-
residual_ref
).
abs
().
max
()
<=
4
*
(
residual_pt
-
residual_ref
).
abs
().
max
()
+
1e-4
assert
(
residual
-
residual_ref
).
abs
().
max
()
<=
4
*
(
residual_pt
-
residual_ref
).
abs
().
max
()
+
1e-4
g0
=
torch
.
randn_like
(
out0
)
/
batch_size
if
tied_norm
:
...
...
@@ -853,39 +1134,56 @@ def test_dropout_layer_norm_parallel_residual_prenorm_training(
(
out0_ref
*
F
.
sigmoid
(
residual_ref
)
*
g0
+
out1_ref
*
g1
).
sum
().
backward
()
assert
(
x0
.
grad
-
x0_ref
.
grad
).
abs
().
max
()
<=
4
*
(
x0_pt
.
grad
-
x0_ref
.
grad
).
abs
().
max
()
+
1e-4
if
has_x1
:
assert
(
x1
.
grad
-
x1_ref
.
grad
).
abs
().
max
()
<=
4
*
(
x1_pt
.
grad
-
x1_ref
.
grad
).
abs
().
max
()
+
1e-4
assert
(
x1
.
grad
-
x1_ref
.
grad
).
abs
().
max
()
<=
4
*
(
x1_pt
.
grad
-
x1_ref
.
grad
).
abs
().
max
()
+
1e-4
if
has_residual
:
assert
(
res
.
grad
-
res_ref
.
grad
).
abs
().
max
()
<=
4
*
(
res_pt
.
grad
-
res_ref
.
grad
).
abs
().
max
()
+
1e-4
assert
(
weight0
.
grad
-
weight0_ref
.
grad
).
abs
().
max
()
<=
3
*
(
weight0_pt
.
grad
-
weight0_ref
.
grad
).
abs
().
max
()
+
3e-5
assert
(
res
.
grad
-
res_ref
.
grad
).
abs
().
max
()
<=
4
*
(
res_pt
.
grad
-
res_ref
.
grad
).
abs
().
max
()
+
1e-4
assert
(
weight0
.
grad
-
weight0_ref
.
grad
).
abs
().
max
()
<=
3
*
(
weight0_pt
.
grad
-
weight0_ref
.
grad
).
abs
().
max
()
+
3e-5
if
not
is_rms_norm
:
assert
(
bias0
.
grad
-
bias0_ref
.
grad
).
abs
().
max
()
<=
2
*
(
bias0_pt
.
grad
-
bias0_ref
.
grad
).
abs
().
max
()
+
3e-5
assert
(
bias0
.
grad
-
bias0_ref
.
grad
).
abs
().
max
()
<=
2
*
(
bias0_pt
.
grad
-
bias0_ref
.
grad
).
abs
().
max
()
+
3e-5
if
not
tied_norm
:
assert
(
weight1
.
grad
-
weight1_ref
.
grad
).
abs
().
max
()
<=
3
*
(
weight1_pt
.
grad
-
weight1_ref
.
grad
).
abs
().
max
()
+
3e-5
assert
(
weight1
.
grad
-
weight1_ref
.
grad
).
abs
().
max
()
<=
3
*
(
weight1_pt
.
grad
-
weight1_ref
.
grad
).
abs
().
max
()
+
3e-5
if
not
is_rms_norm
:
assert
(
bias1
.
grad
-
bias1_ref
.
grad
).
abs
().
max
()
<=
2
*
(
bias1_pt
.
grad
-
bias1_ref
.
grad
).
abs
().
max
()
+
3e-5
assert
(
bias1
.
grad
-
bias1_ref
.
grad
).
abs
().
max
()
<=
2
*
(
bias1_pt
.
grad
-
bias1_ref
.
grad
).
abs
().
max
()
+
3e-5
def
test_dropout_layer_norm_randomness
():
hidden_size
=
256
dtype
=
torch
.
float32
dropout_p
=
0.1
device
=
'
cuda
'
device
=
"
cuda
"
# set seed
torch
.
random
.
manual_seed
(
0
)
batch_size
=
8
seqlen
=
512
x0
=
torch
.
randn
(
batch_size
,
seqlen
,
hidden_size
,
device
=
device
,
dtype
=
dtype
,
requires_grad
=
True
)
x0
=
torch
.
randn
(
batch_size
,
seqlen
,
hidden_size
,
device
=
device
,
dtype
=
dtype
,
requires_grad
=
True
)
res
=
torch
.
randn_like
(
x0
,
dtype
=
dtype
,
requires_grad
=
True
)
model
=
DropoutAddLayerNorm
(
hidden_size
,
p
=
dropout_p
,
device
=
device
,
dtype
=
dtype
)
torch
.
random
.
manual_seed
(
42
)
_
,
dmask0
=
dropout_add_layer_norm
(
x0
,
res
,
model
.
weight
,
model
.
bias
,
model
.
p
,
model
.
eps
,
return_dropout_mask
=
True
)
_
,
dmask0
=
dropout_add_layer_norm
(
x0
,
res
,
model
.
weight
,
model
.
bias
,
model
.
p
,
model
.
eps
,
return_dropout_mask
=
True
)
# Subsequent call should have a different dropout mask
_
,
dmask1
=
dropout_add_layer_norm
(
x0
,
res
,
model
.
weight
,
model
.
bias
,
model
.
p
,
model
.
eps
,
return_dropout_mask
=
True
)
_
,
dmask1
=
dropout_add_layer_norm
(
x0
,
res
,
model
.
weight
,
model
.
bias
,
model
.
p
,
model
.
eps
,
return_dropout_mask
=
True
)
torch
.
random
.
manual_seed
(
42
)
# Resetting the seed, should get the same dropout mask
_
,
dmask2
=
dropout_add_layer_norm
(
x0
,
res
,
model
.
weight
,
model
.
bias
,
model
.
p
,
model
.
eps
,
return_dropout_mask
=
True
)
_
,
dmask2
=
dropout_add_layer_norm
(
x0
,
res
,
model
.
weight
,
model
.
bias
,
model
.
p
,
model
.
eps
,
return_dropout_mask
=
True
)
assert
not
torch
.
equal
(
dmask0
,
dmask1
)
assert
torch
.
equal
(
dmask0
,
dmask2
)
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment