test_dropout_layer_norm.py 14 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import math

import torch
import torch.nn.functional as F
import pytest

from einops import rearrange

from flash_attn.ops.layer_norm import DropoutAddLayerNorm, dropout_add_layer_norm


is_sm8x = torch.cuda.get_device_capability('cuda')[0] >= 8

@pytest.mark.parametrize('has_rowscale', [True, False])
# @pytest.mark.parametrize('has_rowscale', [True])
@pytest.mark.parametrize('has_residual', [True, False])
# @pytest.mark.parametrize('has_residual', [False])
@pytest.mark.parametrize('dropout_p', [0.37, 0.0])
# @pytest.mark.parametrize('dropout_p', [0.0])
@pytest.mark.parametrize('weight_dtype', [torch.float32, torch.float16])
# @pytest.mark.parametrize('weight_dtype', [torch.float32])
@pytest.mark.parametrize('input_dtype,residual_dtype',
                         [(torch.float16, torch.float16), (torch.float16, torch.float32),
                          (torch.float32, torch.float32)]
                         + ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []))
# @pytest.mark.parametrize('input_dtype,residual_dtype', [(torch.float16, torch.float32)])
@pytest.mark.parametrize('hidden_size', [768, 1024, 1280, 1536, 1600, 2048, 2560, 3072, 4096, 5120])
# @pytest.mark.parametrize('hidden_size', [768])
def test_dropout_layer_norm_training(hidden_size, input_dtype, residual_dtype, weight_dtype,
                                     dropout_p, has_residual, has_rowscale):
    if weight_dtype == torch.float16 and input_dtype == torch.bfloat16:
        pytest.skip()  # Not supported
    # Backward numerical error is high, and this case isn't used
    if has_rowscale and not has_residual:
        pytest.skip()
    device = 'cuda'
    # rtol, atol = (1e-5, 1e-6) if input_dtype == torch.float32 else (1e-3, 1e-4)
    rtol, atol = (1e-3, 1e-4)
    # set seed
    torch.random.manual_seed(0)
    batch_size = 8
    seqlen = 512
    x0_pt = torch.randn(batch_size, seqlen, hidden_size, device=device, dtype=input_dtype,
                        requires_grad=True)
    x0 = x0_pt.detach().clone().requires_grad_()
    x0_ref = x0_pt.detach().clone().float().requires_grad_()
    if has_residual:
        x1_pt = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True)
        x1 = x1_pt.detach().clone().requires_grad_()
        x1_ref = x1_pt.detach().clone().float().requires_grad_()
    else:
        x1 = None
    if has_rowscale:
        rowscale = torch.empty(batch_size, seqlen, device=device, dtype=input_dtype)
        survival_rate = 0.87
        rowscale = rowscale.bernoulli_(survival_rate) / survival_rate
        x0_scaled_pt = x0_pt * rearrange(rowscale, '... -> ... 1')
        x0_scaled_ref = x0_ref * rearrange(rowscale, '... -> ... 1')
    else:
        rowscale = None
        x0_scaled_pt = x0_pt
        x0_scaled_ref = x0_ref
    model_pt = torch.nn.LayerNorm(hidden_size, device=device, dtype=weight_dtype)
    torch.nn.init.normal_(model_pt.weight)
    torch.nn.init.normal_(model_pt.bias)
    model_ref = torch.nn.LayerNorm(hidden_size, device=device, dtype=torch.float32)
    model = DropoutAddLayerNorm(hidden_size, p=dropout_p, device=device, dtype=weight_dtype)
    with torch.no_grad():
        model.weight.copy_(model_pt.weight)
        model.bias.copy_(model_pt.bias)
        model_ref.weight.copy_(model_pt.weight)
        model_ref.bias.copy_(model_pt.bias)
    residual_in_fp32 = (not has_residual) and residual_dtype == torch.float32
    out, dmask = dropout_add_layer_norm(x0, x1, model.weight, model.bias, model.p,
                                        model.epsilon, rowscale=rowscale,
                                        residual_in_fp32=residual_in_fp32, return_dropout_mask=True)
    assert out.dtype == input_dtype
    print(f'Actual dropout fraction: {1 - dmask.float().mean().item()}')
    if has_residual:
        residual_pt = ((x0_scaled_pt.float() * dmask.float()) / (1 - dropout_p) + x1_pt.float()).to(dtype=residual_dtype)
        residual_ref = (x0_scaled_ref * dmask.float()) / (1 - dropout_p) + x1_ref
    else:
        residual_pt = ((x0_scaled_pt.float() * dmask.float()) / (1 - dropout_p)).to(dtype=residual_dtype)
        residual_ref = (x0_scaled_ref * dmask.float()) / (1 - dropout_p)
    out_pt = model_pt(residual_pt.to(dtype=weight_dtype)).to(dtype=input_dtype)
    out_ref = model_ref(residual_ref)
    assert (out - out_ref).abs().max() <= 4 * (out_pt - out_ref).abs().max() + 1e-4

    g = torch.randn_like(out) / batch_size
    out_pt.backward(g)
    out.backward(g)
    out_ref.backward(g)
    assert (x0.grad - x0_ref.grad).abs().max() <= 4 * (x0_pt.grad - x0_ref.grad).abs().max() + 1e-4
    if has_residual:
        assert (x1.grad - x1_ref.grad).abs().max() <= 4 * (x1_pt.grad - x1_ref.grad).abs().max() + 1e-4
    assert (model.weight.grad - model_ref.weight.grad).abs().max() <= 2 * (model_pt.weight.grad - model_ref.weight.grad).abs().max() + 3e-5
    assert (model.bias.grad - model_ref.bias.grad).abs().max() <= 2 * (model_pt.bias.grad - model_ref.bias.grad).abs().max() + 3e-5


@pytest.mark.parametrize('weight_dtype', [torch.float32, torch.float16])
@pytest.mark.parametrize('input_dtype,residual_dtype',
                         [(torch.float16, torch.float16), (torch.float16, torch.float32),
                          (torch.float32, torch.float32)]
                         + ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []))
@pytest.mark.parametrize('hidden_size', [768, 1024, 1280, 1536, 1600, 2048, 2560, 3072, 4096, 5120])
def test_dropout_layer_norm_eval(hidden_size, input_dtype, residual_dtype, weight_dtype):
    if weight_dtype == torch.float16 and input_dtype == torch.bfloat16:
        pytest.skip()  # Not supported
    device = 'cuda'
    # rtol, atol = (1e-5, 1e-6) if dtype == torch.float32 else (1e-3, 1e-4)
    rtol, atol = (1e-3, 1e-4)
    dropout_p = 0.37
    # set seed
    torch.random.manual_seed(0)
    batch_size = 32
    seqlen = 512
    x0_pt = torch.randn(batch_size, seqlen, hidden_size, device=device, dtype=input_dtype,
                        requires_grad=True)
    x0 = x0_pt.detach().clone().requires_grad_()
    x0_ref = x0_pt.detach().clone().float().requires_grad_()
    x1_pt = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True)
    x1 = x1_pt.detach().clone().requires_grad_()
    x1_ref = x1_pt.detach().clone().float().requires_grad_()
    model_pt = torch.nn.LayerNorm(hidden_size, device=device, dtype=weight_dtype)
    model = DropoutAddLayerNorm(hidden_size, p=dropout_p, device=device, dtype=weight_dtype)
    model_ref = torch.nn.LayerNorm(hidden_size, device=device, dtype=torch.float32)
    with torch.no_grad():
        model.weight.copy_(model_pt.weight)
        model.bias.copy_(model_pt.bias)
        model_ref.weight.copy_(model_pt.weight)
        model_ref.bias.copy_(model_pt.bias)
    model_pt.eval()
    model.eval()
    model_ref.eval()
    out = model(x0, x1)
    residual_pt = (x0_pt.float() + x1_pt.float()).to(dtype=residual_dtype)
    residual_ref = x0_ref + x1_ref
    out_pt = model_pt(residual_pt.to(dtype=weight_dtype)).to(input_dtype)
    out_ref = model_ref(residual_ref)
    assert (out - out_ref).abs().max() <= 4 * (out_pt - out_ref).abs().max() + 1e-4


@pytest.mark.parametrize('has_rowscale', [True, False])
@pytest.mark.parametrize('has_residual', [True, False])
@pytest.mark.parametrize('dropout_p', [0.37, 0.0])
@pytest.mark.parametrize('weight_dtype', [torch.float32, torch.float16])
@pytest.mark.parametrize('input_dtype,residual_dtype',
                         [(torch.float16, torch.float16), (torch.float16, torch.float32),
                          (torch.float32, torch.float32)]
                         + ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []))
@pytest.mark.parametrize('hidden_size', [768, 1024, 1280, 1536, 1600, 2048, 2560, 3072, 4096, 5120])
def test_dropout_layer_norm_prenorm_training(hidden_size, input_dtype, residual_dtype, weight_dtype,
                                             dropout_p, has_residual, has_rowscale):
    if weight_dtype == torch.float16 and input_dtype == torch.bfloat16:
        pytest.skip()  # Not supported
    # Backward numerical error is high, and this case isn't used
    if has_rowscale and not has_residual:
        pytest.skip()
    device = 'cuda'
    # rtol, atol = (1e-5, 1e-6) if input_dtype == torch.float32 else (1e-3, 1e-4)
    rtol, atol = (1e-3, 2e-4)
    # set seed
    torch.random.manual_seed(0)
    batch_size = 8
    seqlen = 512
    x0_pt = torch.randn(batch_size, seqlen, hidden_size, device=device, dtype=input_dtype,
                        requires_grad=True)
    x0 = x0_pt.detach().clone().requires_grad_()
    x0_ref = x0_pt.detach().clone().float().requires_grad_()
    if has_residual:
        x1_pt = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True)
        x1 = x1_pt.detach().clone().requires_grad_()
        x1_ref = x1_pt.detach().clone().float().requires_grad_()
    else:
        x1 = None
    if has_rowscale:
        rowscale = torch.empty(batch_size, seqlen, device=device, dtype=input_dtype)
        survival_rate = 0.87
        rowscale = rowscale.bernoulli_(survival_rate) / survival_rate
        x0_scaled_pt = x0_pt * rearrange(rowscale, '... -> ... 1')
        x0_scaled_ref = x0_ref * rearrange(rowscale, '... -> ... 1')
    else:
        rowscale = None
        x0_scaled_pt = x0_pt
        x0_scaled_ref = x0_ref
    model_pt = torch.nn.LayerNorm(hidden_size, device=device, dtype=weight_dtype)
    model_ref = torch.nn.LayerNorm(hidden_size, device=device, dtype=torch.float32)
    model = DropoutAddLayerNorm(hidden_size, prenorm=True, p=dropout_p, device=device,
                                dtype=weight_dtype)
    with torch.no_grad():
        model.weight.copy_(model_pt.weight)
        model.bias.copy_(model_pt.bias)
        model_ref.weight.copy_(model_pt.weight)
        model_ref.bias.copy_(model_pt.bias)
    residual_in_fp32 = (not has_residual) and residual_dtype == torch.float32
    out, residual, dmask = dropout_add_layer_norm(x0, x1, model.weight, model.bias, model.p,
                                                  model.epsilon, rowscale=rowscale, prenorm=True,
                                                  residual_in_fp32=residual_in_fp32,
                                                  return_dropout_mask=True)
    print(f'Actual dropout fraction: {1 - dmask.float().mean().item()}')
    if has_residual:
        residual_pt = ((x0_scaled_pt.float() * dmask.float()) / (1 - dropout_p) + x1_pt.float()).to(dtype=residual_dtype)
        residual_ref = (x0_scaled_ref * dmask.float()) / (1 - dropout_p) + x1_ref
    else:
        residual_pt = ((x0_scaled_pt.float() * dmask.float()) / (1 - dropout_p)).to(dtype=residual_dtype)
        residual_ref = (x0_scaled_ref * dmask.float()) / (1 - dropout_p)
    out_pt = model_pt(residual_pt.to(dtype=weight_dtype)).to(dtype=input_dtype)
    out_ref = model_ref(residual_ref)
    assert out.dtype == input_dtype
    assert residual.dtype == residual_dtype
    assert (out - out_ref).abs().max() <= 4 * (out_pt - out_ref).abs().max() + 1e-4
    assert (residual - residual_ref).abs().max() <= 4 * (residual_pt - residual_ref).abs().max() + 1e-4

    g = torch.randn_like(out) / batch_size
    (out_pt * F.sigmoid(residual_pt)).backward(g)
    (out * F.sigmoid(residual)).backward(g)
    (out_ref * F.sigmoid(residual_ref.to(dtype=residual_dtype))).backward(g)
    assert (x0.grad - x0_ref.grad).abs().max() <= 4 * (x0_pt.grad - x0_ref.grad).abs().max() + 1e-4
    if has_residual:
        assert (x1.grad - x1_ref.grad).abs().max() <= 4 * (x1_pt.grad - x1_ref.grad).abs().max() + 1e-4
    assert (model.weight.grad - model_ref.weight.grad).abs().max() <= 2 * (model_pt.weight.grad - model_ref.weight.grad).abs().max() + 2e-4
    assert (model.bias.grad - model_ref.bias.grad).abs().max() <= 2 * (model_pt.bias.grad - model_ref.bias.grad).abs().max() + 2e-4


@pytest.mark.parametrize('weight_dtype', [torch.float32, torch.float16])
@pytest.mark.parametrize('input_dtype,residual_dtype',
                         [(torch.float16, torch.float16), (torch.float16, torch.float32),
                          (torch.float32, torch.float32)]
                         + ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []))
@pytest.mark.parametrize('hidden_size', [768, 1024, 1280, 1536, 1600, 2048, 2560, 3072, 4096, 5120])
def test_dropout_layer_norm_prenorm_eval(hidden_size, input_dtype, residual_dtype, weight_dtype):
    if weight_dtype == torch.float16 and input_dtype == torch.bfloat16:
        pytest.skip()  # Not supported
    device = 'cuda'
    # rtol, atol = (1e-5, 1e-6) if dtype == torch.float32 else (1e-3, 1e-4)
    rtol, atol = (1e-3, 1e-4)
    dropout_p = 0.37
    # set seed
    torch.random.manual_seed(0)
    batch_size = 32
    seqlen = 512
    x0_pt = torch.randn(batch_size, seqlen, hidden_size, device=device, dtype=input_dtype,
                        requires_grad=True)
    x0 = x0_pt.detach().clone().requires_grad_()
    x0_ref = x0_pt.detach().clone().float().requires_grad_()
    x1_pt = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True)
    x1 = x1_pt.detach().clone().requires_grad_()
    x1_ref = x1_pt.detach().clone().float().requires_grad_()
    model_pt = torch.nn.LayerNorm(hidden_size, device=device, dtype=weight_dtype)
    model = DropoutAddLayerNorm(hidden_size, prenorm=True, p=dropout_p, device=device,
                                dtype=weight_dtype)
    model_ref = torch.nn.LayerNorm(hidden_size, device=device, dtype=torch.float32)
    with torch.no_grad():
        model.weight.copy_(model_pt.weight)
        model.bias.copy_(model_pt.bias)
        model_ref.weight.copy_(model_pt.weight)
        model_ref.bias.copy_(model_pt.bias)
    model_pt.eval()
    model.eval()
    model_ref.eval()
    out, residual = model(x0, x1)
    residual_pt = (x0_pt.float() + x1_pt.float()).to(dtype=residual_dtype)
    residual_ref = x0_ref + x1_ref
    out_pt = model_pt(residual_pt.to(dtype=weight_dtype)).to(input_dtype)
    out_ref = model_ref(residual_ref)
    assert (out - out_ref).abs().max() <= 4 * (out_pt - out_ref).abs().max() + 1e-4
    assert (residual - residual_ref).abs().max() <= 4 * (residual_pt - residual_ref).abs().max() + 1e-4