fused_dense.cpp 14.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
// Adapted from https://github.com/NVIDIA/apex/blob/master/csrc/fused_dense.cpp
// We make it work for bfloat16
#include <torch/extension.h>
#include <torch/torch.h>
#include <vector>

#include <stdio.h>

// https://github.com/NVIDIA/apex/blob/master/csrc/type_shim.h
// #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
#define DISPATCH_HALF_AND_BF16(TYPE, NAME, ...)                                \
  switch (TYPE) {                                                              \
  case at::ScalarType::Half: {                                                 \
    using scalar_t = at::Half;                                                 \
    __VA_ARGS__();                                                             \
    break;                                                                     \
  }                                                                            \
  case at::ScalarType::BFloat16: {                                             \
    using scalar_t = at::BFloat16;                                             \
    __VA_ARGS__();                                                             \
    break;                                                                     \
  }                                                                            \
  default:                                                                     \
    AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'");            \
  }

#define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")

template <typename T>
int linear_bias_forward_cuda(at::Tensor input, T *weight, at::Tensor bias, int in_features, int batch_size, int out_features, at::Tensor output, void *lt_workspace);

template <typename T>
int linear_bias_backward_cuda(T *input, T *weight, T *d_output, int in_features, int batch_size, int out_features, T *d_weight, T *d_bias, T *d_input,  bool residual, void *lt_workspace);

template <typename T>
int linear_bias_wgrad_cuda(T *input, T *d_output, int in_features, int batch_size, int out_features, T *d_weight, T *d_bias, void *lt_workspace);

template <typename T>
int linear_gelu_forward_cuda(T *input, T *weight, T *bias, int in_features, int batch_size, int out_features, int heuristic, T *output, T *gelu_in, void *lt_workspace) ;

template <typename T>
int linear_gelu_linear_backward_cuda(T *input, T *gelu_in, T *output1, T *weight1, T *weight2, T *d_output1, T *d_output2, int in_features, int batch_size, int hidden_features, int out_features, int heuristic, T *d_weight1, T *d_weight2, T *d_bias1, T *d_bias2, T *d_input, bool residual, void *lt_workspace);

at::Tensor linear_bias_forward(at::Tensor input, at::Tensor weight, at::Tensor bias) {

  auto batch_size = input.size(0);
  auto in_features = input.size(1);

  int out_features = weight.size(0);

  //auto reserved_size = get_mlp_reserved_space(batch_size, num_layers, output_features.data());

  // create output/workspace tensor
  auto out = at::empty({batch_size, out_features}, at::dtype(input.dtype()).device(input.device()));
  //auto reserved_space = at::empty({reserved_size}, inputs[0].type());
  // allocate fixed 4MB workspace for cublaslt for now, and this gets at least 4 MB
  auto lt_workspace = at::empty({1 << 22}, at::dtype(input.dtype()).device(input.device()));

  DISPATCH_HALF_AND_BF16(input.scalar_type(), "linear_bias_forward", [&] {
    scalar_t* w_ptr = weight.data_ptr<scalar_t>();
    auto result = linear_bias_forward_cuda<scalar_t>(
        input,
        w_ptr,
        bias,
        in_features,
        batch_size,
        out_features,
        out,
        //out.data_ptr<scalar_t>(),
       // reserved_space.data_ptr<scalar_t>(),
        (void*) (lt_workspace.data_ptr<scalar_t>()));
    TORCH_CHECK(result == 0, "linear_bias_forward failed.")
  });

  return {out};
}

std::vector<at::Tensor> linear_bias_backward(at::Tensor input, at::Tensor weight, at::Tensor d_output) {

  auto batch_size = input.size(0);
  auto in_features = input.size(1);

  int out_features = weight.size(0);

  //auto reserved_size = get_mlp_reserved_space(batch_size, num_layers, output_features.data());

  // create output/workspace tensor
  auto opts = input.options();
  auto d_weight = at::empty({out_features, in_features}, opts);
#if defined(CUBLAS_VERSION) && CUBLAS_VERSION < 11600
  auto d_bias = d_output.view({-1, out_features}).sum(0, false);
#else
  auto d_bias = at::empty({out_features}, opts);
#endif
  auto d_input = at::empty({batch_size, in_features}, opts);
  //auto reserved_space = at::empty({reserved_size}, inputs[0].type());
  // allocate fixed 4MB workspace for cublaslt for now, and this gets at least 4 MB
  auto lt_workspace = at::empty({1 << 22}, opts);

  DISPATCH_HALF_AND_BF16(input.scalar_type(), "linear_bias_backward", [&] {
    scalar_t* w_ptr = weight.data_ptr<scalar_t>();
    auto result = linear_bias_backward_cuda<scalar_t>(
        input.data_ptr<scalar_t>(),
        w_ptr,
        d_output.data_ptr<scalar_t>(),
        in_features,
        batch_size,
        out_features,
        d_weight.data_ptr<scalar_t>(),
        d_bias.data_ptr<scalar_t>(),
        d_input.data_ptr<scalar_t>(),
       // reserved_space.data_ptr<scalar_t>(),
        /*residual=*/false,
        (void*) (lt_workspace.data_ptr<scalar_t>()));
    TORCH_CHECK(result == 0, "linear_bias_backward failed.")
  });

  return {d_input, d_weight, d_bias};
}

std::vector<at::Tensor> linear_bias_wgrad(at::Tensor input, at::Tensor d_output) {

  auto batch_size = input.size(0);
  auto in_features = input.size(1);

  int out_features = d_output.size(1);

  //auto reserved_size = get_mlp_reserved_space(batch_size, num_layers, output_features.data());

  // create output/workspace tensor
  auto opts = input.options();
  auto d_weight = at::empty({out_features, in_features}, opts);
#if defined(CUBLAS_VERSION) && CUBLAS_VERSION < 11600
  auto d_bias = d_output.view({-1, out_features}).sum(0, false);
#else
  auto d_bias = at::empty({out_features}, opts);
#endif
  //auto reserved_space = at::empty({reserved_size}, inputs[0].type());
  // allocate fixed 4MB workspace for cublaslt for now, and this gets at least 4 MB
  auto lt_workspace = at::empty({1 << 22}, opts);

  DISPATCH_HALF_AND_BF16(input.scalar_type(), "linear_bias_wgrad", [&] {
    auto result = linear_bias_wgrad_cuda<scalar_t>(
        input.data_ptr<scalar_t>(),
        d_output.data_ptr<scalar_t>(),
        in_features,
        batch_size,
        out_features,
        d_weight.data_ptr<scalar_t>(),
        d_bias.data_ptr<scalar_t>(),
       // reserved_space.data_ptr<scalar_t>(),
        (void*) (lt_workspace.data_ptr<scalar_t>()));
    TORCH_CHECK(result == 0, "linear_bias_wgrad failed.")
  });

  return {d_weight, d_bias};
}

std::vector<at::Tensor> linear_bias_residual_backward(at::Tensor input, at::Tensor weight, at::Tensor d_output, at::Tensor d_input) {

  auto batch_size = input.size(0);
  auto in_features = input.size(1);

  int out_features = weight.size(0);

  //auto reserved_size = get_mlp_reserved_space(batch_size, num_layers, output_features.data());

  // create output/workspace tensor
  auto opts = input.options();
  auto d_weight = at::empty({out_features, in_features}, opts);
#if defined(CUBLAS_VERSION) && CUBLAS_VERSION < 11600
  auto d_bias = d_output.view({-1, out_features}).sum(0, false);
#else
  auto d_bias = at::empty({out_features}, opts);
#endif
  CHECK_SHAPE(d_input, batch_size, in_features);
  //auto reserved_space = at::empty({reserved_size}, inputs[0].type());
  // allocate fixed 4MB workspace for cublaslt for now, and this gets at least 4 MB
  auto lt_workspace = at::empty({1 << 22}, opts);

  DISPATCH_HALF_AND_BF16(input.scalar_type(), "linear_bias_backward", [&] {
    scalar_t* w_ptr = weight.data_ptr<scalar_t>();
    auto result = linear_bias_backward_cuda<scalar_t>(
        input.data_ptr<scalar_t>(),
        w_ptr,
        d_output.data_ptr<scalar_t>(),
        in_features,
        batch_size,
        out_features,
        d_weight.data_ptr<scalar_t>(),
        d_bias.data_ptr<scalar_t>(),
        d_input.data_ptr<scalar_t>(),
       // reserved_space.data_ptr<scalar_t>(),
        /*residual=*/true,
        (void*) (lt_workspace.data_ptr<scalar_t>()));
    TORCH_CHECK(result == 0, "linear_bias_residual_backward failed.")
  });

  return {d_input, d_weight, d_bias};
}

std::vector<at::Tensor> linear_gelu_forward(at::Tensor input, at::Tensor weight, at::Tensor bias,
                                            bool save_gelu_in, int heuristic) {

  auto batch_size = input.size(0);
  auto in_features = input.size(1);

  int out_features = weight.size(0);

  //auto reserved_size = get_mlp_reserved_space(batch_size, num_layers, output_features.data());

  // create output/workspace tensor
  auto opts = input.options();
  auto output = at::empty({batch_size, out_features}, opts);
  at::Tensor gelu_in;
  if (save_gelu_in) { gelu_in = at::empty({batch_size, out_features}, opts); }
  //auto reserved_space = at::empty({reserved_size}, inputs[0].type());
  // allocate fixed 4MB workspace for cublaslt for now, and this gets at least 4 MB
  auto lt_workspace = at::empty({1 << 22}, opts);

  DISPATCH_HALF_AND_BF16(input.scalar_type(), "linear_gelu_forward", [&] {
    scalar_t* w_ptr = weight.data_ptr<scalar_t>();
    scalar_t* b_ptr = bias.data_ptr<scalar_t>();
    auto result = linear_gelu_forward_cuda<scalar_t>(
        input.data_ptr<scalar_t>(),
        w_ptr,
        b_ptr,
        in_features,
        batch_size,
        out_features,
        heuristic,
        output.data_ptr<scalar_t>(),
        save_gelu_in ? gelu_in.data_ptr<scalar_t>() : nullptr,
       // reserved_space.data_ptr<scalar_t>(),
        (void*) (lt_workspace.data_ptr<scalar_t>()));
    TORCH_CHECK(result == 0, "linear_gelu_forward failed.")
  });

  std::vector<at::Tensor> result = {output};
  if (save_gelu_in) { result.push_back(gelu_in); };
  return result;
}

std::vector<at::Tensor> linear_gelu_linear_backward(at::Tensor input, at::Tensor gelu_in, at::Tensor output1, at::Tensor weight1, at::Tensor weight2, at::Tensor d_output2, int heuristic) {

  auto batch_size = input.size(0);
  auto in_features = input.size(1);

  int hidden_features = weight1.size(0);
  int out_features = weight2.size(0);

  //auto reserved_size = get_mlp_reserved_space(batch_size, num_layers, output_features.data());

  // create output/workspace tensor
  auto opts = input.options();
  auto d_weight1 = at::empty({hidden_features, in_features}, opts);
  auto d_weight2 = at::empty({out_features, hidden_features}, opts);
  auto d_bias1 = at::empty({hidden_features}, opts);
  auto d_bias2 = at::empty({out_features}, opts);
  auto d_input = at::empty({batch_size, in_features}, opts);
  auto d_output1 = at::empty({batch_size, hidden_features}, opts);
  //auto reserved_space = at::empty({reserved_size}, inputs[0].type());
  // allocate fixed 4MB workspace for cublaslt for now, and this gets at least 4 MB
  auto lt_workspace = at::empty({1 << 22}, opts);

  DISPATCH_HALF_AND_BF16(input.scalar_type(), "linear_bias_backward", [&] {
    //scalar_t* w_ptr = weight.data_ptr<scalar_t>();
    //scalar_t* d_b_ptr = d_bias.data_ptr<scalar_t>();
    auto result = linear_gelu_linear_backward_cuda<scalar_t>(
        input.data_ptr<scalar_t>(),
        gelu_in.data_ptr<scalar_t>(),
        output1.data_ptr<scalar_t>(),
        weight1.data_ptr<scalar_t>(),
        weight2.data_ptr<scalar_t>(),
        d_output1.data_ptr<scalar_t>(),
        d_output2.data_ptr<scalar_t>(),
        in_features,
        batch_size,
        hidden_features,
        out_features,
        heuristic,
        d_weight1.data_ptr<scalar_t>(),
        d_weight2.data_ptr<scalar_t>(),
        d_bias1.data_ptr<scalar_t>(),
        d_bias2.data_ptr<scalar_t>(),
        d_input.data_ptr<scalar_t>(),
       // reserved_space.data_ptr<scalar_t>(),
        /*residual=*/false,
        (void*) (lt_workspace.data_ptr<scalar_t>()));
    TORCH_CHECK(result == 0, "linear_gelu_linear_backward failed.")
  });

  return {d_input, d_weight1, d_bias1, d_weight2, d_bias2};
}

std::vector<at::Tensor> linear_residual_gelu_linear_backward(at::Tensor input, at::Tensor gelu_in, at::Tensor output1, at::Tensor weight1, at::Tensor weight2, at::Tensor d_output2, at::Tensor d_input, int heuristic) {

  auto batch_size = input.size(0);
  auto in_features = input.size(1);

  int hidden_features = weight1.size(0);
  int out_features = weight2.size(0);

  //auto reserved_size = get_mlp_reserved_space(batch_size, num_layers, output_features.data());

  // create output/workspace tensor
  auto opts = input.options();
  auto d_weight1 = at::empty({hidden_features, in_features}, opts);
  auto d_weight2 = at::empty({out_features, hidden_features}, opts);
  auto d_bias1 = at::empty({hidden_features}, opts);
  auto d_bias2 = at::empty({out_features}, opts);
  CHECK_SHAPE(d_input, batch_size, in_features);
  auto d_output1 = at::empty({batch_size, hidden_features}, opts);
  //auto reserved_space = at::empty({reserved_size}, inputs[0].type());
  // allocate fixed 4MB workspace for cublaslt for now, and this gets at least 4 MB
  auto lt_workspace = at::empty({1 << 22}, opts);

  DISPATCH_HALF_AND_BF16(input.scalar_type(), "linear_bias_backward", [&] {
    //scalar_t* w_ptr = weight.data_ptr<scalar_t>();
    //scalar_t* d_b_ptr = d_bias.data_ptr<scalar_t>();
    auto result = linear_gelu_linear_backward_cuda<scalar_t>(
        input.data_ptr<scalar_t>(),
        gelu_in.data_ptr<scalar_t>(),
        output1.data_ptr<scalar_t>(),
        weight1.data_ptr<scalar_t>(),
        weight2.data_ptr<scalar_t>(),
        d_output1.data_ptr<scalar_t>(),
        d_output2.data_ptr<scalar_t>(),
        in_features,
        batch_size,
        hidden_features,
        out_features,
        heuristic,
        d_weight1.data_ptr<scalar_t>(),
        d_weight2.data_ptr<scalar_t>(),
        d_bias1.data_ptr<scalar_t>(),
        d_bias2.data_ptr<scalar_t>(),
        d_input.data_ptr<scalar_t>(),
       // reserved_space.data_ptr<scalar_t>(),
        /*residual=*/true,
        (void*) (lt_workspace.data_ptr<scalar_t>()));
    TORCH_CHECK(result == 0, "linear_residual_gelu_linear_backward failed.")
  });

  return {d_input, d_weight1, d_bias1, d_weight2, d_bias2};
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
  m.def("linear_bias_forward", &linear_bias_forward, "linear bias forward");
  m.def("linear_bias_backward", &linear_bias_backward, "linear bias backward");
  m.def("linear_bias_wgrad", &linear_bias_wgrad, "linear bias wgrad");
  m.def("linear_bias_residual_backward", &linear_bias_residual_backward, "linear bias residual backward");
  m.def("linear_gelu_forward", &linear_gelu_forward, "linear gelu forward");
  m.def("linear_gelu_linear_backward", &linear_gelu_linear_backward, "linear gelu linear backward");
  m.def("linear_residual_gelu_linear_backward", &linear_residual_gelu_linear_backward, "linear residual gelu linear backward");
}