benchmark.py 6.99 KB
Newer Older
1
# Copyright (c) 2023, Tri Dao.
Tri Dao's avatar
Tri Dao committed
2
3
4
5
6
7
""" Useful functions for writing test code. """

import torch
import torch.utils.benchmark as benchmark


Tri Dao's avatar
Tri Dao committed
8
9
10
11
def benchmark_forward(
    fn, *inputs, repeats=10, desc="", verbose=True, amp=False, amp_dtype=torch.float16, **kwinputs
):
    """Use Pytorch Benchmark on the forward pass of an arbitrary function."""
Tri Dao's avatar
Tri Dao committed
12
    if verbose:
Tri Dao's avatar
Tri Dao committed
13
14
        print(desc, "- Forward pass")

15
    def amp_wrapper(*inputs, **kwinputs):
Tri Dao's avatar
Tri Dao committed
16
        with torch.autocast(device_type="cuda", dtype=amp_dtype, enabled=amp):
Tri Dao's avatar
Tri Dao committed
17
            fn(*inputs, **kwinputs)
Tri Dao's avatar
Tri Dao committed
18

Tri Dao's avatar
Tri Dao committed
19
    t = benchmark.Timer(
Tri Dao's avatar
Tri Dao committed
20
21
22
23
        stmt="fn_amp(*inputs, **kwinputs)",
        globals={"fn_amp": amp_wrapper, "inputs": inputs, "kwinputs": kwinputs},
        num_threads=torch.get_num_threads(),
    )
Tri Dao's avatar
Tri Dao committed
24
25
26
27
28
29
    m = t.timeit(repeats)
    if verbose:
        print(m)
    return t, m


Tri Dao's avatar
Tri Dao committed
30
31
32
33
34
35
36
37
38
39
40
41
def benchmark_backward(
    fn,
    *inputs,
    grad=None,
    repeats=10,
    desc="",
    verbose=True,
    amp=False,
    amp_dtype=torch.float16,
    **kwinputs,
):
    """Use Pytorch Benchmark on the backward pass of an arbitrary function."""
Tri Dao's avatar
Tri Dao committed
42
    if verbose:
Tri Dao's avatar
Tri Dao committed
43
44
        print(desc, "- Backward pass")
    with torch.autocast(device_type="cuda", dtype=amp_dtype, enabled=amp):
Tri Dao's avatar
Tri Dao committed
45
46
47
        y = fn(*inputs, **kwinputs)
        if type(y) is tuple:
            y = y[0]
Tri Dao's avatar
Tri Dao committed
48
49
50
51
    if grad is None:
        grad = torch.randn_like(y)
    else:
        if grad.shape != y.shape:
Tri Dao's avatar
Tri Dao committed
52
53
            raise RuntimeError("Grad shape does not match output shape")

54
55
56
57
58
    def f(*inputs, y, grad):
        # Set .grad to None to avoid extra operation of gradient accumulation
        for x in inputs:
            if isinstance(x, torch.Tensor):
                x.grad = None
Tri Dao's avatar
Tri Dao committed
59
        y.backward(grad, retain_graph=True)
60

Tri Dao's avatar
Tri Dao committed
61
    t = benchmark.Timer(
Tri Dao's avatar
Tri Dao committed
62
63
64
65
        stmt="f(*inputs, y=y, grad=grad)",
        globals={"f": f, "inputs": inputs, "y": y, "grad": grad},
        num_threads=torch.get_num_threads(),
    )
Tri Dao's avatar
Tri Dao committed
66
67
68
69
70
71
    m = t.timeit(repeats)
    if verbose:
        print(m)
    return t, m


Tri Dao's avatar
Tri Dao committed
72
73
74
75
76
77
78
79
80
81
82
83
def benchmark_combined(
    fn,
    *inputs,
    grad=None,
    repeats=10,
    desc="",
    verbose=True,
    amp=False,
    amp_dtype=torch.float16,
    **kwinputs,
):
    """Use Pytorch Benchmark on the forward+backward pass of an arbitrary function."""
Tri Dao's avatar
Tri Dao committed
84
    if verbose:
Tri Dao's avatar
Tri Dao committed
85
86
        print(desc, "- Forward + Backward pass")
    with torch.autocast(device_type="cuda", dtype=amp_dtype, enabled=amp):
87
88
89
90
91
92
93
        y = fn(*inputs, **kwinputs)
        if type(y) is tuple:
            y = y[0]
    if grad is None:
        grad = torch.randn_like(y)
    else:
        if grad.shape != y.shape:
Tri Dao's avatar
Tri Dao committed
94
95
            raise RuntimeError("Grad shape does not match output shape")

Tri Dao's avatar
Tri Dao committed
96
    def f(grad, *inputs, **kwinputs):
97
98
99
        for x in inputs:
            if isinstance(x, torch.Tensor):
                x.grad = None
Tri Dao's avatar
Tri Dao committed
100
        with torch.autocast(device_type="cuda", dtype=amp_dtype, enabled=amp):
Tri Dao's avatar
Tri Dao committed
101
102
103
            y = fn(*inputs, **kwinputs)
            if type(y) is tuple:
                y = y[0]
Tri Dao's avatar
Tri Dao committed
104
        y.backward(grad, retain_graph=True)
Tri Dao's avatar
Tri Dao committed
105

Tri Dao's avatar
Tri Dao committed
106
    t = benchmark.Timer(
Tri Dao's avatar
Tri Dao committed
107
108
109
110
        stmt="f(grad, *inputs, **kwinputs)",
        globals={"f": f, "fn": fn, "inputs": inputs, "grad": grad, "kwinputs": kwinputs},
        num_threads=torch.get_num_threads(),
    )
Tri Dao's avatar
Tri Dao committed
111
112
113
114
115
116
    m = t.timeit(repeats)
    if verbose:
        print(m)
    return t, m


Tri Dao's avatar
Tri Dao committed
117
118
119
120
121
122
123
124
125
126
127
128
def benchmark_fwd_bwd(
    fn,
    *inputs,
    grad=None,
    repeats=10,
    desc="",
    verbose=True,
    amp=False,
    amp_dtype=torch.float16,
    **kwinputs,
):
    """Use Pytorch Benchmark on the forward+backward pass of an arbitrary function."""
129
    return (
Tri Dao's avatar
Tri Dao committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
        benchmark_forward(
            fn,
            *inputs,
            repeats=repeats,
            desc=desc,
            verbose=verbose,
            amp=amp,
            amp_dtype=amp_dtype,
            **kwinputs,
        ),
        benchmark_backward(
            fn,
            *inputs,
            grad=grad,
            repeats=repeats,
            desc=desc,
            verbose=verbose,
            amp=amp,
            amp_dtype=amp_dtype,
            **kwinputs,
        ),
151
152
153
    )


Tri Dao's avatar
Tri Dao committed
154
155
156
157
158
159
160
161
162
163
164
165
def benchmark_all(
    fn,
    *inputs,
    grad=None,
    repeats=10,
    desc="",
    verbose=True,
    amp=False,
    amp_dtype=torch.float16,
    **kwinputs,
):
    """Use Pytorch Benchmark on the forward+backward pass of an arbitrary function."""
Tri Dao's avatar
Tri Dao committed
166
    return (
Tri Dao's avatar
Tri Dao committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
        benchmark_forward(
            fn,
            *inputs,
            repeats=repeats,
            desc=desc,
            verbose=verbose,
            amp=amp,
            amp_dtype=amp_dtype,
            **kwinputs,
        ),
        benchmark_backward(
            fn,
            *inputs,
            grad=grad,
            repeats=repeats,
            desc=desc,
            verbose=verbose,
            amp=amp,
            amp_dtype=amp_dtype,
            **kwinputs,
        ),
        benchmark_combined(
            fn,
            *inputs,
            grad=grad,
            repeats=repeats,
            desc=desc,
            verbose=verbose,
            amp=amp,
            amp_dtype=amp_dtype,
            **kwinputs,
        ),
Tri Dao's avatar
Tri Dao committed
199
200
201
    )


Tri Dao's avatar
Tri Dao committed
202
203
204
205
206
207
208
209
210
211
212
213
def pytorch_profiler(
    fn,
    *inputs,
    trace_filename=None,
    backward=False,
    amp=False,
    amp_dtype=torch.float16,
    cpu=False,
    verbose=True,
    **kwinputs,
):
    """Wrap benchmark functions in Pytorch profiler to see CUDA information."""
Tri Dao's avatar
Tri Dao committed
214
    if backward:
Tri Dao's avatar
Tri Dao committed
215
        with torch.autocast(device_type="cuda", dtype=amp_dtype, enabled=amp):
Tri Dao's avatar
Tri Dao committed
216
            g = torch.randn_like(fn(*inputs, **kwinputs))
Tri Dao's avatar
Tri Dao committed
217
    for _ in range(30):  # Warm up
218
219
220
221
        if backward:
            for x in inputs:
                if isinstance(x, torch.Tensor):
                    x.grad = None
Tri Dao's avatar
Tri Dao committed
222
        with torch.autocast(device_type="cuda", dtype=amp_dtype, enabled=amp):
Tri Dao's avatar
Tri Dao committed
223
224
225
            out = fn(*inputs, **kwinputs)
        # Backward should be done outside autocast
        if backward:
226
            out.backward(g, retain_graph=True)
Tri Dao's avatar
Tri Dao committed
227
228
229
    activities = ([torch.profiler.ProfilerActivity.CPU] if cpu else []) + [
        torch.profiler.ProfilerActivity.CUDA
    ]
Tri Dao's avatar
Tri Dao committed
230
    with torch.profiler.profile(
Tri Dao's avatar
Tri Dao committed
231
        activities=activities,
Tri Dao's avatar
Tri Dao committed
232
233
234
235
        record_shapes=True,
        # profile_memory=True,
        with_stack=True,
    ) as prof:
236
237
238
239
        if backward:
            for x in inputs:
                if isinstance(x, torch.Tensor):
                    x.grad = None
Tri Dao's avatar
Tri Dao committed
240
        with torch.autocast(device_type="cuda", dtype=amp_dtype, enabled=amp):
Tri Dao's avatar
Tri Dao committed
241
            out = fn(*inputs, **kwinputs)
Tri Dao's avatar
Tri Dao committed
242
243
        if backward:
            out.backward(g, retain_graph=True)
Tri Dao's avatar
Tri Dao committed
244
    if verbose:
Tri Dao's avatar
Tri Dao committed
245
246
        # print(prof.key_averages().table(sort_by="self_cuda_time_total", row_limit=50))
        print(prof.key_averages().table(row_limit=50))
Tri Dao's avatar
Tri Dao committed
247
248
    if trace_filename is not None:
        prof.export_chrome_trace(trace_filename)
Tri Dao's avatar
Tri Dao committed
249
250


Tri Dao's avatar
Tri Dao committed
251
def benchmark_memory(fn, *inputs, desc="", verbose=True, **kwinputs):
Tri Dao's avatar
Tri Dao committed
252
253
254
255
256
    torch.cuda.empty_cache()
    torch.cuda.reset_peak_memory_stats()
    torch.cuda.synchronize()
    fn(*inputs, **kwinputs)
    torch.cuda.synchronize()
Tri Dao's avatar
Tri Dao committed
257
    mem = torch.cuda.max_memory_allocated() / ((2**20) * 1000)
Tri Dao's avatar
Tri Dao committed
258
    if verbose:
Tri Dao's avatar
Tri Dao committed
259
        print(f"{desc} max memory: {mem}GB")
Tri Dao's avatar
Tri Dao committed
260
261
    torch.cuda.empty_cache()
    return mem