flash_attn_interface.py 5.32 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) 2023, Tri Dao.

from typing import Optional, Union

import torch
import torch.nn as nn

# isort: off
# We need to import the CUDA kernels after importing torch
import flashattn_hopper_cuda

# isort: on

youkaichao's avatar
youkaichao committed
14
15
def maybe_contiguous(x):
    return x.contiguous() if x is not None and x.stride(-1) != 1 else x
Tri Dao's avatar
Tri Dao committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

def _flash_attn_forward(q, k, v, softmax_scale, causal):
    q, k, v = [maybe_contiguous(x) for x in (q, k, v)]
    out, q, k, v, out_padded, softmax_lse, S_dmask = flashattn_hopper_cuda.fwd(
        q,
        k,
        v,
        None,
        softmax_scale,
        causal,
    )
    return out, q, k, v, out_padded, softmax_lse, S_dmask


def _flash_attn_backward(
    dout,
    q,
    k,
    v,
    out,
    softmax_lse,
    dq,
    dk,
    dv,
    softmax_scale,
    causal
):
    # dq, dk, dv are allocated by us so they should already be contiguous
    dout, q, k, v, out = [maybe_contiguous(x) for x in (dout, q, k, v, out)]
    dq, dk, dv, softmax_d, = flashattn_hopper_cuda.bwd(
        dout,
        q,
        k,
        v,
        out,
        softmax_lse,
        dq,
        dk,
        dv,
        softmax_scale,
        causal,
    )
    return dq, dk, dv, softmax_d


class FlashAttnFunc(torch.autograd.Function):
    @staticmethod
    def forward(
        ctx,
        q,
        k,
        v,
        softmax_scale,
        causal,
    ):
        if softmax_scale is None:
            softmax_scale = q.shape[-1] ** (-0.5)
        out, q, k, v, out_padded, softmax_lse, S_dmask = _flash_attn_forward(
            q,
            k,
            v,
            softmax_scale,
            causal
        )
        ctx.save_for_backward(q, k, v, out_padded, softmax_lse)
        ctx.softmax_scale = softmax_scale
        ctx.causal = causal
        return out, softmax_lse

    @staticmethod
    def backward(ctx, dout, *args):
        q, k, v, out, softmax_lse = ctx.saved_tensors
        dq, dk, dv = torch.empty_like(q), torch.empty_like(k), torch.empty_like(v)
        _flash_attn_backward(
            dout,
            q,
            k,
            v,
            out,
            softmax_lse,
            dq,
            dk,
            dv,
            ctx.softmax_scale,
            ctx.causal,
        )
        dq = dq[..., : dout.shape[-1]]  # We could have padded the head dimension
        dk = dk[..., : dout.shape[-1]]
        dv = dv[..., : dout.shape[-1]]
        return dq, dk, dv, None, None


def flash_attn_func(
    q,
    k,
    v,
    softmax_scale=None,
    causal=False,
):
    """dropout_p should be set to 0.0 during evaluation
    Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
    than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
    For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
    0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.

    If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
    For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
        1 1 1 1 0
        1 1 1 1 1
    If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
        0 0
        0 0
        0 0
        1 0
        1 1
    If the row of the mask is all zero, the output will be zero.

    If window_size != (-1, -1), implements sliding window local attention. Query at position i
    will only attend to keys between
    [i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.

    Arguments:
        q: (batch_size, seqlen, nheads, headdim)
        k: (batch_size, seqlen, nheads_k, headdim)
        v: (batch_size, seqlen, nheads_k, headdim)
        dropout_p: float. Dropout probability.
        softmax_scale: float. The scaling of QK^T before applying softmax.
            Default to 1 / sqrt(headdim).
        causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
        window_size: (left, right). If not (-1, -1), implements sliding window local attention.
        alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of
            (-alibi_slope * |i + seqlen_k - seqlen_q - j|)
            is added to the attention score of query i and key j.
        deterministic: bool. Whether to use the deterministic implementation of the backward pass,
            which is slightly slower and uses more memory. The forward pass is always deterministic.
        return_attn_probs: bool. Whether to return the attention probabilities. This option is for
           testing only. The returned probabilities are not guaranteed to be correct
           (they might not have the right scaling).
    Return:
        out: (batch_size, seqlen, nheads, headdim).
        softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
            logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
            normalization factor).
        S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
            The output of softmax (possibly with different scaling). It also encodes the dropout
            pattern (negative means that location was dropped, nonnegative means it was kept).
    """
    return FlashAttnFunc.apply(
        q,
        k,
        v,
        softmax_scale,
        causal,
    )