block.py 9.21 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright (c) 2022, Tri Dao.

from typing import Optional
from functools import partial

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor

from torchvision.ops import StochasticDepth

from flash_attn.modules.mha import MHA
from flash_attn.modules.mlp import Mlp

try:
    from flash_attn.ops.layer_norm import dropout_add_layer_norm
except ImportError:
    dropout_add_layer_norm = None


class Block(nn.Module):

    def __init__(self, dim, mixer_cls=None, mlp_cls=None, norm_cls=nn.LayerNorm,
Tri Dao's avatar
Tri Dao committed
25
26
27
                 dropout_cls=nn.Dropout, prenorm=True, resid_dropout1=0., resid_dropout2=0.,
                 drop_path1=0., drop_path2=0., fused_dropout_add_ln=False, return_residual=False,
                 residual_in_fp32=False, sequence_parallel=False, mark_shared_params=False):
Tri Dao's avatar
Tri Dao committed
28
        """
Tri Dao's avatar
Tri Dao committed
29
30
31
32
33
34
35
36
37
38
39
40
        For prenorm=True, this Block has a slightly different structure compared to a regular
        prenorm Transformer block.
        The standard block is: LN -> MHA -> Dropout -> Add -> LN -> MLP -> Dropout -> Add.
        [Ref: https://arxiv.org/abs/2002.04745]
        Here we have: Dropout -> Add -> LN -> MHA -> Dropout -> Add -> LN -> MLP, returning both
        the hidden_states (output of the MLP) and the residual.
        This is for performance reasons, as we can fuse the dropout, add and LayerNorm.
        The residual needs to be provided (except for the very first block).

        For prenorm=False, this Block has the same structure as a regular postnorm Transformer
        block: MHA -> Dropout -> Add -> LN -> MLP -> Dropout -> Add -> LN.

Tri Dao's avatar
Tri Dao committed
41
42
43
44
        return_residual: whether each of the sub-layers (mixer and mlp) will return the residual.
        This is for performance reason: for post-norm architecture, returning the input allows us
        to fuse the backward of nn.Linear with the residual connection.
        """
45
46
47
        super().__init__()
        self.prenorm = prenorm
        self.fused_dropout_add_ln = fused_dropout_add_ln
Tri Dao's avatar
Tri Dao committed
48
        self.return_residual = return_residual
Tri Dao's avatar
Tri Dao committed
49
50
51
        self.residual_in_fp32 = residual_in_fp32
        if self.residual_in_fp32:
            assert self.prenorm, 'residual_in_fp32 is only compatible with prenorm=True'
52
53
54
55
56
        if mixer_cls is None:
            mixer_cls = partial(MHA, num_heads=dim // 64)
        if mlp_cls is None:
            mlp_cls = partial(Mlp, hidden_features=4 * dim)
        self.mixer = mixer_cls(dim)
Tri Dao's avatar
Tri Dao committed
57
58
        self.dropout1 = dropout_cls(resid_dropout1)
        self.drop_path1 = StochasticDepth(drop_path1, mode='row')
59
60
61
        self.norm1 = norm_cls(dim)
        self.mlp = mlp_cls(dim)
        if not isinstance(self.mlp, nn.Identity):
Tri Dao's avatar
Tri Dao committed
62
63
            self.dropout2 = dropout_cls(resid_dropout2)
            self.drop_path2 = StochasticDepth(drop_path2, mode='row')
64
65
66
67
68
69
            self.norm2 = norm_cls(dim)

        if self.fused_dropout_add_ln:
            assert dropout_add_layer_norm is not None, 'dropout_add_ln is not installed'
            assert isinstance(self.norm1, nn.LayerNorm) and isinstance(self.dropout1, nn.Dropout)

70
71
72
73
74
75
        # TD [2023-01-07]: TODO: During training, if sequence_parallel is False and dropout != 0.0,
        # then the input to each worker in the tensor parallel group will be different.
        # This would produce wrong outputs? Somehow we'd need to sync the RNG state across workers.
        # For now this is not an issue because we always use sequence_parallel=True during training
        # and only use sequence_parallel=False during inference.

76
77
78
79
80
81
82
        # Mark the norm parameters as "sequence_parallel" so that we run all-reduce on their grads.
        if sequence_parallel:
            for p in self.norm1.parameters():
                p._sequence_parallel = True
            if hasattr(self, 'norm2'):
                for p in self.norm2.parameters():
                    p._sequence_parallel = True
83
84
85
86
87
88
89
        # Mark the norm parameters as "shared_params" so that we sync their values at init.
        if mark_shared_params:
            for p in self.norm1.parameters():
                p._shared_params = True
            if hasattr(self, 'norm2'):
                for p in self.norm2.parameters():
                    p._shared_params = True
90

91
92
93
94
95
96
    def forward(self, hidden_states: Tensor, residual: Optional[Tensor] = None,
                mixer_kwargs=None):
        r"""Pass the input through the encoder layer.

        Args:
            hidden_states: the sequence to the encoder layer (required).
97
            residual: if postnorm, residual=None, If prenorm, hidden_states = Attn/MLP(LN(residual))
98
99
100
        """
        if self.prenorm:
            if not self.fused_dropout_add_ln:
Tri Dao's avatar
Tri Dao committed
101
102
                dropped = self.drop_path1(self.dropout1(hidden_states))
                residual = (dropped + residual) if residual is not None else dropped
103
                hidden_states = self.norm1(residual.to(dtype=self.norm1.weight.dtype))
Tri Dao's avatar
Tri Dao committed
104
105
                if self.residual_in_fp32:
                    residual = residual.to(torch.float32)
106
107
108
109
110
            else:
                if self.drop_path1.p == 0 or not self.training:
                    rowscale1 = None
                else:
                    rowscale1 = self.drop_path1(torch.ones(
Tri Dao's avatar
Tri Dao committed
111
112
                        hidden_states.shape[:-1], device=hidden_states.device,
                        dtype=hidden_states.dtype)
113
114
                    )
                hidden_states, residual = dropout_add_layer_norm(
Tri Dao's avatar
Tri Dao committed
115
                    hidden_states, residual, self.norm1.weight, self.norm1.bias,
116
                    self.dropout1.p if self.training else 0.0, self.norm1.eps,
Tri Dao's avatar
Tri Dao committed
117
                    rowscale=rowscale1, prenorm=True, residual_in_fp32=self.residual_in_fp32
118
                )
Tri Dao's avatar
Tri Dao committed
119
120
            hidden_states = self.mixer(hidden_states,
                                       **(mixer_kwargs if mixer_kwargs is not None else {}))
121
122
            if not isinstance(self.mlp, nn.Identity):
                if not self.fused_dropout_add_ln:
Tri Dao's avatar
Tri Dao committed
123
124
                    dropped = self.drop_path2(self.dropout2(hidden_states))
                    residual = (dropped + residual) if residual is not None else dropped
125
                    hidden_states = self.norm2(residual.to(dtype=self.norm2.weight.dtype))
Tri Dao's avatar
Tri Dao committed
126
127
                    if self.residual_in_fp32:
                        residual = residual.to(torch.float32)
128
129
130
131
132
                else:
                    if self.drop_path2.p == 0 or not self.training:
                        rowscale2 = None
                    else:
                        rowscale2 = self.drop_path2(torch.ones(
Tri Dao's avatar
Tri Dao committed
133
134
                            hidden_states.shape[:-1], device=hidden_states.device,
                            dtype=hidden_states.dtype)
135
136
                        )
                    hidden_states, residual = dropout_add_layer_norm(
Tri Dao's avatar
Tri Dao committed
137
                        hidden_states, residual, self.norm2.weight, self.norm2.bias,
138
                        self.dropout2.p if self.training else 0.0, self.norm2.eps,
Tri Dao's avatar
Tri Dao committed
139
                        rowscale=rowscale2, prenorm=True, residual_in_fp32=self.residual_in_fp32
140
                    )
Tri Dao's avatar
Tri Dao committed
141
                hidden_states = self.mlp(hidden_states)
142
143
144
            return hidden_states, residual
        else:
            assert residual is None
Tri Dao's avatar
Tri Dao committed
145
146
147
148
149
            mixer_out = self.mixer(
                hidden_states, **(mixer_kwargs if mixer_kwargs is not None else {})
            )
            if self.return_residual:  # mixer out is actually a pair here
                mixer_out, hidden_states = mixer_out
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
            if not self.fused_dropout_add_ln:
                hidden_states = self.norm1((self.drop_path1(self.dropout1(mixer_out))
                                            + hidden_states).to(dtype=self.norm1.weight.dtype))
            else:
                if self.drop_path1.p == 0 or not self.training:
                    rowscale1 = None
                else:
                    rowscale1 = self.drop_path1(torch.ones(
                        mixer_out.shape[:-1], device=mixer_out.device, dtype=mixer_out.dtype)
                    )
                hidden_states = dropout_add_layer_norm(
                    mixer_out, hidden_states, self.norm1.weight, self.norm1.bias,
                    self.dropout1.p if self.training else 0.0, self.norm1.eps,
                    rowscale=rowscale1, prenorm=False
                )
            if not isinstance(self.mlp, nn.Identity):
                mlp_out = self.mlp(hidden_states)
Tri Dao's avatar
Tri Dao committed
167
168
                if self.return_residual:  # mlp out is actually a pair here
                    mlp_out, hidden_states = mlp_out
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
                if not self.fused_dropout_add_ln:
                    hidden_states = self.norm2((self.drop_path2(self.dropout2(mlp_out))
                                                + hidden_states).to(dtype=self.norm2.weight.dtype))
                else:
                    if self.drop_path2.p == 0 or not self.training:
                        rowscale2 = None
                    else:
                        rowscale2 = self.drop_path2(torch.ones(
                            mlp_out.shape[:-1], device=mlp_out.device, dtype=mlp_out.dtype)
                        )
                    hidden_states = dropout_add_layer_norm(
                        mlp_out, hidden_states, self.norm2.weight, self.norm2.bias,
                        self.dropout2.p if self.training else 0.0, self.norm2.eps,
                        rowscale=rowscale2, prenorm=False
                    )
            return hidden_states