vit.py 12.1 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
5
6
7
8
9
10
11
# Copyright (c) 2022, Tri Dao.
# Inspired by / adapted from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
import math
from functools import partial
from copy import deepcopy

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.init import trunc_normal_

12
13
from torchvision.ops import StochasticDepth

Tri Dao's avatar
Tri Dao committed
14
15
16
17
18
19
20
21
22
from einops import rearrange

from timm.models.helpers import named_apply
from flash_attn.layers.patch_embed import PatchEmbed

from flash_attn.modules.mha import MHA
from flash_attn.modules.mlp import Mlp, FusedDenseGeluDense
from flash_attn.modules.block import Block

23
24
25
26
27
try:
    from flash_attn.ops.layer_norm import dropout_add_layer_norm
except ImportError:
    dropout_add_layer_norm = None

Tri Dao's avatar
Tri Dao committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

def create_mixer_cls(num_heads, qkv_bias, attn_drop, use_flash_attn, fused_bias_fc,
                     cross_attn=False):
    mixer_cls = partial(MHA, num_heads=num_heads, cross_attn=cross_attn, bias=qkv_bias,
                        dropout=attn_drop, fused_bias_fc=fused_bias_fc,
                        use_flash_attn=use_flash_attn)
    return mixer_cls


def create_mlp_cls(embed_dim, mlp_ratio, act_layer, fused_dense_gelu_dense):
    inner_dim = int(embed_dim * mlp_ratio)
    if not fused_dense_gelu_dense:
        mlp_cls = partial(Mlp, hidden_features=inner_dim, activation=act_layer())
    else:
        mlp_cls = partial(FusedDenseGeluDense, hidden_features=inner_dim)
    return mlp_cls


46
47
48
49
def create_block(embed_dim, num_heads, mlp_ratio, qkv_bias, drop_rate, attn_drop_rate,
                 drop_path1, drop_path2, norm_layer, act_layer, use_flash_attn, fused_bias_fc,
                 fused_dense_gelu_dense, fused_dropout_add_ln, layer_idx=None, n_layer=None,
                 last_layer_subset=False):
Tri Dao's avatar
Tri Dao committed
50
51
52
    mixer_cls = create_mixer_cls(num_heads, qkv_bias, attn_drop_rate, use_flash_attn, fused_bias_fc,
                                 cross_attn=(last_layer_subset and layer_idx == n_layer - 1))
    mlp_cls = create_mlp_cls(embed_dim, mlp_ratio, act_layer, fused_dense_gelu_dense)
53
    # TD [2022-10-15]: Force residual in fp32 in case of DeepSpeed
Tri Dao's avatar
Tri Dao committed
54
    block = Block(embed_dim, mixer_cls, mlp_cls, norm_cls=norm_layer,
55
56
57
                  prenorm=True, resid_dropout1=drop_rate, resid_dropout2=drop_rate,
                  drop_path1=drop_path1, drop_path2=drop_path2,
                  fused_dropout_add_ln=fused_dropout_add_ln, residual_in_fp32=True)
Tri Dao's avatar
Tri Dao committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    return block


class VisionTransformer(nn.Module):
    """ Vision Transformer
    A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`
        - https://arxiv.org/abs/2010.11929
    """
    def __init__(
            self,
            img_size=224,
            patch_size=16,
            in_chans=3,
            num_classes=1000,
            global_pool='token',
            embed_dim=768,
            depth=12,
            num_heads=12,
            mlp_ratio=4.,
            qkv_bias=True,
            init_values=None,
            class_token=True,
            no_embed_class=False,
            pre_norm=False,
            fc_norm=None,
            drop_rate=0.,
            attn_drop_rate=0.,
            drop_path_rate=0.,
            weight_init='',
            embed_layer=PatchEmbed,
            norm_layer=None,
            act_layer=None,
            use_flash_attn=False,
            fused_bias_fc=False,
            fused_dense_gelu_dense=False,
            fused_dropout_add_ln=False,
    ):
        """
        Args:
            img_size (int, tuple): input image size
            patch_size (int, tuple): patch size
            in_chans (int): number of input channels
            num_classes (int): number of classes for classification head
            global_pool (str): type of global pooling for final sequence (default: 'token')
            embed_dim (int): embedding dimension
            depth (int): depth of transformer
            num_heads (int): number of attention heads
            mlp_ratio (int): ratio of mlp hidden dim to embedding dim
            qkv_bias (bool): enable bias for qkv if True
            init_values: (float): layer-scale init values
            class_token (bool): use class token
            fc_norm (Optional[bool]): pre-fc norm after pool, set if global_pool == 'avg' if None (default: None)
            drop_rate (float): dropout rate
            attn_drop_rate (float): attention dropout rate
            drop_path_rate (float): stochastic depth rate
            weight_init (str): weight init scheme
            embed_layer (nn.Module): patch embedding layer
            norm_layer: (nn.Module): normalization layer
            act_layer: (nn.Module): MLP activation layer
        """
        super().__init__()
        assert global_pool == 'token', 'Only support pooling with CLS token'
        assert class_token
        assert init_values is None, 'LayerScale is not supported yet'
        assert weight_init == ''
        assert fc_norm is None
        # pre_norm seems redundant, as there's a LayerNorm right at the start of each block, idk
        assert not pre_norm
        use_fc_norm = global_pool == 'avg' if fc_norm is None else fc_norm
        norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
        act_layer = act_layer or nn.GELU

        self.num_classes = num_classes
        self.global_pool = global_pool
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        self.num_prefix_tokens = 1 if class_token else 0
        self.no_embed_class = no_embed_class

        patch_embed_extra_kwargs = ({'fused_bias_fc': fused_bias_fc} if embed_layer is PatchEmbed
                                    else {})
        self.patch_embed = embed_layer(
            img_size=img_size,
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim,
            bias=not pre_norm,  # disable bias if pre-norm is used (e.g. CLIP)
            **patch_embed_extra_kwargs
        )
        num_patches = self.patch_embed.num_patches

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if class_token else None
        embed_len = num_patches if no_embed_class else num_patches + self.num_prefix_tokens
        self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * .02)

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule

154
        # We change the order of dropout, residual and layer norm:
Tri Dao's avatar
Tri Dao committed
155
        # Instead of LN -> Attn / MLP -> Dropout -> Add, we do:
156
157
158
        # Dropout -> Add -> LN -> Attn / MLP, returning both the residual branch (output of Add) and
        # the main branch (output of MLP). The model definition is unchanged, but the mapping of the
        # nn.Dropout probabilities are changed.
Tri Dao's avatar
Tri Dao committed
159
160
        # This is for performance reason: we can fuse dropout + add + layer_norm.
        self.blocks = nn.ModuleList([create_block(
161
162
            embed_dim, num_heads, mlp_ratio, qkv_bias, drop_rate, attn_drop_rate,
            drop_path1=dpr[i-1] if i > 0 else 0., drop_path2=dpr[i],
Tri Dao's avatar
Tri Dao committed
163
164
165
166
167
168
            norm_layer=norm_layer, act_layer=act_layer, use_flash_attn=use_flash_attn,
            fused_bias_fc=fused_bias_fc, fused_dense_gelu_dense=fused_dense_gelu_dense,
            fused_dropout_add_ln=fused_dropout_add_ln, layer_idx=i, n_layer=depth,
            last_layer_subset=(global_pool == 'token')
        ) for i in range(depth)])

169
170
171
172
173
174
175
176
        self.dropout = nn.Dropout(p=drop_rate)
        self.drop_path = StochasticDepth(p=dpr[-1], mode='row')
        self.norm = norm_layer(embed_dim)

        self.fused_dropout_add_ln = fused_dropout_add_ln
        if self.fused_dropout_add_ln and dropout_add_layer_norm is None:
            raise ImportError('dropout_add_layer_norm is not installed')

Tri Dao's avatar
Tri Dao committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
        # Classifier Head
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()

        self.init_weights(weight_init)

    def init_weights(self, mode=''):
        assert mode == ''
        trunc_normal_(self.pos_embed, std=.02)
        if self.cls_token is not None:
            nn.init.normal_(self.cls_token, std=1e-6)
        named_apply(init_weights_vit_timm, self)

    def _init_weights(self, m):
        # this fn left here for compat with downstream users
        init_weights_vit_timm(m)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed', 'cls_token'}

    def _pos_embed(self, x):
        if self.no_embed_class:
            # deit-3, updated JAX (big vision)
            # position embedding does not overlap with class token, add then concat
            x = x + self.pos_embed
            if self.cls_token is not None:
                x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
        else:
            # original timm, JAX, and deit vit impl
            # pos_embed has entry for class token, concat then add
            if self.cls_token is not None:
                x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
            x = x + self.pos_embed
210
        return x
Tri Dao's avatar
Tri Dao committed
211
212
213
214
215
216
217

    def forward_features(self, x, all_tokens=True):
        """
        If all_tokens==False and self.global_pool == 'token', we only return the features for the
        cls token.
        """
        x = self.patch_embed(x)
218
219
        hidden_states = self._pos_embed(x)
        residual = None
Tri Dao's avatar
Tri Dao committed
220
221
222
223
224
225
226
227
228
229
        if self.global_pool != 'token' or all_tokens:
            for block in self.blocks:
                hidden_states, residual = block(hidden_states, residual)
        else:
            for block in self.blocks[:-1]:
                hidden_states, residual = block(hidden_states, residual)
            # For the last layer, we only want the 1st token of the output. So we do cross-attention
            # where the query is the 1st token and the key/value is the whole sequence.
            hidden_states_1st = rearrange(hidden_states[:, 0], 'b d -> b 1 d')
            residual_1st = rearrange(residual[:, 0], 'b d -> b 1 d')
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
            hidden_states, residual = self.blocks[-1](hidden_states_1st, residual_1st,
                                                      mixer_kwargs={'x_kv': hidden_states})
        if not self.fused_dropout_add_ln:
            residual = self.drop_path(self.dropout(hidden_states)) + residual
            hidden_states = self.norm(residual.to(dtype=self.norm.weight.dtype))
        else:
            if self.drop_path.p == 0 or not self.training:
                rowscale = None
            else:
                rowscale = self.drop_path(torch.ones(
                    hidden_states.shape[:-1], device=hidden_states.device,
                    dtype=hidden_states.dtype)
                )
            # Set prenorm=False here since we don't need to the residual
            hidden_states = dropout_add_layer_norm(
                hidden_states, residual, self.norm.weight, self.norm.bias,
                self.dropout.p if self.training else 0.0, self.norm.eps, rowscale=rowscale,
                prenorm=False, residual_in_fp32=True
            )
Tri Dao's avatar
Tri Dao committed
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
        return hidden_states

    def forward_head(self, x, pre_logits: bool = False):
        if self.global_pool:
            x = x[:, self.num_prefix_tokens:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0]
        return x if pre_logits else self.head(x)

    def forward(self, x):
        x = self.forward_features(x, all_tokens=False)
        x = self.forward_head(x)
        return x


def init_weights_vit_timm(module: nn.Module, name: str = ''):
    """ ViT weight initialization, original timm impl (for reproducibility) """
    if isinstance(module, nn.Linear):
        trunc_normal_(module.weight, std=.02)
        if module.bias is not None:
            nn.init.zeros_(module.bias)
    elif hasattr(module, 'init_weights'):
        module.init_weights()


def vit_base_patch16_224(pretrained=False, **kwargs):
    """ ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
    """
    assert not pretrained
    model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
    model = VisionTransformer(**model_kwargs)
    return model