rotary.py 6.76 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
# Inspired by https://github.com/facebookresearch/xformers/blob/main/xformers/components/positional_embedding/rotary.py
Tri Dao's avatar
Tri Dao committed
2
3
4
5
6
7
8
9

from typing import Tuple
import math

import torch

from einops import rearrange, repeat

Tri Dao's avatar
Tri Dao committed
10
import rotary_emb
Tri Dao's avatar
Tri Dao committed
11
12


Tri Dao's avatar
Tri Dao committed
13
14
15
def rotate_half(x):
    x1, x2 = x.chunk(2, dim=-1)
    return torch.cat((-x2, x1), dim=-1)
Tri Dao's avatar
Tri Dao committed
16
17


Tri Dao's avatar
Tri Dao committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
def apply_rotary_emb_torch(x, cos, sin):
    """
    x: (batch_size, seqlen, nheads, headdim)
    cos, sin: (seqlen, rotary_dim / 2)
    """
    rotary_dim = cos.shape[-1] * 2
    assert rotary_dim <= x.shape[-1]
    cos = repeat(cos, 's d -> s 1 (2 d)')
    sin = repeat(sin, 's d -> s 1 (2 d)')
    return torch.cat([x[..., :rotary_dim] * cos + rotate_half(x[..., :rotary_dim]) * sin,
                      x[..., rotary_dim:]], dim=-1)


class ApplyRotaryEmb(torch.autograd.Function):

    @staticmethod
    def forward(ctx, x, cos, sin, inplace=False):
        """
            x: (batch_size, seqlen, nheads, headdim)
            cos, sin: (seqlen, rotary_dim / 2)
        rotary_dim must be <= headdim
        Apply rotary embedding to the first rotary_dim of x.
        """
        batch, seqlen, nheads, headdim = x.shape
        rotary_seqlen, rotary_dim = cos.shape
        rotary_dim *= 2
        assert rotary_dim <= headdim
        assert seqlen <= rotary_seqlen
Alexander Ploshkin's avatar
Alexander Ploshkin committed
46
        assert sin.shape == (rotary_seqlen, rotary_dim // 2)
Tri Dao's avatar
Tri Dao committed
47
48
49
        x1, x2 = x[..., :rotary_dim].chunk(2, dim=-1)
        out = torch.empty_like(x) if not inplace else x
        o1, o2 = out[..., :rotary_dim].chunk(2, dim=-1) if not inplace else (x1, x2)
Alexander Ploshkin's avatar
Alexander Ploshkin committed
50
51
        rotary_emb.apply_rotary(x1, x2, rearrange(cos[:seqlen], 's d -> s 1 d'),
                                rearrange(sin[:seqlen], 's d -> s 1 d'), o1, o2, False)
Tri Dao's avatar
Tri Dao committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
        if not inplace and rotary_dim < headdim:
            out[..., rotary_dim:].copy_(x[..., rotary_dim:])
        ctx.save_for_backward(cos, sin)
        ctx.inplace = inplace
        return out if not inplace else x

    @staticmethod
    def backward(ctx, do):
        cos, sin = ctx.saved_tensors
        _, seqlen, _, headdim = do.shape
        rotary_dim = cos.shape[-1]
        rotary_dim *= 2
        inplace = ctx.inplace
        do1, do2 = do[..., :rotary_dim].chunk(2, dim=-1)
        dx = torch.empty_like(do) if not inplace else do
        dx1, dx2 = dx[..., :rotary_dim].chunk(2, dim=-1) if not inplace else (do1, do2)
Alexander Ploshkin's avatar
Alexander Ploshkin committed
68
69
        rotary_emb.apply_rotary(do1, do2, rearrange(cos[:seqlen], 's d -> s 1 d'),
                                rearrange(sin[:seqlen], 's d -> s 1 d'), dx1, dx2, True)
Tri Dao's avatar
Tri Dao committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
        if not inplace and rotary_dim < headdim:
            dx[..., rotary_dim:].copy_(do[..., rotary_dim:])
        return dx, None, None, None


apply_rotary_emb_func = ApplyRotaryEmb.apply


class ApplyRotaryEmbQKV_(torch.autograd.Function):

    @staticmethod
    def forward(ctx, qkv, cos, sin):
        """
            qkv: (batch_size, seqlen, 3, nheads, headdim)
            cos, sin: (seqlen, rotary_dim / 2)
        rotary_dim must be <= headdim
        Apply rotary embedding *inplace* to the first rotary_dim of q and k.
        """
        batch, seqlen, three, nheads, headdim = qkv.shape
        assert three == 3
        rotary_seqlen, rotary_dim = cos.shape
        rotary_dim *= 2
        assert rotary_dim <= headdim
        assert seqlen <= rotary_seqlen
Alexander Ploshkin's avatar
Alexander Ploshkin committed
94
        assert sin.shape == (rotary_seqlen, rotary_dim // 2)
Tri Dao's avatar
Tri Dao committed
95
        q1, q2 = qkv[:, :, 0, :, :rotary_dim].chunk(2, dim=-1)
Alexander Ploshkin's avatar
Alexander Ploshkin committed
96
97
        rotary_emb.apply_rotary(q1, q2, rearrange(cos[:seqlen], 's d -> s 1 d'),
                                rearrange(sin[:seqlen], 's d -> s 1 d'), q1, q2, False)
Tri Dao's avatar
Tri Dao committed
98
        k1, k2 = qkv[:, :, 1, :, :rotary_dim].chunk(2, dim=-1)
Alexander Ploshkin's avatar
Alexander Ploshkin committed
99
100
        rotary_emb.apply_rotary(k1, k2, rearrange(cos[:seqlen], 's d -> s 1 d'),
                                rearrange(sin[:seqlen], 's d -> s 1 d'), k1, k2, False)
Tri Dao's avatar
Tri Dao committed
101
102
103
104
105
106
107
108
109
110
        ctx.save_for_backward(cos, sin)
        return qkv

    @staticmethod
    def backward(ctx, dqkv):
        cos, sin = ctx.saved_tensors
        _, seqlen, _, _, headdim = dqkv.shape
        rotary_dim = cos.shape[-1]
        rotary_dim *= 2
        dq1, dq2 = dqkv[:, :, 0, :, :rotary_dim].chunk(2, dim=-1)
Alexander Ploshkin's avatar
Alexander Ploshkin committed
111
112
        rotary_emb.apply_rotary(dq1, dq2, rearrange(cos[:seqlen], 's d -> s 1 d'),
                                rearrange(sin[:seqlen], 's d -> s 1 d'), dq1, dq2, True)
Tri Dao's avatar
Tri Dao committed
113
        dk1, dk2 = dqkv[:, :, 1, :, :rotary_dim].chunk(2, dim=-1)
Alexander Ploshkin's avatar
Alexander Ploshkin committed
114
115
        rotary_emb.apply_rotary(dk1, dk2, rearrange(cos[:seqlen], 's d -> s 1 d'),
                                rearrange(sin[:seqlen], 's d -> s 1 d'), dk1, dk2, True)
Tri Dao's avatar
Tri Dao committed
116
117
118
119
        return dqkv, None, None


apply_rotary_emb_qkv_ = ApplyRotaryEmbQKV_.apply
Tri Dao's avatar
Tri Dao committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136


class RotaryEmbedding(torch.nn.Module):
    """
    The rotary position embeddings from RoFormer_ (Su et. al).
    A crucial insight from the method is that the query and keys are
    transformed by rotation matrices which depend on the relative positions.

    Other implementations are available in the Rotary Transformer repo_ and in
    GPT-NeoX_, GPT-NeoX was an inspiration

    .. _RoFormer: https://arxiv.org/abs/2104.09864
    .. _repo: https://github.com/ZhuiyiTechnology/roformer
    .. _GPT-NeoX: https://github.com/EleutherAI/gpt-neox

    """

137
    def __init__(self, dim: int, base=10000, *_, **__):
Tri Dao's avatar
Tri Dao committed
138
139
        super().__init__()
        # Generate and save the inverse frequency buffer (non trainable)
140
        inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
Tri Dao's avatar
Tri Dao committed
141
142
        self.register_buffer("inv_freq", inv_freq)

Tri Dao's avatar
Tri Dao committed
143
        self._seq_len_cached = 0
Tri Dao's avatar
Tri Dao committed
144
145
146
        self._cos_cached = None
        self._sin_cached = None

147
    def _update_cos_sin_cache(self, x, seqlen_offset=0):
Tri Dao's avatar
Tri Dao committed
148
149
        """x: (batch, seqlen, nheads, headdim) or (batch, seqlen, 3, nheads, headdim)
        """
150
        seqlen = x.shape[1] + seqlen_offset
Tri Dao's avatar
Tri Dao committed
151
152
        # Reset the tables if the sequence length has changed,
        # or if we're on a new device (possibly due to tracing for instance)
Tri Dao's avatar
Tri Dao committed
153
        if (seqlen > self._seq_len_cached or self._cos_cached.device != x.device
Tri Dao's avatar
Tri Dao committed
154
            or self._cos_cached.dtype != x.dtype):
Tri Dao's avatar
Tri Dao committed
155
156
            self._seq_len_cached = seqlen
            t = torch.arange(seqlen, device=x.device, dtype=self.inv_freq.dtype)
Tri Dao's avatar
Tri Dao committed
157
158
159
            # Don't do einsum, it converts fp32 to fp16
            # freqs = torch.einsum("i,j->ij", t, self.inv_freq)
            freqs = torch.outer(t, self.inv_freq)
Tri Dao's avatar
Tri Dao committed
160
161
            self._cos_cached = torch.cos(freqs).to(x.dtype)
            self._sin_cached = torch.sin(freqs).to(x.dtype)
Tri Dao's avatar
Tri Dao committed
162

163
164
165
166
167
168
169
170
    def forward(self, qkv: torch.Tensor, seqlen_offset: int = 0) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        seqlen_offset: can be used in generation where the qkv being passed in is only the last
        token in the batch.
        """
        self._update_cos_sin_cache(qkv, seqlen_offset)
        return apply_rotary_emb_qkv_(qkv, self._cos_cached[seqlen_offset:],
                                     self._sin_cached[seqlen_offset:])