"...test/training_service/localTrainingService.test.ts" did not exist on "3e62e60b0376e54a33b7f8a2aed90560a61f7fe7"
flash_attn_interface.py 11.2 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) 2023, Tri Dao.

from typing import Optional, Union

import torch
import torch.nn as nn

# isort: off
# We need to import the CUDA kernels after importing torch
import flashattn_hopper_cuda

# isort: on

youkaichao's avatar
youkaichao committed
14
15
def maybe_contiguous(x):
    return x.contiguous() if x is not None and x.stride(-1) != 1 else x
Tri Dao's avatar
Tri Dao committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

def _flash_attn_forward(q, k, v, softmax_scale, causal):
    q, k, v = [maybe_contiguous(x) for x in (q, k, v)]
    out, q, k, v, out_padded, softmax_lse, S_dmask = flashattn_hopper_cuda.fwd(
        q,
        k,
        v,
        None,
        softmax_scale,
        causal,
    )
    return out, q, k, v, out_padded, softmax_lse, S_dmask


def _flash_attn_backward(
    dout,
    q,
    k,
    v,
    out,
    softmax_lse,
    dq,
    dk,
    dv,
    softmax_scale,
    causal
):
    # dq, dk, dv are allocated by us so they should already be contiguous
    dout, q, k, v, out = [maybe_contiguous(x) for x in (dout, q, k, v, out)]
    dq, dk, dv, softmax_d, = flashattn_hopper_cuda.bwd(
        dout,
        q,
        k,
        v,
        out,
        softmax_lse,
        dq,
        dk,
        dv,
        softmax_scale,
        causal,
    )
    return dq, dk, dv, softmax_d

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
def _flash_attn_varlen_forward(
    q,
    k,
    v,
    cu_seqlens_q,
    cu_seqlens_k,
    max_seqlen_q,
    max_seqlen_k,
    softmax_scale,
    causal,
):
    maybe_contiguous = lambda x: x.contiguous() if x.stride(-1) != 1 else x
    q, k, v = [maybe_contiguous(x) for x in (q, k, v)]
    out, q, k, v, out_padded, softmax_lse = flashattn_hopper_cuda.varlen_fwd(
        q,
        k,
        v,
        None,
        cu_seqlens_q,
        cu_seqlens_k,
        None,
        max_seqlen_q,
        max_seqlen_k,
        softmax_scale,
        causal,
    )
    # if out.isnan().any() or softmax_lse.isnan().any():
    #     breakpoint()
    return out, q, k, v, out_padded, softmax_lse


def _flash_attn_varlen_backward(
    dout,
    q,
    k,
    v,
    out,
    softmax_lse,
    dq,
    dk,
    dv,
    cu_seqlens_q,
    cu_seqlens_k,
    max_seqlen_q,
    max_seqlen_k,
    softmax_scale,
    causal,
):
    maybe_contiguous = lambda x: x.contiguous() if x.stride(-1) != 1 else x
    # dq, dk, dv are allocated by us so they should already be contiguous
    dout, q, k, v, out = [maybe_contiguous(x) for x in (dout, q, k, v, out)]
    (
        dq,
        dk,
        dv,
        softmax_d,
    ) = _get_fa_module().varlen_bwd(
        dout,
        q,
        k,
        v,
        out,
        softmax_lse,
        dq,
        dk,
        dv,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        softmax_scale,
        causal,
    )
    # if dk.isnan().any() or dk.isnan().any() or dv.isnan().any() or softmax_d.isnan().any():
    #     breakpoint()
    return dq, dk, dv, softmax_d

Tri Dao's avatar
Tri Dao committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

class FlashAttnFunc(torch.autograd.Function):
    @staticmethod
    def forward(
        ctx,
        q,
        k,
        v,
        softmax_scale,
        causal,
    ):
        if softmax_scale is None:
            softmax_scale = q.shape[-1] ** (-0.5)
        out, q, k, v, out_padded, softmax_lse, S_dmask = _flash_attn_forward(
            q,
            k,
            v,
            softmax_scale,
            causal
        )
        ctx.save_for_backward(q, k, v, out_padded, softmax_lse)
        ctx.softmax_scale = softmax_scale
        ctx.causal = causal
        return out, softmax_lse

    @staticmethod
    def backward(ctx, dout, *args):
        q, k, v, out, softmax_lse = ctx.saved_tensors
        dq, dk, dv = torch.empty_like(q), torch.empty_like(k), torch.empty_like(v)
        _flash_attn_backward(
            dout,
            q,
            k,
            v,
            out,
            softmax_lse,
            dq,
            dk,
            dv,
            ctx.softmax_scale,
            ctx.causal,
        )
        dq = dq[..., : dout.shape[-1]]  # We could have padded the head dimension
        dk = dk[..., : dout.shape[-1]]
        dv = dv[..., : dout.shape[-1]]
        return dq, dk, dv, None, None


185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
class FlashAttnVarlenFunc(torch.autograd.Function):
    @staticmethod
    def forward(
        ctx,
        q,
        k,
        v,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        softmax_scale,
        causal,
    ):
        if softmax_scale is None:
            softmax_scale = q.shape[-1] ** (-0.5)
        out, q, k, v, out_padded, softmax_lse = _flash_attn_varlen_forward(
            q,
            k,
            v,
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            softmax_scale,
            causal=causal,
        )
        ctx.save_for_backward(
            q, k, v, out_padded, softmax_lse, cu_seqlens_q, cu_seqlens_k
        )
        ctx.max_seqlen_q = max_seqlen_q
        ctx.max_seqlen_k = max_seqlen_k
        ctx.softmax_scale = softmax_scale
        ctx.causal = causal
        return out, softmax_lse

    @staticmethod
    def backward(ctx, dout, *args):
        # TODO: Uncomment these when var-seq-len is supported in bwd kernel.
        # q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k = ctx.saved_tensors
        # dq, dk, dv = torch.empty_like(q), torch.empty_like(k), torch.empty_like(v)
        # _flash_attn_varlen_backward(
        #     dout,
        #     q,
        #     k,
        #     v,
        #     out,
        #     softmax_lse,
        #     dq,
        #     dk,
        #     dv,
        #     cu_seqlens_q,
        #     cu_seqlens_k,
        #     ctx.max_seqlen_q,
        #     ctx.max_seqlen_k,
        #     ctx.softmax_scale,
        #     ctx.causal,
        # )
        # dq = dq[..., : dout.shape[-1]]  # We could have padded the head dimension
        # dk = dk[..., : dout.shape[-1]]
        # dv = dv[..., : dout.shape[-1]]
        # return dq, dk, dv, None, None, None, None, None, None, None, None, None, None, None, None
        return None, None, None, None, None, None, None, None, None, None, None, None, None, None, None


Tri Dao's avatar
Tri Dao committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
def flash_attn_func(
    q,
    k,
    v,
    softmax_scale=None,
    causal=False,
):
    """dropout_p should be set to 0.0 during evaluation
    Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
    than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
    For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
    0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.

    If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
    For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
        1 1 1 1 0
        1 1 1 1 1
    If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
        0 0
        0 0
        0 0
        1 0
        1 1
    If the row of the mask is all zero, the output will be zero.

    If window_size != (-1, -1), implements sliding window local attention. Query at position i
    will only attend to keys between
    [i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.

    Arguments:
        q: (batch_size, seqlen, nheads, headdim)
        k: (batch_size, seqlen, nheads_k, headdim)
        v: (batch_size, seqlen, nheads_k, headdim)
        dropout_p: float. Dropout probability.
        softmax_scale: float. The scaling of QK^T before applying softmax.
            Default to 1 / sqrt(headdim).
        causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
        window_size: (left, right). If not (-1, -1), implements sliding window local attention.
        alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of
            (-alibi_slope * |i + seqlen_k - seqlen_q - j|)
            is added to the attention score of query i and key j.
        deterministic: bool. Whether to use the deterministic implementation of the backward pass,
            which is slightly slower and uses more memory. The forward pass is always deterministic.
        return_attn_probs: bool. Whether to return the attention probabilities. This option is for
           testing only. The returned probabilities are not guaranteed to be correct
           (they might not have the right scaling).
    Return:
        out: (batch_size, seqlen, nheads, headdim).
        softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
            logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
            normalization factor).
        S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
            The output of softmax (possibly with different scaling). It also encodes the dropout
            pattern (negative means that location was dropped, nonnegative means it was kept).
    """
    return FlashAttnFunc.apply(
        q,
        k,
        v,
        softmax_scale,
        causal,
    )
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370


def flash_attn_varlen_func(
    q,
    k,
    v,
    cu_seqlens_q,
    cu_seqlens_k,
    max_seqlen_q,
    max_seqlen_k,
    softmax_scale=None,
    causal=False,
):
    """
    Supports multi-query and grouped-query attention (MQA/GQA) by passing in K, V with fewer heads
    than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
    For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
    0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
    If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
    For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
        1 1 1 1 0
        1 1 1 1 1
    If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
        0 0
        0 0
        0 0
        1 0
        1 1
    If the row of the mask is all zero, the output will be zero.
    Arguments:
        q: (total_q, nheads, headdim), where total_q = total number of query tokens in the batch.
        k: (total_k, nheads_k, headdim), where total_k = total number of key tokens in the batch.
        v: (total_k, nheads_k, headdim), where total_k = total number of key tokens in the batch.
        cu_seqlens_q: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
           of the sequences in the batch, used to index into q.
        cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
           of the sequences in the batch, used to index into kv.
        max_seqlen_q: int. Maximum query sequence length in the batch.
        max_seqlen_k: int. Maximum key sequence length in the batch.
        softmax_scale: float. The scaling of QK^T before applying softmax.
            Default to 1 / sqrt(headdim).
        causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
    Return:
        out: (total, nheads, headdim).
        softmax_lse [optional, if return_attn_probs=True]: (nheads, total_q_seqlen). The
            logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
            normalization factor).
    """
    return FlashAttnVarlenFunc.apply(
        q,
        k,
        v,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        softmax_scale,
        causal,
    )