setup.py 5.41 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
# Adapted from https://github.com/NVIDIA/apex/blob/master/setup.py
2
3
4
5
6
import sys
import warnings
import os
from packaging.version import parse, Version

Tri Dao's avatar
Tri Dao committed
7
8
9
10
11
12
13
14
15
16
17
18
19
import torch
from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME
from setuptools import setup, find_packages
import subprocess

# ninja build does not work unless include_dirs are abs path
this_dir = os.path.dirname(os.path.abspath(__file__))


def get_cuda_bare_metal_version(cuda_dir):
    raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True)
    output = raw_output.split()
    release_idx = output.index("release") + 1
20
    bare_metal_version = parse(output[release_idx].split(",")[0])
Tri Dao's avatar
Tri Dao committed
21

22
    return raw_output, bare_metal_version
Tri Dao's avatar
Tri Dao committed
23
24
25


def check_cuda_torch_binary_vs_bare_metal(cuda_dir):
26
27
    raw_output, bare_metal_version = get_cuda_bare_metal_version(cuda_dir)
    torch_binary_version = parse(torch.version.cuda)
Tri Dao's avatar
Tri Dao committed
28
29
30
31

    print("\nCompiling cuda extensions with")
    print(raw_output + "from " + cuda_dir + "/bin\n")

32
    if (bare_metal_version != torch_binary_version):
Tri Dao's avatar
Tri Dao committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
        raise RuntimeError(
            "Cuda extensions are being compiled with a version of Cuda that does "
            "not match the version used to compile Pytorch binaries.  "
            "Pytorch binaries were compiled with Cuda {}.\n".format(torch.version.cuda)
            + "In some cases, a minor-version mismatch will not cause later errors:  "
            "https://github.com/NVIDIA/apex/pull/323#discussion_r287021798.  "
            "You can try commenting out this check (at your own risk)."
        )


def raise_if_cuda_home_none(global_option: str) -> None:
    if CUDA_HOME is not None:
        return
    raise RuntimeError(
        f"{global_option} was requested, but nvcc was not found.  Are you sure your environment has nvcc available?  "
        "If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, "
        "only images whose names contain 'devel' will provide nvcc."
    )


def append_nvcc_threads(nvcc_extra_args):
54
55
    _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
    if bare_metal_version >= Version("11.2"):
Tri Dao's avatar
Tri Dao committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
        return nvcc_extra_args + ["--threads", "4"]
    return nvcc_extra_args


if not torch.cuda.is_available():
    # https://github.com/NVIDIA/apex/issues/486
    # Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query torch.cuda.get_device_capability(),
    # which will fail if you are compiling in an environment without visible GPUs (e.g. during an nvidia-docker build command).
    print(
        "\nWarning: Torch did not find available GPUs on this system.\n",
        "If your intention is to cross-compile, this is not an error.\n"
        "By default, Apex will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n"
        "Volta (compute capability 7.0), Turing (compute capability 7.5),\n"
        "and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n"
        "If you wish to cross-compile for a single specific architecture,\n"
        'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n',
    )
73
74
75
76
77
78
79
    if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None and CUDA_HOME is not None:
        _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
        if bare_metal_version >= Version("11.8"):
            os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6;9.0"
        elif bare_metal_version >= Version("11.1"):
            os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6"
        elif bare_metal_version == Version("11.0"):
Tri Dao's avatar
Tri Dao committed
80
81
82
83
            os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0"
        else:
            os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5"

84

Tri Dao's avatar
Tri Dao committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
print("\n\ntorch.__version__  = {}\n\n".format(torch.__version__))
TORCH_MAJOR = int(torch.__version__.split(".")[0])
TORCH_MINOR = int(torch.__version__.split(".")[1])

cmdclass = {}
ext_modules = []

# Check, if ATen/CUDAGeneratorImpl.h is found, otherwise use ATen/cuda/CUDAGeneratorImpl.h
# See https://github.com/pytorch/pytorch/pull/70650
generator_flag = []
torch_dir = torch.__path__[0]
if os.path.exists(os.path.join(torch_dir, "include", "ATen", "CUDAGeneratorImpl.h")):
    generator_flag = ["-DOLD_GENERATOR_PATH"]

raise_if_cuda_home_none("--xentropy")
# Check, if CUDA11 is installed for compute capability 8.0
cc_flag = []
102
103
104
_, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
if bare_metal_version < Version("11.0"):
    raise RuntimeError("xentropy is only supported on CUDA 11 and above")
Tri Dao's avatar
Tri Dao committed
105
106
107
108
cc_flag.append("-gencode")
cc_flag.append("arch=compute_70,code=sm_70")
cc_flag.append("-gencode")
cc_flag.append("arch=compute_80,code=sm_80")
109
110
111
if bare_metal_version >= Version("11.8"):
    cc_flag.append("-gencode")
    cc_flag.append("arch=compute_90,code=sm_90")
Tri Dao's avatar
Tri Dao committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

ext_modules.append(
    CUDAExtension(
        name="xentropy_cuda_lib",
        sources=[
            "interface.cpp",
            "xentropy_kernel.cu"
        ],
        extra_compile_args={
            "cxx": ["-O3"] + generator_flag,
            "nvcc": append_nvcc_threads(
                ["-O3"]
                + generator_flag
                + cc_flag
            ),
        },
        include_dirs=[this_dir],
    )
)

setup(
    name="xentropy_cuda_lib",
    version="0.1",
    description="Cross-entropy loss",
    ext_modules=ext_modules,
    cmdclass={"build_ext": BuildExtension} if ext_modules else {},
)