flash_attn_interface.py 38.7 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
from typing import Optional, Union

Tri Dao's avatar
Tri Dao committed
3
4
import torch
import torch.nn as nn
Tri Dao's avatar
Tri Dao committed
5

6
7
8
# isort: off
# We need to import the CUDA kernels after importing torch
import flash_attn_2_cuda as flash_attn_cuda
Tri Dao's avatar
Tri Dao committed
9

10
11
# isort: on

Tri Dao's avatar
Tri Dao committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

def _get_block_size(device, head_dim, is_dropout, is_causal):
    # This should match the block sizes in the CUDA kernel
    assert head_dim <= 256
    major, minor = torch.cuda.get_device_capability(device)
    is_sm8x = major == 8 and minor > 0  # Only include sm86 and sm89, exclude sm80 (A100)
    is_sm80 = major == 8 and minor == 0
    is_sm90 = major == 9 and minor == 0
    if head_dim <= 32:
        return 128, 128
    if head_dim <= 64:
        return (128, 128) if not is_dropout else (128, 64)
    elif head_dim <= 96:
        return (64, 64) if (is_sm8x and is_causal) else (128, 64)
    elif head_dim <= 128:
        if is_sm8x:
            return (64, 64) if (not is_dropout and is_causal) else (128, 32)
        else:
            return 128, (64 if not is_dropout else 32)
    elif head_dim <= 160:
        if is_sm8x:
            return (128, 64) if not is_causal else (64, 64)
        else:
            return 128, 32
    elif head_dim <= 192:
        return (128, 64) if not is_dropout else (64, 64)
    elif head_dim <= 224:
        return (128, 64) if (is_sm80 or is_sm90) else (64, 64)
    elif head_dim <= 256:
        return (128, 64) if is_sm80 else (64, 64)


Tri Dao's avatar
Tri Dao committed
44
def _flash_attn_forward(q, k, v, dropout_p, softmax_scale, causal, window_size, return_softmax):
Tri Dao's avatar
Tri Dao committed
45
46
    maybe_contiguous = lambda x: x.contiguous() if x.stride(-1) != 1 else x
    q, k, v = [maybe_contiguous(x) for x in (q, k, v)]
47
    out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd(
Tri Dao's avatar
Tri Dao committed
48
49
50
51
52
53
54
55
56
57
58
        q,
        k,
        v,
        None,
        dropout_p,
        softmax_scale,
        causal,
        window_size[0],
        window_size[1],
        return_softmax,
        None,
Tri Dao's avatar
Tri Dao committed
59
    )
60
    return out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state
Tri Dao's avatar
Tri Dao committed
61
62


Tri Dao's avatar
Tri Dao committed
63
64
65
66
67
68
69
70
71
72
73
def _flash_attn_varlen_forward(
    q,
    k,
    v,
    cu_seqlens_q,
    cu_seqlens_k,
    max_seqlen_q,
    max_seqlen_k,
    dropout_p,
    softmax_scale,
    causal,
Tri Dao's avatar
Tri Dao committed
74
    window_size,
Tri Dao's avatar
Tri Dao committed
75
76
    return_softmax,
):
Tri Dao's avatar
Tri Dao committed
77
78
    maybe_contiguous = lambda x: x.contiguous() if x.stride(-1) != 1 else x
    q, k, v = [maybe_contiguous(x) for x in (q, k, v)]
79
    out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.varlen_fwd(
Tri Dao's avatar
Tri Dao committed
80
81
82
83
84
85
        q,
        k,
        v,
        None,
        cu_seqlens_q,
        cu_seqlens_k,
86
        None,
Tri Dao's avatar
Tri Dao committed
87
88
89
90
91
92
        max_seqlen_q,
        max_seqlen_k,
        dropout_p,
        softmax_scale,
        False,
        causal,
Tri Dao's avatar
Tri Dao committed
93
94
        window_size[0],
        window_size[1],
Tri Dao's avatar
Tri Dao committed
95
96
        return_softmax,
        None,
Tri Dao's avatar
Tri Dao committed
97
98
    )
    # if out.isnan().any() or softmax_lse.isnan().any():
Tri Dao's avatar
Tri Dao committed
99
    #     breakpoint()
100
    return out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state
Tri Dao's avatar
Tri Dao committed
101
102


Tri Dao's avatar
Tri Dao committed
103
def _flash_attn_backward(
Tri Dao's avatar
Tri Dao committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    dout,
    q,
    k,
    v,
    out,
    softmax_lse,
    dq,
    dk,
    dv,
    dropout_p,
    softmax_scale,
    causal,
    window_size,
    rng_state=None,
Tri Dao's avatar
Tri Dao committed
118
):
Tri Dao's avatar
Tri Dao committed
119
120
121
    maybe_contiguous = lambda x: x.contiguous() if x.stride(-1) != 1 else x
    # dq, dk, dv are allocated by us so they should already be contiguous
    dout, q, k, v, out = [maybe_contiguous(x) for x in (dout, q, k, v, out)]
Tri Dao's avatar
Tri Dao committed
122
    dq, dk, dv, softmax_d, = flash_attn_cuda.bwd(
Tri Dao's avatar
Tri Dao committed
123
124
125
126
127
128
129
130
131
132
133
134
        dout,
        q,
        k,
        v,
        out,
        softmax_lse,
        dq,
        dk,
        dv,
        dropout_p,
        softmax_scale,
        causal,
Tri Dao's avatar
Tri Dao committed
135
136
        window_size[0],
        window_size[1],
Tri Dao's avatar
Tri Dao committed
137
138
        None,
        rng_state,
Tri Dao's avatar
Tri Dao committed
139
140
141
142
    )
    return dq, dk, dv, softmax_d


Tri Dao's avatar
Tri Dao committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
def _flash_attn_varlen_backward(
    dout,
    q,
    k,
    v,
    out,
    softmax_lse,
    dq,
    dk,
    dv,
    cu_seqlens_q,
    cu_seqlens_k,
    max_seqlen_q,
    max_seqlen_k,
    dropout_p,
    softmax_scale,
    causal,
Tri Dao's avatar
Tri Dao committed
160
    window_size,
Tri Dao's avatar
Tri Dao committed
161
162
    rng_state=None,
):
Tri Dao's avatar
Tri Dao committed
163
164
165
    maybe_contiguous = lambda x: x.contiguous() if x.stride(-1) != 1 else x
    # dq, dk, dv are allocated by us so they should already be contiguous
    dout, q, k, v, out = [maybe_contiguous(x) for x in (dout, q, k, v, out)]
Tri Dao's avatar
Tri Dao committed
166
    dq, dk, dv, softmax_d, = flash_attn_cuda.varlen_bwd(
Tri Dao's avatar
Tri Dao committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
        dout,
        q,
        k,
        v,
        out,
        softmax_lse,
        dq,
        dk,
        dv,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        dropout_p,
        softmax_scale,
        False,
        causal,
Tri Dao's avatar
Tri Dao committed
184
185
        window_size[0],
        window_size[1],
Tri Dao's avatar
Tri Dao committed
186
187
        None,
        rng_state,
Tri Dao's avatar
Tri Dao committed
188
    )
Tri Dao's avatar
Tri Dao committed
189
    # if dk.isnan().any() or dk.isnan().any() or dv.isnan().any() or softmax_d.isnan().any():
Tri Dao's avatar
Tri Dao committed
190
    #     breakpoint()
Tri Dao's avatar
Tri Dao committed
191
    return dq, dk, dv, softmax_d
Tri Dao's avatar
Tri Dao committed
192
193


Tri Dao's avatar
Tri Dao committed
194
class FlashAttnQKVPackedFunc(torch.autograd.Function):
Tri Dao's avatar
Tri Dao committed
195
    @staticmethod
Tri Dao's avatar
Tri Dao committed
196
    def forward(ctx, qkv, dropout_p, softmax_scale, causal, window_size, return_softmax):
Tri Dao's avatar
Tri Dao committed
197
198
        if softmax_scale is None:
            softmax_scale = qkv.shape[-1] ** (-0.5)
199
        out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward(
Tri Dao's avatar
Tri Dao committed
200
201
202
203
204
205
            qkv[:, :, 0],
            qkv[:, :, 1],
            qkv[:, :, 2],
            dropout_p,
            softmax_scale,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
206
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
207
            return_softmax=return_softmax and dropout_p > 0,
Tri Dao's avatar
Tri Dao committed
208
        )
Tri Dao's avatar
Tri Dao committed
209
        ctx.save_for_backward(q, k, v, out_padded, softmax_lse, rng_state)
Tri Dao's avatar
Tri Dao committed
210
211
212
        ctx.dropout_p = dropout_p
        ctx.softmax_scale = softmax_scale
        ctx.causal = causal
Tri Dao's avatar
Tri Dao committed
213
        ctx.window_size = window_size
Tri Dao's avatar
Tri Dao committed
214
        return out if not return_softmax else (out, softmax_lse, S_dmask)
Tri Dao's avatar
Tri Dao committed
215
216

    @staticmethod
Tri Dao's avatar
Tri Dao committed
217
    def backward(ctx, dout, *args):
Tri Dao's avatar
Tri Dao committed
218
219
220
        q, k, v, out, softmax_lse, rng_state = ctx.saved_tensors
        qkv_shape = q.shape[:-2] + (3, *q.shape[-2:])
        dqkv = torch.empty(qkv_shape, dtype=q.dtype, device=q.device)
Tri Dao's avatar
Tri Dao committed
221
        _flash_attn_backward(
Tri Dao's avatar
Tri Dao committed
222
223
224
225
226
227
228
229
230
231
232
233
            dout,
            q,
            k,
            v,
            out,
            softmax_lse,
            dqkv[:, :, 0],
            dqkv[:, :, 1],
            dqkv[:, :, 2],
            ctx.dropout_p,
            ctx.softmax_scale,
            ctx.causal,
Tri Dao's avatar
Tri Dao committed
234
            ctx.window_size,
Tri Dao's avatar
Tri Dao committed
235
            rng_state=rng_state,
Tri Dao's avatar
Tri Dao committed
236
        )
Tri Dao's avatar
Tri Dao committed
237
        dqkv = dqkv[..., : dout.shape[-1]]  # We could have padded the head dimension
Tri Dao's avatar
Tri Dao committed
238
        return dqkv, None, None, None, None, None
Tri Dao's avatar
Tri Dao committed
239
240
241
242


class FlashAttnVarlenQKVPackedFunc(torch.autograd.Function):
    @staticmethod
Tri Dao's avatar
Tri Dao committed
243
244
245
246
247
248
249
250
251
252
253
    def forward(
        ctx,
        qkv,
        cu_seqlens,
        max_seqlen,
        dropout_p,
        softmax_scale,
        causal,
        window_size,
        return_softmax,
    ):
Tri Dao's avatar
Tri Dao committed
254
255
        if softmax_scale is None:
            softmax_scale = qkv.shape[-1] ** (-0.5)
256
        out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_varlen_forward(
Tri Dao's avatar
Tri Dao committed
257
258
259
260
261
262
263
264
265
266
            qkv[:, 0],
            qkv[:, 1],
            qkv[:, 2],
            cu_seqlens,
            cu_seqlens,
            max_seqlen,
            max_seqlen,
            dropout_p,
            softmax_scale,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
267
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
268
            return_softmax=return_softmax and dropout_p > 0,
Tri Dao's avatar
Tri Dao committed
269
        )
Tri Dao's avatar
Tri Dao committed
270
271
272
273
274
        ctx.save_for_backward(q, k, v, out_padded, softmax_lse, cu_seqlens, rng_state)
        ctx.dropout_p = dropout_p
        ctx.max_seqlen = max_seqlen
        ctx.softmax_scale = softmax_scale
        ctx.causal = causal
Tri Dao's avatar
Tri Dao committed
275
        ctx.window_size = window_size
Tri Dao's avatar
Tri Dao committed
276
277
278
279
280
281
282
283
        return out if not return_softmax else (out, softmax_lse, S_dmask)

    @staticmethod
    def backward(ctx, dout, *args):
        q, k, v, out, softmax_lse, cu_seqlens, rng_state = ctx.saved_tensors
        qkv_shape = q.shape[:-2] + (3, *q.shape[-2:])
        dqkv = torch.empty(qkv_shape, dtype=q.dtype, device=q.device)
        _flash_attn_varlen_backward(
Tri Dao's avatar
Tri Dao committed
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
            dout,
            q,
            k,
            v,
            out,
            softmax_lse,
            dqkv[:, 0],
            dqkv[:, 1],
            dqkv[:, 2],
            cu_seqlens,
            cu_seqlens,
            ctx.max_seqlen,
            ctx.max_seqlen,
            ctx.dropout_p,
            ctx.softmax_scale,
            ctx.causal,
Tri Dao's avatar
Tri Dao committed
300
            ctx.window_size,
Tri Dao's avatar
Tri Dao committed
301
            rng_state=rng_state,
Tri Dao's avatar
Tri Dao committed
302
        )
Tri Dao's avatar
Tri Dao committed
303
        dqkv = dqkv[..., : dout.shape[-1]]  # We could have padded the head dimension
Tri Dao's avatar
Tri Dao committed
304
        return dqkv, None, None, None, None, None, None, None
Tri Dao's avatar
Tri Dao committed
305
306


Tri Dao's avatar
Tri Dao committed
307
class FlashAttnKVPackedFunc(torch.autograd.Function):
Tri Dao's avatar
Tri Dao committed
308
    @staticmethod
Tri Dao's avatar
Tri Dao committed
309
    def forward(ctx, q, kv, dropout_p, softmax_scale, causal, window_size, return_softmax):
Tri Dao's avatar
Tri Dao committed
310
        if softmax_scale is None:
Tri Dao's avatar
Tri Dao committed
311
            softmax_scale = q.shape[-1] ** (-0.5)
312
        out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward(
Tri Dao's avatar
Tri Dao committed
313
314
315
316
317
318
            q,
            kv[:, :, 0],
            kv[:, :, 1],
            dropout_p,
            softmax_scale,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
319
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
320
            return_softmax=return_softmax and dropout_p > 0,
Tri Dao's avatar
Tri Dao committed
321
        )
Tri Dao's avatar
Tri Dao committed
322
        ctx.save_for_backward(q, k, v, out_padded, softmax_lse, rng_state)
Tri Dao's avatar
Tri Dao committed
323
324
325
        ctx.dropout_p = dropout_p
        ctx.softmax_scale = softmax_scale
        ctx.causal = causal
Tri Dao's avatar
Tri Dao committed
326
        ctx.window_size = window_size
Tri Dao's avatar
Tri Dao committed
327
328
329
330
        return out if not return_softmax else (out, softmax_lse, S_dmask)

    @staticmethod
    def backward(ctx, dout, *args):
Tri Dao's avatar
Tri Dao committed
331
        q, k, v, out, softmax_lse, rng_state = ctx.saved_tensors
Tri Dao's avatar
Tri Dao committed
332
        dq = torch.empty_like(q)
Tri Dao's avatar
Tri Dao committed
333
334
        kv_shape = k.shape[:-2] + (2, *k.shape[-2:])
        dkv = torch.empty(kv_shape, dtype=k.dtype, device=k.device)
Tri Dao's avatar
Tri Dao committed
335
        _flash_attn_backward(
Tri Dao's avatar
Tri Dao committed
336
337
338
339
340
341
342
343
344
345
346
347
            dout,
            q,
            k,
            v,
            out,
            softmax_lse,
            dq,
            dkv[:, :, 0],
            dkv[:, :, 1],
            ctx.dropout_p,
            ctx.softmax_scale,
            ctx.causal,
Tri Dao's avatar
Tri Dao committed
348
            ctx.window_size,
Tri Dao's avatar
Tri Dao committed
349
            rng_state=rng_state,
Tri Dao's avatar
Tri Dao committed
350
        )
Tri Dao's avatar
Tri Dao committed
351
352
        dq = dq[..., : dout.shape[-1]]  # We could have padded the head dimension
        dkv = dkv[..., : dout.shape[-1]]
Tri Dao's avatar
Tri Dao committed
353
        return dq, dkv, None, None, None, None, None
Tri Dao's avatar
Tri Dao committed
354
355


Tri Dao's avatar
Tri Dao committed
356
class FlashAttnVarlenKVPackedFunc(torch.autograd.Function):
Tri Dao's avatar
Tri Dao committed
357
    @staticmethod
Tri Dao's avatar
Tri Dao committed
358
359
360
361
362
363
364
365
366
367
368
    def forward(
        ctx,
        q,
        kv,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        dropout_p,
        softmax_scale,
        causal,
Tri Dao's avatar
Tri Dao committed
369
        window_size,
Tri Dao's avatar
Tri Dao committed
370
371
        return_softmax,
    ):
Tri Dao's avatar
Tri Dao committed
372
373
        if softmax_scale is None:
            softmax_scale = q.shape[-1] ** (-0.5)
374
        out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_varlen_forward(
Tri Dao's avatar
Tri Dao committed
375
376
377
378
379
380
381
382
383
384
            q,
            kv[:, 0],
            kv[:, 1],
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            dropout_p,
            softmax_scale,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
385
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
386
387
388
389
            return_softmax=return_softmax and dropout_p > 0,
        )
        ctx.save_for_backward(
            q, k, v, out_padded, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state
Tri Dao's avatar
Tri Dao committed
390
391
        )
        ctx.dropout_p = dropout_p
Tri Dao's avatar
Tri Dao committed
392
393
        ctx.max_seqlen_q = max_seqlen_q
        ctx.max_seqlen_k = max_seqlen_k
Tri Dao's avatar
Tri Dao committed
394
395
        ctx.softmax_scale = softmax_scale
        ctx.causal = causal
Tri Dao's avatar
Tri Dao committed
396
        ctx.window_size = window_size
Tri Dao's avatar
Tri Dao committed
397
        return out if not return_softmax else (out, softmax_lse, S_dmask)
Tri Dao's avatar
Tri Dao committed
398
399

    @staticmethod
Tri Dao's avatar
Tri Dao committed
400
401
    def backward(ctx, dout, *args):
        q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state = ctx.saved_tensors
Tri Dao's avatar
Tri Dao committed
402
403
404
405
        dq = torch.empty_like(q)
        kv_shape = k.shape[:-2] + (2, *k.shape[-2:])
        dkv = torch.empty(kv_shape, dtype=k.dtype, device=k.device)
        _flash_attn_varlen_backward(
Tri Dao's avatar
Tri Dao committed
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
            dout,
            q,
            k,
            v,
            out,
            softmax_lse,
            dq,
            dkv[:, 0],
            dkv[:, 1],
            cu_seqlens_q,
            cu_seqlens_k,
            ctx.max_seqlen_q,
            ctx.max_seqlen_k,
            ctx.dropout_p,
            ctx.softmax_scale,
            ctx.causal,
Tri Dao's avatar
Tri Dao committed
422
            ctx.window_size,
Tri Dao's avatar
Tri Dao committed
423
            rng_state=rng_state,
Tri Dao's avatar
Tri Dao committed
424
        )
Tri Dao's avatar
Tri Dao committed
425
426
        dq = dq[..., : dout.shape[-1]]  # We could have padded the head dimension
        dkv = dkv[..., : dout.shape[-1]]
Tri Dao's avatar
Tri Dao committed
427
        return dq, dkv, None, None, None, None, None, None, None, None, None
Tri Dao's avatar
Tri Dao committed
428
429
430
431


class FlashAttnFunc(torch.autograd.Function):
    @staticmethod
Tri Dao's avatar
Tri Dao committed
432
    def forward(ctx, q, k, v, dropout_p, softmax_scale, causal, window_size, return_softmax):
Tri Dao's avatar
Tri Dao committed
433
434
        if softmax_scale is None:
            softmax_scale = q.shape[-1] ** (-0.5)
435
        out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward(
Tri Dao's avatar
Tri Dao committed
436
437
438
439
440
441
            q,
            k,
            v,
            dropout_p,
            softmax_scale,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
442
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
443
            return_softmax=return_softmax and dropout_p > 0,
Tri Dao's avatar
Tri Dao committed
444
445
446
447
448
        )
        ctx.save_for_backward(q, k, v, out_padded, softmax_lse, rng_state)
        ctx.dropout_p = dropout_p
        ctx.softmax_scale = softmax_scale
        ctx.causal = causal
Tri Dao's avatar
Tri Dao committed
449
        ctx.window_size = window_size
Tri Dao's avatar
Tri Dao committed
450
451
452
453
454
        return out if not return_softmax else (out, softmax_lse, S_dmask)

    @staticmethod
    def backward(ctx, dout, *args):
        q, k, v, out, softmax_lse, rng_state = ctx.saved_tensors
Tri Dao's avatar
Tri Dao committed
455
456
        dq, dk, dv = torch.empty_like(q), torch.empty_like(k), torch.empty_like(v)
        _flash_attn_backward(
Tri Dao's avatar
Tri Dao committed
457
458
459
460
461
462
463
464
465
466
467
468
            dout,
            q,
            k,
            v,
            out,
            softmax_lse,
            dq,
            dk,
            dv,
            ctx.dropout_p,
            ctx.softmax_scale,
            ctx.causal,
Tri Dao's avatar
Tri Dao committed
469
            ctx.window_size,
Tri Dao's avatar
Tri Dao committed
470
            rng_state=rng_state,
Tri Dao's avatar
Tri Dao committed
471
        )
Tri Dao's avatar
Tri Dao committed
472
473
474
        dq = dq[..., : dout.shape[-1]]  # We could have padded the head dimension
        dk = dk[..., : dout.shape[-1]]
        dv = dv[..., : dout.shape[-1]]
Tri Dao's avatar
Tri Dao committed
475
        return dq, dk, dv, None, None, None, None, None, None, None, None, None
Tri Dao's avatar
Tri Dao committed
476
477


Tri Dao's avatar
Tri Dao committed
478
class FlashAttnVarlenFunc(torch.autograd.Function):
479
    @staticmethod
Tri Dao's avatar
Tri Dao committed
480
481
482
483
484
485
486
487
488
489
490
491
    def forward(
        ctx,
        q,
        k,
        v,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        dropout_p,
        softmax_scale,
        causal,
Tri Dao's avatar
Tri Dao committed
492
        window_size,
Tri Dao's avatar
Tri Dao committed
493
494
        return_softmax,
    ):
495
        if softmax_scale is None:
Tri Dao's avatar
Tri Dao committed
496
            softmax_scale = q.shape[-1] ** (-0.5)
497
        out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_varlen_forward(
Tri Dao's avatar
Tri Dao committed
498
499
500
501
502
503
504
505
506
507
            q,
            k,
            v,
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            dropout_p,
            softmax_scale,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
508
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
509
510
511
512
            return_softmax=return_softmax and dropout_p > 0,
        )
        ctx.save_for_backward(
            q, k, v, out_padded, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state
513
514
        )
        ctx.dropout_p = dropout_p
Tri Dao's avatar
Tri Dao committed
515
516
        ctx.max_seqlen_q = max_seqlen_q
        ctx.max_seqlen_k = max_seqlen_k
517
518
        ctx.softmax_scale = softmax_scale
        ctx.causal = causal
Tri Dao's avatar
Tri Dao committed
519
        ctx.window_size = window_size
Tri Dao's avatar
Tri Dao committed
520
        return out if not return_softmax else (out, softmax_lse, S_dmask)
521
522
523

    @staticmethod
    def backward(ctx, dout, *args):
Tri Dao's avatar
Tri Dao committed
524
525
526
        q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state = ctx.saved_tensors
        dq, dk, dv = torch.empty_like(q), torch.empty_like(k), torch.empty_like(v)
        _flash_attn_varlen_backward(
Tri Dao's avatar
Tri Dao committed
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
            dout,
            q,
            k,
            v,
            out,
            softmax_lse,
            dq,
            dk,
            dv,
            cu_seqlens_q,
            cu_seqlens_k,
            ctx.max_seqlen_q,
            ctx.max_seqlen_k,
            ctx.dropout_p,
            ctx.softmax_scale,
            ctx.causal,
Tri Dao's avatar
Tri Dao committed
543
            ctx.window_size,
Tri Dao's avatar
Tri Dao committed
544
            rng_state=rng_state,
545
        )
Tri Dao's avatar
Tri Dao committed
546
547
548
        dq = dq[..., : dout.shape[-1]]  # We could have padded the head dimension
        dk = dk[..., : dout.shape[-1]]
        dv = dv[..., : dout.shape[-1]]
Tri Dao's avatar
Tri Dao committed
549
        return dq, dk, dv, None, None, None, None, None, None, None, None, None
550
551


Tri Dao's avatar
Tri Dao committed
552
def flash_attn_qkvpacked_func(
Tri Dao's avatar
Tri Dao committed
553
554
555
556
557
558
    qkv,
    dropout_p=0.0,
    softmax_scale=None,
    causal=False,
    window_size=(-1, -1),  # -1 means infinite context window
    return_attn_probs=False,
Tri Dao's avatar
Tri Dao committed
559
):
Tri Dao's avatar
Tri Dao committed
560
    """dropout_p should be set to 0.0 during evaluation
Tri Dao's avatar
Tri Dao committed
561
562
563
    If Q, K, V are already stacked into 1 tensor, this function will be faster than
    calling flash_attn_func on Q, K, V since the backward pass avoids explicit concatenation
    of the gradients of Q, K, V.
564
565
    For multi-query and grouped-query attention (MQA/GQA), please see
    flash_attn_kvpacked_func and flash_attn_func.
Tri Dao's avatar
Tri Dao committed
566

Tri Dao's avatar
Tri Dao committed
567
568
569
    If window_size != (-1, -1), implements sliding window local attention. Query at position i
    will only attend to keys between [i - window_size[0], i + window_size[1]] inclusive.

Tri Dao's avatar
Tri Dao committed
570
    Arguments:
Tri Dao's avatar
Tri Dao committed
571
        qkv: (batch_size, seqlen, 3, nheads, headdim)
Tri Dao's avatar
Tri Dao committed
572
573
574
575
        dropout_p: float. Dropout probability.
        softmax_scale: float. The scaling of QK^T before applying softmax.
            Default to 1 / sqrt(headdim).
        causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
Tri Dao's avatar
Tri Dao committed
576
        window_size: (left, right). If not (-1, -1), implements sliding window local attention.
Tri Dao's avatar
Tri Dao committed
577
578
579
580
        return_attn_probs: bool. Whether to return the attention probabilities. This option is for
           testing only. The returned probabilities are not guaranteed to be correct
           (they might not have the right scaling).
    Return:
Tri Dao's avatar
Tri Dao committed
581
        out: (batch_size, seqlen, nheads, headdim).
Tri Dao's avatar
Tri Dao committed
582
583
584
585
586
587
588
        softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
            logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
            normalization factor).
        S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
            The output of softmax (possibly with different scaling). It also encodes the dropout
            pattern (negative means that location was dropped, nonnegative means it was kept).
    """
Tri Dao's avatar
Tri Dao committed
589
590
591
    return FlashAttnQKVPackedFunc.apply(
        qkv, dropout_p, softmax_scale, causal, window_size, return_attn_probs
    )
Tri Dao's avatar
Tri Dao committed
592
593


Tri Dao's avatar
Tri Dao committed
594
def flash_attn_kvpacked_func(
Tri Dao's avatar
Tri Dao committed
595
596
597
598
599
600
601
    q,
    kv,
    dropout_p=0.0,
    softmax_scale=None,
    causal=False,
    window_size=(-1, -1),  # -1 means infinite context window
    return_attn_probs=False,
Tri Dao's avatar
Tri Dao committed
602
):
Tri Dao's avatar
Tri Dao committed
603
    """dropout_p should be set to 0.0 during evaluation
Tri Dao's avatar
Tri Dao committed
604
605
606
607
    If K, V are already stacked into 1 tensor, this function will be faster than
    calling flash_attn_func on Q, K, V since the backward pass avoids explicit concatenation
    of the gradients of K, V.
    Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
608
    than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
Tri Dao's avatar
Tri Dao committed
609
610
611
    For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
    0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.

612
613
614
615
616
617
618
619
620
621
622
623
    If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
    For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
        1 1 1 1 0
        1 1 1 1 1
    If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
        0 0
        0 0
        0 0
        1 0
        1 1
    If the row of the mask is all zero, the output will be zero.

Tri Dao's avatar
Tri Dao committed
624
625
626
627
    If window_size != (-1, -1), implements sliding window local attention. Query at position i
    will only attend to keys between
    [i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.

Tri Dao's avatar
Tri Dao committed
628
    Arguments:
Tri Dao's avatar
Tri Dao committed
629
630
631
632
633
634
        q: (batch_size, seqlen, nheads, headdim)
        kv: (batch_size, seqlen, 2, nheads_k, headdim)
        dropout_p: float. Dropout probability.
        softmax_scale: float. The scaling of QK^T before applying softmax.
            Default to 1 / sqrt(headdim).
        causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
Tri Dao's avatar
Tri Dao committed
635
        window_size: (left, right). If not (-1, -1), implements sliding window local attention.
Tri Dao's avatar
Tri Dao committed
636
637
638
639
640
641
642
643
644
645
646
647
        return_attn_probs: bool. Whether to return the attention probabilities. This option is for
           testing only. The returned probabilities are not guaranteed to be correct
           (they might not have the right scaling).
    Return:
        out: (batch_size, seqlen, nheads, headdim).
        softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
            logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
            normalization factor).
        S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
            The output of softmax (possibly with different scaling). It also encodes the dropout
            pattern (negative means that location was dropped, nonnegative means it was kept).
    """
Tri Dao's avatar
Tri Dao committed
648
649
650
    return FlashAttnKVPackedFunc.apply(
        q, kv, dropout_p, softmax_scale, causal, window_size, return_attn_probs
    )
Tri Dao's avatar
Tri Dao committed
651
652


Tri Dao's avatar
Tri Dao committed
653
def flash_attn_func(
Tri Dao's avatar
Tri Dao committed
654
655
656
657
658
659
660
661
    q,
    k,
    v,
    dropout_p=0.0,
    softmax_scale=None,
    causal=False,
    window_size=(-1, -1),  # -1 means infinite context window
    return_attn_probs=False,
Tri Dao's avatar
Tri Dao committed
662
):
Tri Dao's avatar
Tri Dao committed
663
664
    """dropout_p should be set to 0.0 during evaluation
    Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
665
    than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
Tri Dao's avatar
Tri Dao committed
666
667
668
    For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
    0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.

669
670
671
672
673
674
675
676
677
678
679
680
    If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
    For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
        1 1 1 1 0
        1 1 1 1 1
    If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
        0 0
        0 0
        0 0
        1 0
        1 1
    If the row of the mask is all zero, the output will be zero.

Tri Dao's avatar
Tri Dao committed
681
682
683
684
    If window_size != (-1, -1), implements sliding window local attention. Query at position i
    will only attend to keys between
    [i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.

Tri Dao's avatar
Tri Dao committed
685
686
687
688
689
690
691
692
    Arguments:
        q: (batch_size, seqlen, nheads, headdim)
        k: (batch_size, seqlen, nheads_k, headdim)
        v: (batch_size, seqlen, nheads_k, headdim)
        dropout_p: float. Dropout probability.
        softmax_scale: float. The scaling of QK^T before applying softmax.
            Default to 1 / sqrt(headdim).
        causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
Tri Dao's avatar
Tri Dao committed
693
        window_size: (left, right). If not (-1, -1), implements sliding window local attention.
Tri Dao's avatar
Tri Dao committed
694
695
696
697
698
699
700
701
702
703
704
705
        return_attn_probs: bool. Whether to return the attention probabilities. This option is for
           testing only. The returned probabilities are not guaranteed to be correct
           (they might not have the right scaling).
    Return:
        out: (batch_size, seqlen, nheads, headdim).
        softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
            logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
            normalization factor).
        S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
            The output of softmax (possibly with different scaling). It also encodes the dropout
            pattern (negative means that location was dropped, nonnegative means it was kept).
    """
Tri Dao's avatar
Tri Dao committed
706
707
708
    return FlashAttnFunc.apply(
        q, k, v, dropout_p, softmax_scale, causal, window_size, return_attn_probs
    )
Tri Dao's avatar
Tri Dao committed
709
710


Tri Dao's avatar
Tri Dao committed
711
712
713
714
715
716
717
def flash_attn_varlen_qkvpacked_func(
    qkv,
    cu_seqlens,
    max_seqlen,
    dropout_p=0.0,
    softmax_scale=None,
    causal=False,
Tri Dao's avatar
Tri Dao committed
718
    window_size=(-1, -1),  # -1 means infinite context window
Tri Dao's avatar
Tri Dao committed
719
720
    return_attn_probs=False,
):
Tri Dao's avatar
Tri Dao committed
721
722
723
724
    """dropout_p should be set to 0.0 during evaluation
    If Q, K, V are already stacked into 1 tensor, this function will be faster than
    calling flash_attn_varlen_func on Q, K, V since the backward pass avoids explicit concatenation
    of the gradients of Q, K, V.
725
726
    For multi-query and grouped-query attention (MQA/GQA), please see
    flash_attn_varlen_kvpacked_func and flash_attn_varlen_func.
Tri Dao's avatar
Tri Dao committed
727

Tri Dao's avatar
Tri Dao committed
728
729
730
    If window_size != (-1, -1), implements sliding window local attention. Query at position i
    will only attend to keys between [i - window_size[0], i + window_size[1]] inclusive.

Tri Dao's avatar
Tri Dao committed
731
732
733
734
735
    Arguments:
        qkv: (total, 3, nheads, headdim), where total = total number of tokens in the batch.
        cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
           of the sequences in the batch, used to index into qkv.
        max_seqlen: int. Maximum sequence length in the batch.
Tri Dao's avatar
Tri Dao committed
736
737
738
739
        dropout_p: float. Dropout probability.
        softmax_scale: float. The scaling of QK^T before applying softmax.
            Default to 1 / sqrt(headdim).
        causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
Tri Dao's avatar
Tri Dao committed
740
        window_size: (left, right). If not (-1, -1), implements sliding window local attention.
Tri Dao's avatar
Tri Dao committed
741
742
743
744
        return_attn_probs: bool. Whether to return the attention probabilities. This option is for
           testing only. The returned probabilities are not guaranteed to be correct
           (they might not have the right scaling).
    Return:
Tri Dao's avatar
Tri Dao committed
745
        out: (total, nheads, headdim).
Tri Dao's avatar
Tri Dao committed
746
747
748
749
750
751
752
        softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
            logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
            normalization factor).
        S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
            The output of softmax (possibly with different scaling). It also encodes the dropout
            pattern (negative means that location was dropped, nonnegative means it was kept).
    """
Tri Dao's avatar
Tri Dao committed
753
    return FlashAttnVarlenQKVPackedFunc.apply(
Tri Dao's avatar
Tri Dao committed
754
755
756
757
758
759
760
761
        qkv,
        cu_seqlens,
        max_seqlen,
        dropout_p,
        softmax_scale,
        causal,
        window_size,
        return_attn_probs,
Tri Dao's avatar
Tri Dao committed
762
    )
Tri Dao's avatar
Tri Dao committed
763
764


Tri Dao's avatar
Tri Dao committed
765
766
767
768
769
770
771
772
773
774
def flash_attn_varlen_kvpacked_func(
    q,
    kv,
    cu_seqlens_q,
    cu_seqlens_k,
    max_seqlen_q,
    max_seqlen_k,
    dropout_p=0.0,
    softmax_scale=None,
    causal=False,
Tri Dao's avatar
Tri Dao committed
775
    window_size=(-1, -1),  # -1 means infinite context window
Tri Dao's avatar
Tri Dao committed
776
777
    return_attn_probs=False,
):
Tri Dao's avatar
Tri Dao committed
778
    """dropout_p should be set to 0.0 during evaluation
Tri Dao's avatar
Tri Dao committed
779
780
781
782
    If K, V are already stacked into 1 tensor, this function will be faster than
    calling flash_attn_func on Q, K, V since the backward pass avoids explicit concatenation
    of the gradients of K, V.
    Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
783
    than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
Tri Dao's avatar
Tri Dao committed
784
785
786
    For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
    0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.

787
788
789
790
791
792
793
794
795
796
797
798
    If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
    For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
        1 1 1 1 0
        1 1 1 1 1
    If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
        0 0
        0 0
        0 0
        1 0
        1 1
    If the row of the mask is all zero, the output will be zero.

Tri Dao's avatar
Tri Dao committed
799
800
801
802
    If window_size != (-1, -1), implements sliding window local attention. Query at position i
    will only attend to keys between
    [i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.

Tri Dao's avatar
Tri Dao committed
803
804
    Arguments:
        q: (total_q, nheads, headdim), where total_q = total number of query tokens in the batch.
Tri Dao's avatar
Tri Dao committed
805
        kv: (total_k, 2, nheads_k, headdim), where total_k = total number of key tokens in the batch.
Tri Dao's avatar
Tri Dao committed
806
807
808
809
810
811
812
813
814
815
        cu_seqlens_q: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
           of the sequences in the batch, used to index into q.
        cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
           of the sequences in the batch, used to index into kv.
        max_seqlen_q: int. Maximum query sequence length in the batch.
        max_seqlen_k: int. Maximum key sequence length in the batch.
        dropout_p: float. Dropout probability.
        softmax_scale: float. The scaling of QK^T before applying softmax.
            Default to 1 / sqrt(headdim).
        causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
Tri Dao's avatar
Tri Dao committed
816
        window_size: (left, right). If not (-1, -1), implements sliding window local attention.
Tri Dao's avatar
Tri Dao committed
817
818
819
820
        return_attn_probs: bool. Whether to return the attention probabilities. This option is for
           testing only. The returned probabilities are not guaranteed to be correct
           (they might not have the right scaling).
    Return:
Tri Dao's avatar
Tri Dao committed
821
        out: (total, nheads, headdim).
Tri Dao's avatar
Tri Dao committed
822
823
824
825
826
827
828
        softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
            logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
            normalization factor).
        S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
            The output of softmax (possibly with different scaling). It also encodes the dropout
            pattern (negative means that location was dropped, nonnegative means it was kept).
    """
Tri Dao's avatar
Tri Dao committed
829
    return FlashAttnVarlenKVPackedFunc.apply(
Tri Dao's avatar
Tri Dao committed
830
831
832
833
834
835
836
837
838
        q,
        kv,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        dropout_p,
        softmax_scale,
        causal,
Tri Dao's avatar
Tri Dao committed
839
        window_size,
Tri Dao's avatar
Tri Dao committed
840
        return_attn_probs,
Tri Dao's avatar
Tri Dao committed
841
    )
Tri Dao's avatar
Tri Dao committed
842

843

Tri Dao's avatar
Tri Dao committed
844
845
846
847
848
849
850
851
852
853
854
def flash_attn_varlen_func(
    q,
    k,
    v,
    cu_seqlens_q,
    cu_seqlens_k,
    max_seqlen_q,
    max_seqlen_k,
    dropout_p=0.0,
    softmax_scale=None,
    causal=False,
Tri Dao's avatar
Tri Dao committed
855
    window_size=(-1, -1),  # -1 means infinite context window
Tri Dao's avatar
Tri Dao committed
856
857
    return_attn_probs=False,
):
Tri Dao's avatar
Tri Dao committed
858
859
    """dropout_p should be set to 0.0 during evaluation
    Supports multi-query and grouped-query attention (MQA/GQA) by passing in K, V with fewer heads
860
    than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
Tri Dao's avatar
Tri Dao committed
861
862
    For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
    0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
863

864
865
866
867
868
869
870
871
872
873
874
875
    If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
    For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
        1 1 1 1 0
        1 1 1 1 1
    If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
        0 0
        0 0
        0 0
        1 0
        1 1
    If the row of the mask is all zero, the output will be zero.

Tri Dao's avatar
Tri Dao committed
876
877
878
879
    If window_size != (-1, -1), implements sliding window local attention. Query at position i
    will only attend to keys between
    [i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.

880
    Arguments:
Tri Dao's avatar
Tri Dao committed
881
882
883
884
885
886
887
888
889
        q: (total_q, nheads, headdim), where total_q = total number of query tokens in the batch.
        k: (total_k, nheads_k, headdim), where total_k = total number of key tokens in the batch.
        v: (total_k, nheads_k, headdim), where total_k = total number of key tokens in the batch.
        cu_seqlens_q: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
           of the sequences in the batch, used to index into q.
        cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
           of the sequences in the batch, used to index into kv.
        max_seqlen_q: int. Maximum query sequence length in the batch.
        max_seqlen_k: int. Maximum key sequence length in the batch.
890
891
892
893
        dropout_p: float. Dropout probability.
        softmax_scale: float. The scaling of QK^T before applying softmax.
            Default to 1 / sqrt(headdim).
        causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
Tri Dao's avatar
Tri Dao committed
894
        window_size: (left, right). If not (-1, -1), implements sliding window local attention.
895
896
897
898
899
900
901
902
903
904
905
906
        return_attn_probs: bool. Whether to return the attention probabilities. This option is for
           testing only. The returned probabilities are not guaranteed to be correct
           (they might not have the right scaling).
    Return:
        out: (total, nheads, headdim).
        softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
            logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
            normalization factor).
        S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
            The output of softmax (possibly with different scaling). It also encodes the dropout
            pattern (negative means that location was dropped, nonnegative means it was kept).
    """
Tri Dao's avatar
Tri Dao committed
907
    return FlashAttnVarlenFunc.apply(
Tri Dao's avatar
Tri Dao committed
908
909
910
911
912
913
914
915
916
917
        q,
        k,
        v,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        dropout_p,
        softmax_scale,
        causal,
Tri Dao's avatar
Tri Dao committed
918
        window_size,
Tri Dao's avatar
Tri Dao committed
919
        return_attn_probs,
Tri Dao's avatar
Tri Dao committed
920
    )
Tri Dao's avatar
Tri Dao committed
921
922
923
924
925
926
927
928


def flash_attn_with_kvcache(
    q,
    k_cache,
    v_cache,
    k=None,
    v=None,
929
930
    rotary_cos=None,
    rotary_sin=None,
Tri Dao's avatar
Tri Dao committed
931
    cache_seqlens: Optional[Union[(int, torch.Tensor)]] = None,
932
    cache_batch_idx: Optional[torch.Tensor] = None,
Tri Dao's avatar
Tri Dao committed
933
934
    softmax_scale=None,
    causal=False,
Tri Dao's avatar
Tri Dao committed
935
    window_size=(-1, -1),  # -1 means infinite context window
936
    rotary_interleaved=True,
Tri Dao's avatar
Tri Dao committed
937
938
939
940
941
942
943
944
945
946
947
948
    num_splits=0,
):
    """
    If k and v are not None, k_cache and v_cache will be updated *inplace* with the new values from
    k and v. This is useful for incremental decoding: you can pass in the cached keys/values from
    the previous step, and update them with the new keys/values from the current step, and do
    attention with the updated cache, all in 1 kernel.

    If you pass in k / v, you must make sure that the cache is large enough to hold the new values.
    For example, the KV cache could be pre-allocated with the max sequence length, and you can use
    cache_seqlens to keep track of the current sequence lengths of each sequence in the batch.

Tri Dao's avatar
Tri Dao committed
949
950
951
952
953
954
    Also apply rotary embedding if rotary_cos and rotary_sin are passed in. The key @k will be
    rotated by rotary_cos and rotary_sin at indices cache_seqlens, cache_seqlens + 1, etc.
    If causal or local (i.e., window_size != (-1, -1)), the query @q will be rotated by rotary_cos
    and rotary_sin at indices cache_seqlens, cache_seqlens + 1, etc.
    If not causal and not local, the query @q will be rotated by rotary_cos and rotary_sin at
    indices cache_seqlens only (i.e. we consider all tokens in @q to be at position cache_seqlens).
955
956

    See tests/test_flash_attn.py::test_flash_attn_kvcache for examples of how to use this function.
Tri Dao's avatar
Tri Dao committed
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974

    Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
    than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
    For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
    0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.

    If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
    For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
        1 1 1 1 0
        1 1 1 1 1
    If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
        0 0
        0 0
        0 0
        1 0
        1 1
    If the row of the mask is all zero, the output will be zero.

Tri Dao's avatar
Tri Dao committed
975
976
977
978
    If window_size != (-1, -1), implements sliding window local attention. Query at position i
    will only attend to keys between
    [i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.

979
980
    Note: Does not support backward pass.

Tri Dao's avatar
Tri Dao committed
981
982
    Arguments:
        q: (batch_size, seqlen, nheads, headdim)
983
984
        k_cache: (batch_size_cache, seqlen_cache, nheads_k, headdim)
        v_cache: (batch_size_cache, seqlen_cache, nheads_k, headdim)
985
986
987
        k [optional]: (batch_size, seqlen_new, nheads_k, headdim). If not None, we concatenate
            k with k_cache, starting at the indices specified by cache_seqlens.
        v [optional]: (batch_size, seqlen_new, nheads_k, headdim). Similar to k.
988
989
990
        rotary_cos [optional]: (seqlen_ro, rotary_dim / 2). If not None, we apply rotary embedding
            to k and q. Only applicable if k and v are passed in. rotary_dim must be divisible by 16.
        rotary_sin [optional]: (seqlen_ro, rotary_dim / 2). Similar to rotary_cos.
Tri Dao's avatar
Tri Dao committed
991
992
        cache_seqlens: int, or (batch_size,), dtype torch.int32. The sequence lengths of the
            KV cache.
993
994
995
996
        cache_batch_idx: (batch_size,), dtype torch.int32. The indices used to index into the KV cache.
            If None, we assume that the batch indices are [0, 1, 2, ..., batch_size - 1].
            If the indices are not distinct, and k and v are provided, the values updated in the cache
                 might come from any of the duplicate indices.
Tri Dao's avatar
Tri Dao committed
997
998
999
        softmax_scale: float. The scaling of QK^T before applying softmax.
            Default to 1 / sqrt(headdim).
        causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
Tri Dao's avatar
Tri Dao committed
1000
        window_size: (left, right). If not (-1, -1), implements sliding window local attention.
1001
1002
1003
1004
        rotary_interleaved: bool. Only applicable if rotary_cos and rotary_sin are passed in.
            If True, rotary embedding will combine dimensions 0 & 1, 2 & 3, etc. If False,
            rotary embedding will combine dimensions 0 & rotary_dim / 2, 1 & rotary_dim / 2 + 1
            (i.e. GPT-NeoX style).
Tri Dao's avatar
Tri Dao committed
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
        num_splits: int. If > 1, split the key/value into this many chunks along the sequence.
           If num_splits == 1, we don't split the key/value. If num_splits == 0, we use a heuristic
           to automatically determine the number of splits.
           Don't change this unless you know what you are doing.

    Return:
        out: (batch_size, seqlen, nheads, headdim).
    """
    assert k_cache.stride(-1) == 1, "k_cache must have contiguous last dimension"
    assert v_cache.stride(-1) == 1, "v_cache must have contiguous last dimension"
    maybe_contiguous = lambda x: x.contiguous() if x is not None and x.stride(-1) != 1 else x
    q, k, v = [maybe_contiguous(x) for x in (q, k, v)]
    if softmax_scale is None:
        softmax_scale = q.shape[-1] ** (-0.5)
Tri Dao's avatar
Tri Dao committed
1019
1020
1021
1022
    if cache_seqlens is not None and isinstance(cache_seqlens, int):
        cache_seqlens = torch.full(
            (k_cache.shape[0],), cache_seqlens, dtype=torch.int32, device=k_cache.device
        )
1023
1024
        cache_seqlens = maybe_contiguous(cache_seqlens)
    cache_batch_idx = maybe_contiguous(cache_batch_idx)
Tri Dao's avatar
Tri Dao committed
1025
    out, softmax_lse = flash_attn_cuda.fwd_kvcache(
1026
1027
1028
1029
1030
1031
1032
1033
        q,
        k_cache,
        v_cache,
        k,
        v,
        cache_seqlens,
        rotary_cos,
        rotary_sin,
1034
        cache_batch_idx,
1035
1036
1037
        None,
        softmax_scale,
        causal,
Tri Dao's avatar
Tri Dao committed
1038
1039
        window_size[0],
        window_size[1],
1040
1041
        rotary_interleaved,
        num_splits,
Tri Dao's avatar
Tri Dao committed
1042
1043
    )
    return out