activations.py 2.93 KB
Newer Older
1
2
3
4
# Copied from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/model/layers/activations.py
import math

import torch
5
6
import torch.nn as nn
import torch.nn.functional as F
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83


# 1/sqrt(2*pi)-> 0.3989423
# 1/sqrt(2)   -> 0.70710678
# sqrt(2/pi)  -> 0.79788456

# this function is tanh approximation of gelu
# actual gelu is:
# x * 0.5 * (1.0 + torch.erf(x * 0.70710678))
@torch.jit.script
def bias_gelu(y, bias):
    x = bias + y
    return (x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))).to(dtype=y.dtype)

# gradient of tanh approximation of gelu
# gradient of actual gelu is:
# 0.5 * (1. + torch.erf(x * 0.70710678)) + 0.3989423 * x * torch.exp(-0.5 * x * x)
@torch.jit.script
def bias_gelu_back(g, y, bias):
    """Assume that y has shape (B, D) and bias has shape (D)
    """
    x = bias + y
    tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))
    # sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243
    ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out)
    grad_y = ff * g
    return grad_y.to(dtype=y.dtype), grad_y.sum(dim=(0), dtype=bias.dtype)


class GeLUFunction(torch.autograd.Function):
    @staticmethod
    # bias is an optional argument
    def forward(ctx, input, bias):
        ctx.save_for_backward(input, bias)
        return bias_gelu(input, bias)

    @staticmethod
    def backward(ctx, grad_output):
        input, bias = ctx.saved_tensors
        tmp = bias_gelu_back(grad_output, input, bias)
        return tmp, tmp


bias_gelu_impl = GeLUFunction.apply

# this function is tanh approximation of gelu
# actual gelu is:
# x * 0.5 * (1.0 + torch.erf(x * 0.70710678))
@torch.jit.script
def gelu_fwd(x):
    return (x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))).to(dtype=x.dtype)

# gradient of tanh approximation of gelu
# gradient of actual gelu is:
# 0.5 * (1. + torch.erf(x * 0.70710678)) + 0.3989423 * x * torch.exp(-0.5 * x * x)
@torch.jit.script
def gelu_bwd(g, x):
    tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))
    # sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243
    ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out)
    return (ff * g).to(dtype=x.dtype)


class FastGeLUFunction(torch.autograd.Function):
    @staticmethod
    # bias is an optional argument
    def forward(ctx, input):
        ctx.save_for_backward(input)
        return gelu_fwd(input)

    @staticmethod
    def backward(ctx, grad_output):
        input, = ctx.saved_tensors
        tmp = gelu_bwd(grad_output, input)
        return tmp

fast_gelu_impl = FastGeLUFunction.apply
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99


@torch.jit.script
def relu_bwd(g, x):
    return torch.where(x >= 0, g, 0.0).to(dtype=x.dtype)


@torch.jit.script
def sqrelu_fwd(x):
    r = F.relu(x)
    return (r * r).to(dtype=x.dtype)


@torch.jit.script
def sqrelu_bwd(g, x):
    return (2.0 * g * F.relu(x)).to(dtype=x.dtype)