flash_bwd_launch_template.h 14.2 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
/******************************************************************************
 * Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
 ******************************************************************************/

#pragma once

#include "cute/tensor.hpp"

#include "cutlass/cluster_launch.hpp"

#include "static_switch.h"
#include "flash.h"
#include "flash_bwd_preprocess_kernel.h"
#include "flash_bwd_kernel.h"
#include "kernel_traits.h"
16
#include "utils.h"
Tri Dao's avatar
Tri Dao committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

template<bool Clear_dQaccum=true, typename Kernel_traits>
__global__ void flash_bwd_dot_do_o_kernel(const Flash_bwd_params params) {
    flash::compute_dot_do_o<Clear_dQaccum, Kernel_traits>(params);
}

// template<typename Kernel_traits>
// __global__ void flash_bwd_convert_dq_kernel(const Flash_bwd_params params, const int nsplits) {
//     flash::convert_dQ<Kernel_traits>(params, nsplits);
// }

template<typename Kernel_traits>
__global__ void flash_bwd_convert_dkv_kernel(const Flash_bwd_params params) {
    flash::convert_dKV<Kernel_traits>(params);
}

template<typename Kernel_traits, bool Is_causal>
void run_flash_bwd(Flash_bwd_params &params, cudaStream_t stream) {
    int num_m_block = cute::ceil_div(params.seqlen_q, Kernel_traits::kBlockM);
    dim3 grid_m(num_m_block, params.b, params.h);
    flash_bwd_dot_do_o_kernel<true, Kernel_traits><<<grid_m, Kernel_traits::kNThreadsNonWS, 0, stream>>>(params);
    // If we use both TMA_STORE (for n_block=0) and TMA_REDUCE_ADD (for n_block>0), we don't need to clear dQaccum
    // flash_bwd_dot_do_o_kernel<false, Kernel_traits><<<grid_m, Kernel_traits::kNThreadsNonWS, 0, stream>>>(params);
40
    CHECK_CUDA_KERNEL_LAUNCH();
Tri Dao's avatar
Tri Dao committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using TileShape_MNK = typename Kernel_traits::TileShape_MNK;
    using ClusterShape = typename Kernel_traits::ClusterShape_MNK;

    Tensor mQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.q_ptr)),
                            make_shape(params.seqlen_q, params.d, params.h, params.b),
                            make_stride(params.q_row_stride, _1{}, params.q_head_stride, params.q_batch_stride));
    auto tma_load_Q = make_tma_copy(
        typename Kernel_traits::GmemTiledCopyQdO{},
        mQ,
        typename Kernel_traits::SmemLayoutQ{}(_, _, _0{}),
        // typename Kernel_traits::SmemLayoutQ{},
        select<0, 2>(TileShape_MNK{}),
        size<1>(ClusterShape{})); // mcast along N mode for this M load, if any
    Tensor mdO = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.do_ptr)),
                             make_shape(params.seqlen_q, params.d, params.h, params.b),
                             make_stride(params.do_row_stride, _1{}, params.do_head_stride, params.do_batch_stride));
    auto tma_load_dO = make_tma_copy(
        typename Kernel_traits::GmemTiledCopyQdO{},
        mdO,
        typename Kernel_traits::SmemLayoutdO{}(_, _, _0{}),
        // typename Kernel_traits::SmemLayoutdO{},
        select<0, 2>(TileShape_MNK{}),
        size<1>(ClusterShape{})); // mcast along N mode for this M load, if any
    Tensor mK = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.k_ptr)),
                            make_shape(params.seqlen_k, params.d, params.h, params.b),
                            make_stride(params.k_row_stride, _1{}, params.k_head_stride, params.k_batch_stride));
    auto tma_load_K = make_tma_copy(
        typename Kernel_traits::GmemTiledCopyKV{},
        mK,
        typename Kernel_traits::SmemLayoutK{},
        // typename Kernel_traits::SmemLayoutK{}(_, _, _0{}),
        select<1, 2>(TileShape_MNK{}),
        _1{}); // no mcast for K
    Tensor mV = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.v_ptr)),
                            make_shape(params.seqlen_k, params.d, params.h, params.b),
                            make_stride(params.v_row_stride, _1{}, params.v_head_stride, params.v_batch_stride));
    auto tma_load_V = make_tma_copy(
        typename Kernel_traits::GmemTiledCopyKV{},
        mV,
        typename Kernel_traits::SmemLayoutV{},
        // typename Kernel_traits::SmemLayoutV{}(_, _, _0{}),
        select<1, 2>(TileShape_MNK{}),
        _1{}); // no mcast for V
    Tensor mdK = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.dk_ptr)),
                             make_shape(params.seqlen_k, params.d, params.h, params.b),
                             make_stride(params.dk_row_stride, _1{}, params.dk_head_stride, params.dk_batch_stride));
    auto tma_store_dK = make_tma_copy(
        typename Kernel_traits::GmemTiledCopydKV{},
        mdK,
        typename Kernel_traits::SmemLayoutdK{},
        select<1, 2>(TileShape_MNK{}),
        _1{}); // no mcast for output
    Tensor mdV = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.dv_ptr)),
                             make_shape(params.seqlen_k, params.d, params.h, params.b),
                             make_stride(params.dv_row_stride, _1{}, params.dv_head_stride, params.dv_batch_stride));
    auto tma_store_dV = make_tma_copy(
        typename Kernel_traits::GmemTiledCopydKV{},
        mdV,
        typename Kernel_traits::SmemLayoutdV{},
        select<1, 2>(TileShape_MNK{}),
        _1{}); // no mcast for output
    Tensor mdQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.dq_ptr)),
                             make_shape(params.seqlen_q, params.d, params.h, params.b),
                             make_stride(params.dq_row_stride, _1{}, params.dq_head_stride, params.dq_batch_stride));
    Tensor mdQaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum*>(params.dq_accum_ptr)),
                                  make_shape(params.seqlen_q, params.d, params.h, params.b),
                                  make_stride(params.d * params.h, _1{}, params.d, params.d * params.h * params.seqlen_q_rounded));
    auto tma_store_dQaccum = make_tma_copy(
        // typename Kernel_traits::GmemTiledCopydKV{},
        typename cute::SM90_TMA_STORE{},
        // mdQ,
        mdQaccum,
        // typename Kernel_traits::SmemLayoutdQTMA{},
        typename Kernel_traits::SmemLayoutdQaccTMA{},
        select<0, 2>(TileShape_MNK{}),
        _1{}); // no mcast for output
    auto tma_reduce_add_dQaccum = make_tma_copy(
        // typename Kernel_traits::GmemTiledCopydKV{},
        typename cute::SM90_TMA_REDUCE_ADD{},
        // mdQ,
        mdQaccum,
        // typename Kernel_traits::SmemLayoutdQTMA{},
        typename Kernel_traits::SmemLayoutdQaccTMA{},
        select<0, 2>(TileShape_MNK{}),
        _1{}); // no mcast for output
    // print(typename Kernel_traits::SmemLayoutVt{}); printf("\n"); print(typename Kernel_traits::SmemLayoutVt_tmp{});

    // print(typename Kernel_traits::TiledMmaSdP{}); printf("\n");
    // print(typename Kernel_traits::TiledMmadKV{}); printf("\n");
    // print(typename Kernel_traits::TiledMmadQ{}); printf("\n");
    // print(typename Kernel_traits::SmemLayoutAtomK{}); printf("\n");
    // print(typename Kernel_traits::SmemLayoutK{}); printf("\n");
    // print(typename Kernel_traits::SmemLayoutKt{}); printf("\n");
    // Get the ptr to kernel function.
    void *kernel;
    if constexpr (!Kernel_traits::Is_WS) {
       kernel = (void *)flash::compute_dqkv<Kernel_traits, Is_causal, decltype(tma_load_Q), decltype(tma_load_dO),
        decltype(tma_load_K), decltype(tma_load_V), decltype(tma_store_dK), decltype(tma_store_dV)>;
    } else {
       kernel = (void *)flash::compute_dqkv_ws<Kernel_traits, Is_causal, decltype(tma_load_Q), decltype(tma_load_dO),
        decltype(tma_load_K), decltype(tma_load_V), decltype(tma_store_dK), decltype(tma_store_dV), decltype(tma_store_dQaccum), decltype(tma_reduce_add_dQaccum)>;
    }
    // void *kernel = (void *)flash::compute_dqkv_seqqpar<Kernel_traits, Is_causal, decltype(tma_load_Q), decltype(tma_load_dO),
        // decltype(tma_load_K), decltype(tma_load_V), decltype(tma_store_dQaccum), decltype(tma_store_dK), decltype(tma_store_dV)>;
    auto shared_storage = typename Kernel_traits::SharedStorage{};
    int smem_size = sizeof(typename Kernel_traits::SharedStorage);
    int smem_size_q = sizeof(decltype(shared_storage.smem_q));
    int smem_size_do = sizeof(decltype(shared_storage.smem_do));
    int smem_size_k = sizeof(decltype(shared_storage.smem_k));
    int smem_size_v = sizeof(decltype(shared_storage.smem_v));
    // int smem_size_p = sizeof(decltype(shared_storage.smem_p));
    int smem_size_ds = sizeof(decltype(shared_storage.smem_ds));
    // printf("smem_size = %d, q = %d, do = %d, k = %d, v = %d, p = %d, ds = %d\n", smem_size, smem_size_q, smem_size_do, smem_size_k, smem_size_v, smem_size_p, smem_size_ds);
    // printf("smem_size = %d, q = %d, do = %d, k = %d, v = %d, ds = %d\n", smem_size, smem_size_q, smem_size_do, smem_size_k, smem_size_v, smem_size_ds);
    if (smem_size >= 48 * 1024) {
159
       CHECK_CUDA(cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
Tri Dao's avatar
Tri Dao committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
    }

    static constexpr int ctaSize = Kernel_traits::kNWarps * 32;
    int num_blocks_n = cutlass::ceil_div(params.seqlen_k, Kernel_traits::kBlockN);
    num_blocks_n = cutlass::ceil_div(num_blocks_n, size<1>(ClusterShape{})) * size<1>(ClusterShape{});
    dim3 grid_dims(num_blocks_n, params.h, params.b);
    // int num_blocks_m = cutlass::ceil_div(params.seqlen_q, Kernel_traits::kBlockM);
    // num_blocks_m = cutlass::ceil_div(num_blocks_m, size<0>(ClusterShape{})) * size<0>(ClusterShape{});
    // dim3 grid_dims(num_blocks_m, params.h, params.b);
    dim3 block_dims(ctaSize);
    dim3 cluster_dims(size<0>(ClusterShape{}), size<1>(ClusterShape{}), size<2>(ClusterShape{}));
    cutlass::ClusterLaunchParams launch_params{grid_dims, block_dims, cluster_dims, smem_size, stream};
    if constexpr (!Kernel_traits::Is_WS) {
        cutlass::launch_kernel_on_cluster(launch_params, kernel, params, tma_load_Q, tma_load_dO,
                                          tma_load_K, tma_load_V, tma_store_dK, tma_store_dV);
    } else {
        cutlass::launch_kernel_on_cluster(launch_params, kernel, params, tma_load_Q, tma_load_dO,
                                          tma_load_K, tma_load_V, tma_store_dK, tma_store_dV, tma_store_dQaccum, tma_reduce_add_dQaccum);
    }
    // cutlass::launch_kernel_on_cluster(launch_params, kernel, params, tma_load_Q, tma_load_dO,
                                      // tma_load_K, tma_load_V, tma_store_dQaccum, tma_store_dK, tma_store_dV);
181
    CHECK_CUDA_KERNEL_LAUNCH();
Tri Dao's avatar
Tri Dao committed
182
183
184
185
186
187
188
189
190
191

    auto tma_load_dQaccum = make_tma_copy(
        typename cute::SM90_TMA_LOAD{},
        mdQaccum,
        typename Kernel_traits::SmemLayoutdQaccTMA{},
        select<0, 2>(TileShape_MNK{}),
        _1{}); // no mcast for output
    // auto kernel_dq = &flash_bwd_convert_dq_kernel<Kernel_traits>;
    auto kernel_dq = &flash::convert_dQ<Kernel_traits, decltype(tma_load_dQaccum)>;
    if (Kernel_traits::kSmemdQSize * 2 + 8 >= 48 * 1024)  {
192
        CHECK_CUDA(cudaFuncSetAttribute(
Tri Dao's avatar
Tri Dao committed
193
194
195
            kernel_dq, cudaFuncAttributeMaxDynamicSharedMemorySize, Kernel_traits::kSmemdQSize * 2 + 8));
    }
    kernel_dq<<<grid_m, Kernel_traits::kNThreadsdQ, Kernel_traits::kSmemdQSize * 2 + 8, stream>>>(params, tma_load_dQaccum);
196
    CHECK_CUDA_KERNEL_LAUNCH();
Tri Dao's avatar
Tri Dao committed
197
198
    // auto kernel_dkv = &flash_bwd_convert_dkv_kernel<Kernel_traits>;
    // if (Kernel_traits::kSmemdKVSize >= 48 * 1024)  {
199
        // CHECK_CUDA(cudaFuncSetAttribute(
Tri Dao's avatar
Tri Dao committed
200
201
202
203
204
            // kernel_dkv, cudaFuncAttributeMaxDynamicSharedMemorySize, Kernel_traits::kSmemdKVSize));
    // }
    // int num_n_block = cute::ceil_div(params.seqlen_k, Kernel_traits::kBlockN);
    // dim3 grid_n(num_n_block, params.b, params.h);
    // kernel_dkv<<<grid_n, Kernel_traits::kNThreads, Kernel_traits::kSmemdKVSize, stream>>>(params);
205
    // CHECK_CUDA_KERNEL_LAUNCH();
Tri Dao's avatar
Tri Dao committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
}


template<typename T>
void run_mha_bwd_hdim64(Flash_bwd_params &params, cudaStream_t stream) {
    constexpr static int Headdim = 64;
    // BOOL_SWITCH(params.is_causal, Is_causal, [&] {
    //     run_flash_bwd<T, Headdim, Is_causal>(params, stream);
    // });
    // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 128, 8, false, false, false, 2, 2, 2, 1, T>, false>(params, stream);
    run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 128, 12, true, false, false, 1, 2, 2, 1, T>, false>(params, stream);
    // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 96, 128, 12, true, false, true, 1, 2, 2, 1, T>, false>(params, stream);
}

template<typename T>
void run_mha_bwd_hdim128(Flash_bwd_params &params, cudaStream_t stream) {
    constexpr static int Headdim = 128;
    // BOOL_SWITCH(params.is_causal, Is_causal, [&] {
    //     run_flash_bwd<T, Headdim, Is_causal>(params, stream);
    // });
    // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, false, 2, 1, 2, 1, T>, false>(params, stream);
    // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, false, false, false, 1, 2, 1, 1, T>, false>(params, stream);
    // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 96, 8, false, true, false, 2, 1, 2, 1, T>, false>(params, stream);
    // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 96, 8, false, true, true, 2, 1, 1, 1, T>, false>(params, stream);
    // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, true, false, true, 1, 2, 1, 1, T>, false>(params, stream);
    run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 12, true, false, true, 1, 2, 1, 1, T>, false>(params, stream);
    // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 12, true, false, false, 1, 2, 1, 1, T>, false>(params, stream);
    // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 12, false, false, false, 1, 2, 1, 1, T>, false>(params, stream);
    // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 80, 128, 12, true, false, true, 1, 2, 1, 1, T>, false>(params, stream);
    // run_flash_bwd<Flash_bwd_seqqpar_kernel_traits<Headdim, 128, 64, 8, false, true, false, 2, 1, 2, 1, T>, false>(params, stream);
    // run_flash_bwd<Flash_bwd_seqqpar_kernel_traits<Headdim, 96, 128, 8, true, false, true, 1, 2, 1, 1, T>, false>(params, stream);
}

template<typename T>
void run_mha_bwd_hdim256(Flash_bwd_params &params, cudaStream_t stream) {
    // constexpr static int Headdim = 256;
    // BOOL_SWITCH(params.is_causal, Is_causal, [&] {
    //     run_flash_bwd<T, Headdim, Is_causal>(params, stream);
    // });
}