llama.py 16 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
# Copyright (c) 2023, Tri Dao.

import json
4
5
import math
import os
Tri Dao's avatar
Tri Dao committed
6
7
import re
from collections import OrderedDict
8
9
from pathlib import Path
from typing import Union
Tri Dao's avatar
Tri Dao committed
10
11
12

import torch
import torch.nn.functional as F
13
from sentencepiece import SentencePieceProcessor
Tri Dao's avatar
Tri Dao committed
14
15
16
from transformers import GPT2Config, LlamaConfig


17
18
19
20
21
22
23
24
def remap_state_dict_meta_llama(
    state_dict: dict[str, torch.Tensor], config: GPT2Config
) -> dict[str, torch.Tensor]:
    """Convert the state_dict in Meta format to standard GPT format.

    This function modifies state_dict in place.
    """

Tri Dao's avatar
Tri Dao committed
25
    def key_mapping_layers(key):
Tri Dao's avatar
Tri Dao committed
26
27
        return f"transformer.{key}" if not key.startswith("output.") else key

Tri Dao's avatar
Tri Dao committed
28
29
30
    state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
    # Word embedding
    def key_mapping_emb(key):
Tri Dao's avatar
Tri Dao committed
31
32
33
34
        return re.sub(
            r"^transformer.tok_embeddings.", "transformer.embeddings.word_embeddings.", key
        )

Tri Dao's avatar
Tri Dao committed
35
    state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items())
Tri Dao's avatar
Tri Dao committed
36
    word_embeddings = state_dict.pop("transformer.embeddings.word_embeddings.weight")
Tri Dao's avatar
Tri Dao committed
37
    # It's possible that vocab_size is padded to be a multiple of 8, for example.
Tri Dao's avatar
Tri Dao committed
38
39
40
41
42
    pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
    vocab_size = (
        math.ceil(word_embeddings.shape[0] / pad_vocab_size_multiple) * pad_vocab_size_multiple
    )
    state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad(
Tri Dao's avatar
Tri Dao committed
43
44
        word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
    )
Tri Dao's avatar
Tri Dao committed
45
46
    if getattr(config, "tie_word_embeddings"):
        state_dict["lm_head.weight"] = state_dict["transformer.embeddings.word_embeddings.weight"]
Tri Dao's avatar
Tri Dao committed
47
    else:
Tri Dao's avatar
Tri Dao committed
48
        output_embeddings = state_dict.pop("output.weight")
Tri Dao's avatar
Tri Dao committed
49
50
        # Need to recompute vocab_size since LLaMa shards the word embeddings and output embeddings
        # differently.
Tri Dao's avatar
Tri Dao committed
51
52
53
54
        vocab_size = (
            math.ceil(output_embeddings.shape[0] / pad_vocab_size_multiple)
            * pad_vocab_size_multiple
        )
Tri Dao's avatar
Tri Dao committed
55
        # It's possible that vocab_size is padded to be a multiple of 8, for example.
Tri Dao's avatar
Tri Dao committed
56
        state_dict["lm_head.weight"] = F.pad(
Tri Dao's avatar
Tri Dao committed
57
58
59
60
61
            output_embeddings, (0, 0, 0, vocab_size - output_embeddings.shape[0])
        )

    # LayerNorm
    def key_mapping_ln(key):
Tri Dao's avatar
Tri Dao committed
62
63
64
65
66
        key = re.sub(r"^transformer.norm.", r"transformer.ln_f.", key)
        key = re.sub(
            r"^transformer.layers.(\d+).attention_norm.", r"transformer.layers.\1.norm1.", key
        )
        key = re.sub(r"^transformer.layers.(\d+).ffn_norm.", r"transformer.layers.\1.norm2.", key)
Tri Dao's avatar
Tri Dao committed
67
        return key
Tri Dao's avatar
Tri Dao committed
68

Tri Dao's avatar
Tri Dao committed
69
70
71
72
    state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())

    # MLP
    for l in range(config.n_layer):
Tri Dao's avatar
Tri Dao committed
73
74
        w1 = state_dict.pop(f"transformer.layers.{l}.feed_forward.w1.weight")
        w3 = state_dict.pop(f"transformer.layers.{l}.feed_forward.w3.weight")
Tri Dao's avatar
Tri Dao committed
75
        # Our ordering is different
Tri Dao's avatar
Tri Dao committed
76
77
        state_dict[f"transformer.layers.{l}.mlp.fc1.weight"] = torch.cat([w3, w1], dim=0)

Tri Dao's avatar
Tri Dao committed
78
    def key_mapping_mlp(key):
Tri Dao's avatar
Tri Dao committed
79
80
81
82
        return re.sub(
            r"^transformer.layers.(\d+).feed_forward.w2.", r"transformer.layers.\1.mlp.fc2.", key
        )

Tri Dao's avatar
Tri Dao committed
83
84
85
86
    state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())

    # Attention
    for l in range(config.n_layer):
Tri Dao's avatar
Tri Dao committed
87
88
89
90
        Wq = state_dict.pop(f"transformer.layers.{l}.attention.wq.weight")
        Wk = state_dict.pop(f"transformer.layers.{l}.attention.wk.weight")
        Wv = state_dict.pop(f"transformer.layers.{l}.attention.wv.weight")
        state_dict[f"transformer.layers.{l}.mixer.Wqkv.weight"] = torch.cat([Wq, Wk, Wv], dim=0)
Tri Dao's avatar
Tri Dao committed
91
        # We don't store these
Tri Dao's avatar
Tri Dao committed
92
93
        state_dict.pop(f"transformer.layers.{l}.attention.inner_attention.rope.freqs", None)

Tri Dao's avatar
Tri Dao committed
94
    def key_mapping_attn(key):
Tri Dao's avatar
Tri Dao committed
95
96
97
98
99
100
        return re.sub(
            r"^transformer.layers.(\d+).attention.wo.",
            r"transformer.layers.\1.mixer.out_proj.",
            key,
        )

Tri Dao's avatar
Tri Dao committed
101
102
    state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())

103
104
    state_dict.pop("transformer.rope.freqs", None)

Tri Dao's avatar
Tri Dao committed
105
106
107
    return state_dict


108
109
110
111
112
113
114
def remap_state_dict_hf_llama(
    state_dict: dict[str, torch.Tensor], config: GPT2Config
) -> dict[str, torch.Tensor]:
    """Convert the state_dict in Hugging Face format to standard GPT format.

    This function modifies state_dict in place.
    """
115
116
    # Embedding
    def key_mapping_emb(key):
Tri Dao's avatar
Tri Dao committed
117
        return re.sub(r"^model.embed_tokens.", "transformer.embeddings.word_embeddings.", key)
118
119

    state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items())
Tri Dao's avatar
Tri Dao committed
120
    word_embeddings = state_dict.pop("transformer.embeddings.word_embeddings.weight")
121
    # It's possible that vocab_size is padded to be a multiple of 8, for example.
Tri Dao's avatar
Tri Dao committed
122
123
124
125
126
    pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
    vocab_size = (
        math.ceil(word_embeddings.shape[0] / pad_vocab_size_multiple) * pad_vocab_size_multiple
    )
    state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad(
127
128
129
130
        word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
    )

    # LM head
Tri Dao's avatar
Tri Dao committed
131
132
    if getattr(config, "tie_word_embeddings"):
        state_dict["lm_head.weight"] = state_dict["transformer.embeddings.word_embeddings.weight"]
133
    else:
Tri Dao's avatar
Tri Dao committed
134
        output_embeddings = state_dict.pop("lm_head.weight")
135
136
        # Need to recompute vocab_size since LLaMa shards the word embeddings and output embeddings
        # differently.
Tri Dao's avatar
Tri Dao committed
137
138
139
140
        vocab_size = (
            math.ceil(output_embeddings.shape[0] / pad_vocab_size_multiple)
            * pad_vocab_size_multiple
        )
141
        # It's possible that vocab_size is padded to be a multiple of 8, for example.
Tri Dao's avatar
Tri Dao committed
142
        state_dict["lm_head.weight"] = F.pad(
143
144
145
146
147
148
149
150
            output_embeddings, (0, 0, 0, vocab_size - output_embeddings.shape[0])
        )

    # MLP
    for l in range(config.n_layer):
        # Fusing weights this way based on difference in the following:
        # https://github.com/huggingface/transformers/blob/b42010bb1d3cbf262d27e0a328661885be46dfdb/src/transformers/models/llama/modeling_llama.py#L220
        # https://github.com/Dao-AILab/flash-attention/blob/c60851a8253257eb970e06a022c82517a8033e8c/flash_attn/modules/mlp.py#L115
Tri Dao's avatar
Tri Dao committed
151
152
153
        w1 = state_dict.pop(f"model.layers.{l}.mlp.gate_proj.weight")
        w3 = state_dict.pop(f"model.layers.{l}.mlp.up_proj.weight")
        state_dict[f"transformer.layers.{l}.mlp.fc1.weight"] = torch.cat([w3, w1], dim=0)
154
155

    def key_mapping_mlp(key):
Tri Dao's avatar
Tri Dao committed
156
        return re.sub(r"^model.layers.(\d+).mlp.down_proj.", r"transformer.layers.\1.mlp.fc2.", key)
157
158
159
160
161

    state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())

    # LayerNorm
    def key_mapping_ln(key):
Tri Dao's avatar
Tri Dao committed
162
163
164
165
166
        key = re.sub(r"^model.norm.", r"transformer.ln_f.", key)
        key = re.sub(r"^model.layers.(\d+).input_layernorm.", r"transformer.layers.\1.norm1.", key)
        key = re.sub(
            r"^model.layers.(\d+).post_attention_layernorm.", r"transformer.layers.\1.norm2.", key
        )
167
168
169
170
171
172
173
        return key

    state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())

    def inv_permute(w):
        # Inverse of permute implemented in:
        # https://github.com/huggingface/transformers/blob/b42010bb1d3cbf262d27e0a328661885be46dfdb/src/transformers/models/llama/convert_llama_weights_to_hf.py#L114
Tri Dao's avatar
Tri Dao committed
174
175
176
177
178
        return (
            w.reshape(config.n_head, 2, config.n_embd // config.n_head // 2, config.n_embd)
            .transpose(1, 2)
            .reshape(config.n_embd, config.n_embd)
        )
179
180
181

    # Attention
    for l in range(config.n_layer):
Tri Dao's avatar
Tri Dao committed
182
183
184
185
        Wq = state_dict.pop(f"model.layers.{l}.self_attn.q_proj.weight")
        Wk = state_dict.pop(f"model.layers.{l}.self_attn.k_proj.weight")
        Wv = state_dict.pop(f"model.layers.{l}.self_attn.v_proj.weight")
        state_dict[f"transformer.layers.{l}.mixer.Wqkv.weight"] = torch.cat(
186
187
188
            [inv_permute(Wq), inv_permute(Wk), Wv], dim=0
        )
        # We don't store these
Tri Dao's avatar
Tri Dao committed
189
        state_dict.pop(f"model.layers.{l}.self_attn.rotary_emb.inv_freq", None)
190
191

    def key_mapping_attn(key):
Tri Dao's avatar
Tri Dao committed
192
193
194
        return re.sub(
            r"^model.layers.(\d+).self_attn.o_proj.", r"transformer.layers.\1.mixer.out_proj.", key
        )
195
196
197
198
199

    state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
    return state_dict


200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
def inv_remap_state_dict_hf_llama(
    state_dict: dict[str, torch.Tensor], config: GPT2Config
) -> dict[str, torch.Tensor]:
    """Convert the state_dict in standard GPT format to Hugging Face format.

    This function is meant to be the inverse of remap_state_dict_hf_llama, up to a
    multiplier pad in the embedding and lm_head. That is if the original embedding
    isn't a multiple of pad_vocab_size_multiple, then
    inv_remap_state_dict_hf_llama(remap_state_dict_hf_llama(state_dict)) != state_dict.

    This function modifies state_dict in place.
    """

    # Embedding
    def key_mapping_emb(key):
        return re.sub(r"^transformer.embeddings.word_embeddings.", "model.embed_tokens.", key)

    state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items())
    word_embeddings = state_dict.pop("model.embed_tokens.weight")
    pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
    vocab_size = (
        math.ceil(word_embeddings.shape[0] / pad_vocab_size_multiple) * pad_vocab_size_multiple
    )
    state_dict["model.embed_tokens.weight"] = F.pad(
        word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
    )

    # LM head
    if getattr(config, "tie_word_embeddings"):
        state_dict["lm_head.weight"] = state_dict["model.embed_tokens.weight"]
    else:
        output_embeddings = state_dict.pop("lm_head.weight")
        vocab_size = (
            math.ceil(output_embeddings.shape[0] / pad_vocab_size_multiple)
            * pad_vocab_size_multiple
        )
        state_dict["lm_head.weight"] = F.pad(
            output_embeddings, (0, 0, 0, vocab_size - output_embeddings.shape[0])
        )

    # MLP
    for l in range(config.n_layer):
        w3, w1 = torch.chunk(
            state_dict.pop(f"transformer.layers.{l}.mlp.fc1.weight"), chunks=2, dim=0
        )
        state_dict[f"model.layers.{l}.mlp.gate_proj.weight"] = w1
        state_dict[f"model.layers.{l}.mlp.up_proj.weight"] = w3

    def key_mapping_mlp(key):
        return re.sub(r"^transformer.layers.(\d+).mlp.fc2.", r"model.layers.\1.mlp.down_proj.", key)

    state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())

    # LayerNorm
    def key_mapping_ln(key):
        key = re.sub(r"^transformer.ln_f.", r"model.norm.", key)
        key = re.sub(r"^transformer.layers.(\d+).norm1.", r"model.layers.\1.input_layernorm.", key)
        key = re.sub(
            r"^transformer.layers.(\d+).norm2.", r"model.layers.\1.post_attention_layernorm.", key
        )
        return key

    state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())

    def permute(w):
        return (
            w.view(config.n_head, config.n_embd // config.n_head // 2, 2, config.n_embd)
            .transpose(1, 2)
            .reshape(config.n_embd, config.n_embd)
        )

    n_head = config.n_head
    n_head_kv = getattr(config, "n_head_kv", n_head)

    embed_dim = config.hidden_size
    head_dim = embed_dim // n_head

    q_dim = n_head * head_dim
    k_dim = v_dim = n_head_kv * head_dim

    # Attention
    for l in range(config.n_layer):
        Wqkv = state_dict.pop(f"transformer.layers.{l}.mixer.Wqkv.weight")
        Wq = Wqkv[:q_dim]
        Wk = Wqkv[q_dim : q_dim + k_dim]
        Wv = Wqkv[q_dim + k_dim : q_dim + k_dim + v_dim]
        state_dict[f"model.layers.{l}.self_attn.q_proj.weight"] = permute(Wq)
        state_dict[f"model.layers.{l}.self_attn.k_proj.weight"] = permute(Wk)
        state_dict[f"model.layers.{l}.self_attn.v_proj.weight"] = Wv
        state_dict.pop(f"transformer.layers.{l}.attention.inner_attention.rope.freqs", None)

    def key_mapping_attn(key):
        return re.sub(
            r"^transformer.layers.(\d+).mixer.out_proj.", r"model.layers.\1.self_attn.o_proj.", key
        )

    state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
    return state_dict


Tri Dao's avatar
Tri Dao committed
300
301
302
def config_from_meta_checkpoint(
    checkpoint_path: Union[str, os.PathLike], model_name: str
) -> LlamaConfig:
Tri Dao's avatar
Tri Dao committed
303
    """Load a LlamaConfig from a checkpoint path."""
Tri Dao's avatar
Tri Dao committed
304
    with open(Path(checkpoint_path) / model_name / "params.json") as f:
Tri Dao's avatar
Tri Dao committed
305
        params = json.load(f)
Tri Dao's avatar
Tri Dao committed
306
307
308
309
310
311
    config = LlamaConfig(
        hidden_size=params["dim"],
        intermediate_size=None,
        num_attention_heads=params["n_heads"],
        num_hidden_layers=params["n_layers"],
        rms_norm_eps=params["norm_eps"],
312
        num_key_value_heads=params.get("n_kv_heads", None),
Tri Dao's avatar
Tri Dao committed
313
    )
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
    multiple_of = params.get("multiple_of", 1)
    ffn_dim_multiplier = params.get("ffn_dim_multiplier", None)

    # Compute the hidden dimension of the MLP
    # https://github.com/facebookresearch/llama/blob/1a240688810f8036049e8da36b073f63d2ac552c/llama/model.py#L224
    intermediate_size = 4 * config.hidden_size
    # https://github.com/facebookresearch/llama/blob/1a240688810f8036049e8da36b073f63d2ac552c/llama/model.py#L195-L199
    intermediate_size = int(2 * intermediate_size / 3)
    # custom dim factor multiplier
    if ffn_dim_multiplier is not None:
        intermediate_size = int(ffn_dim_multiplier * intermediate_size)
    intermediate_size = multiple_of * ((intermediate_size + multiple_of - 1) // multiple_of)

    config.intermediate_size = intermediate_size
    if "rope_theta" in params:
        config.rotary_emb_base = params["rope_theta"]
    config.vocab_size = 32000
    # some CodeLLaMa have vocab_size 32000, some 32016
    # Sadly it's not specified in the `params.json` file :(
    tokenizer = Path(checkpoint_path) / model_name / "tokenizer.model"
    if tokenizer.is_file():
        config.vocab_size = SentencePieceProcessor(str(tokenizer)).vocab_size()
Tri Dao's avatar
Tri Dao committed
336
337
338
    return config


Tri Dao's avatar
Tri Dao committed
339
340
341
342
def config_from_hf_checkpoint(
    checkpoint_path: Union[str, os.PathLike], model_name: str
) -> LlamaConfig:
    return LlamaConfig.from_pretrained(Path(checkpoint_path) / f"{model_name}-hf" / "config.json")
343
344
345
346
347
348
349
350
351
352
353


def config_from_checkpoint(
    checkpoint_path: Union[str, os.PathLike], model_name: str, checkpoint_format="meta"
) -> LlamaConfig:
    if checkpoint_format == "meta":
        return config_from_meta_checkpoint(checkpoint_path, model_name)
    else:
        return config_from_hf_checkpoint(checkpoint_path, model_name)


Tri Dao's avatar
Tri Dao committed
354
355
356
def state_dicts_from_checkpoint(
    checkpoint_path: Union[str, os.PathLike], model_name: str
) -> list[dict]:
Tri Dao's avatar
Tri Dao committed
357
    # Need to sort, otherwise we mess up the ordering and the weights are wrong
Tri Dao's avatar
Tri Dao committed
358
359
360
361
    return [
        torch.load(path, map_location="cpu")
        for path in sorted((Path(checkpoint_path) / model_name).glob("consolidated.*.pth"))
    ]
Tri Dao's avatar
Tri Dao committed
362
363
364
365
366
367
368
369
370
371


def llama_config_to_gpt2_config(llama_config: LlamaConfig) -> GPT2Config:
    return GPT2Config(
        vocab_size=llama_config.vocab_size,
        n_positions=0,  # No absolute position embedding
        n_embd=llama_config.hidden_size,
        n_layer=llama_config.num_hidden_layers,
        n_head=llama_config.num_attention_heads,
        n_inner=llama_config.intermediate_size,
Tri Dao's avatar
Tri Dao committed
372
        activation_function="swiglu",  # Hardcode since HF calls it 'silu'
Tri Dao's avatar
Tri Dao committed
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
        # Llama doesn't have dropout, idk if it's because they only release the inference code
        resid_pdrop=0.0,
        embd_pdrop=0.0,
        attn_pdrop=0.0,
        layer_norm_epsilon=llama_config.rms_norm_eps,
        initializer_range=llama_config.initializer_range,
        bos_token_id=llama_config.bos_token_id,
        eos_token_id=llama_config.eos_token_id,
        # These are new arguments not in the original GPT2Config
        pad_token_id=llama_config.pad_token_id,  # Idk if this does anything
        rms_norm=True,
        rotary_emb_fraction=1.0,
        rotary_emb_interleaved=True,
        tie_word_embeddings=False,
        qkv_proj_bias=False,
        out_proj_bias=False,
        mlp_fc1_bias=False,
        mlp_fc2_bias=False,
391
392
        rotary_emb_base=getattr(llama_config, "rotary_emb_base", 10000.0),
        n_head_kv=llama_config.num_key_value_heads,
Tri Dao's avatar
Tri Dao committed
393
    )