benchmark_causal.py 9.79 KB
Newer Older
1
2
3
4
5
6
7
8
from functools import partial
import math
import torch
import torch.nn as nn
import torch.nn.functional as F

from einops import rearrange, repeat

Tri Dao's avatar
Tri Dao committed
9
# from flash_attn.utils.benchmark import benchmark_forward, benchmark_backward, benchmark_combined, benchmark_all, benchmark_fwd_bwd, pytorch_profiler
10
from flash_attn.utils.benchmark import benchmark_forward, benchmark_backward, benchmark_combined, benchmark_all, benchmark_fwd_bwd, pytorch_profiler
Tri Dao's avatar
Tri Dao committed
11
12
13
14
15
16
17
from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func
# # from flash_attn.triton.fused_attention import attention as attention
# from flash_attn.flash_attn_triton import flash_attn_qkvpacked_func
# from flash_attn.flash_attn_triton_og import attention as attention_og

# from triton.ops.flash_attention import attention as attention_triton

18
from flash_attn import flash_attn_qkvpacked_func, flash_attn_kvpacked_func
19

20
21
22
23
try:
    from flash_attn.fused_softmax import scaled_upper_triang_masked_softmax
except ImportError:
    scaled_upper_triang_masked_softmax = None
24

25
26

def attention_pytorch(qkv, dropout_p=0.0, causal=True):
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
    """
    Arguments:
        qkv: (batch_size, seqlen, 3, nheads, head_dim)
        dropout_p: float
    Output:
        output: (batch_size, seqlen, nheads, head_dim)
    """
    batch_size, seqlen, _, nheads, d = qkv.shape
    q, k, v = qkv.unbind(dim=2)
    q = rearrange(q, 'b t h d -> (b h) t d')
    k = rearrange(k, 'b s h d -> (b h) d s')
    softmax_scale = 1.0 / math.sqrt(d)
    # Preallocate attn_weights for `baddbmm`
    scores = torch.empty(batch_size * nheads, seqlen, seqlen, dtype=qkv.dtype, device=qkv.device)
    scores = rearrange(torch.baddbmm(scores, q, k, beta=0, alpha=softmax_scale),
                       '(b h) t s -> b h t s', h=nheads)
    if causal:
        # "triu_tril_cuda_template" not implemented for 'BFloat16'
        # So we have to construct the mask in float
        causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
        # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
        scores = scores + causal_mask.to(dtype=scores.dtype)
    attention = torch.softmax(scores, dim=-1)
    attention_drop = F.dropout(attention, dropout_p)
    output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
    return output.to(dtype=qkv.dtype)


55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
def attention_megatron(qkv):
    """
    Arguments:
        qkv: (batch_size, seqlen, 3, nheads, head_dim)
    Output:
        output: (batch_size, seqlen, nheads, head_dim)
    """
    batch_size, seqlen, _, nheads, d = qkv.shape
    q, k, v = qkv.unbind(dim=2)
    q = rearrange(q, 'b t h d -> (b h) t d')
    k = rearrange(k, 'b s h d -> (b h) d s')
    softmax_scale = 1.0 / math.sqrt(d)
    # Preallocate attn_weights for `baddbmm`
    scores = torch.empty(batch_size * nheads, seqlen, seqlen, dtype=qkv.dtype, device=qkv.device)
    scores = rearrange(torch.baddbmm(scores, q, k, beta=0, alpha=softmax_scale),
                       '(b h) t s -> b h t s', h=nheads)
    attention = scaled_upper_triang_masked_softmax(scores, None, scale=1.0)
    output = torch.einsum('bhts,bshd->bthd', attention, v)
    return output.to(dtype=qkv.dtype)


76
77
torch.manual_seed(0)
repeats = 30
78
79
batch_size = 8
seqlen = 2048
80
81
nheads = 12
headdim = 128
Tri Dao's avatar
Tri Dao committed
82
83
# nheads = 24
# headdim = 64
Tri Dao's avatar
Tri Dao committed
84
85
86
87
# batch_size = 64
# seqlen = 512
# nheads = 8
# headdim = 128
88
89
dropout_p = 0.0
causal = True
Tri Dao's avatar
Tri Dao committed
90
dtype = torch.float16
91
92
93
94
95
96
97
device = 'cuda'

qkv = torch.randn(batch_size, seqlen, 3, nheads, headdim, device=device, dtype=dtype,
                  requires_grad=True)
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
                          device=qkv.device)

98
qkv_unpad = rearrange(qkv, 'b s ... -> (b s) ...').detach().requires_grad_(True)
Tri Dao's avatar
Tri Dao committed
99
100
101
102
# benchmark_all(flash_attn_varlen_qkvpacked_func, qkv_unpad,
#               cu_seqlens, seqlen, dropout_p, causal=causal, repeats=repeats, desc='FlashAttention')
# pytorch_profiler(flash_attn_varlen_qkvpacked_func, qkv_unpad,
#                  cu_seqlens, seqlen, dropout_p, causal=causal, backward=True)
103
104
benchmark_forward(flash_attn_qkvpacked_func, qkv, dropout_p, causal=causal, repeats=repeats, desc='Fav2')
pytorch_profiler(flash_attn_qkvpacked_func, qkv, dropout_p, causal=causal, backward=False)
Tri Dao's avatar
Tri Dao committed
105
106
107
108
109
110

# for dropout_p in [0.1, 0.0]:
#     for causal in [False, True]:
#         print(f"### {dropout_p = }, {causal = } ###")
#         pytorch_profiler(fav2_qkvpacked_func, qkv, dropout_p, causal=causal, backward=True)

111

Tri Dao's avatar
Tri Dao committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# nheads_k = 2
# q = torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=dtype, requires_grad=True)
# kv = torch.randn(batch_size, seqlen, 2, nheads_k, headdim, device=device, dtype=dtype,
#                  requires_grad=True)
# if fav2_kvpacked_func is not None:
#     benchmark_all(fav2_kvpacked_func, q, kv, dropout_p, causal=causal, repeats=repeats, desc='Fav2')
#     pytorch_profiler(fav2_kvpacked_func, q, kv, dropout_p, causal=causal, backward=True)

# dropout_p = 0.0
# causal = False
# benchmark_all(attention_pytorch, qkv, dropout_p, causal=causal,
#               repeats=repeats, desc='PyTorch Attention')

# benchmark_all(flash_attn_qkvpacked_func, qkv, None, causal, repeats=repeats, desc='FlashAttention Triton')
# pytorch_profiler(flash_attn_qkvpacked_func, qkv, None, causal, backward=True)

# q, k, v = [torch.randn(batch_size, nheads, seqlen, headdim, device=device, dtype=dtype,
#                        requires_grad=True) for _ in range(3)]
# benchmark_all(attention_og, q, k, v, 1.0, repeats=repeats, desc='FlashAttention Triton OG')
# # pytorch_profiler(attention, q, k, v, 1.0, backward=True)

# if scaled_upper_triang_masked_softmax is not None:
#     benchmark_all(attention_megatron, qkv, repeats=repeats, desc='Megatron Attention')

# from src.ops.fftconv import fftconv_func

# dim = nheads * headdim
# u = torch.randn(batch_size, dim, seqlen, device=device, dtype=dtype, requires_grad=True)
# k = torch.randn(dim, seqlen, device=device, requires_grad=True)
# D = torch.randn(dim, device=device, requires_grad=True)
# benchmark_all(fftconv_func, u, k, D, repeats=repeats, desc='FFTConv')
# pytorch_profiler(fftconv_func, u, k, D, backward=True)
# pytorch_profiler(torch.fft.rfft, u.float())

flops = 4 * batch_size * seqlen ** 2 * nheads * headdim
ideal_a100_time = flops / 312 / 1e9
print(f"Ideal A100 fwd time: {ideal_a100_time:.3f}ms, bwd time: {ideal_a100_time * 2.5:.3f}ms")
149
exit(0)
Tri Dao's avatar
Tri Dao committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209


def time_fwd_bwd(func, *args, **kwargs):
    time_f, time_b = benchmark_fwd_bwd(func, *args, **kwargs)
    return time_f[1].mean, time_b[1].mean

bs_seqlen_vals = [(32, 512), (16, 1024), (8, 2048), (4, 4096), (2, 8192), (1, 16384)]
causal_vals = [False, True]
headdim_vals = [64, 128]
dim = 2048
dropout_p = 0.0

time_f = {}
time_b = {}
for causal in causal_vals:
    for headdim in headdim_vals:
        for batch_size, seqlen in bs_seqlen_vals:
            nheads = dim // headdim
            qkv = torch.randn(batch_size, seqlen, 3, nheads, headdim, device=device, dtype=dtype,
                              requires_grad=True)
            cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
                                    device=qkv.device)
            qkv_unpad = rearrange(qkv, 'b s ... -> (b s) ...').detach().requires_grad_(True)
            f, b = time_fwd_bwd(
                flash_attn_varlen_qkvpacked_func, qkv_unpad, cu_seqlens, seqlen, dropout_p,
                causal=causal, repeats=repeats, verbose=False
            )
            time_f[(causal, headdim, batch_size, seqlen), "Flash"] = f
            time_b[(causal, headdim, batch_size, seqlen), "Flash"] = b

            qkv = qkv.detach().requires_grad_(True)
            f, b = time_fwd_bwd(
                fav2_qkvpacked_func, qkv, dropout_p, causal=causal, repeats=repeats, verbose=False
            )
            time_f[(causal, headdim, batch_size, seqlen), "Flash2"] = f
            time_b[(causal, headdim, batch_size, seqlen), "Flash2"] = b

            # q, k, v = [torch.randn(batch_size, nheads, seqlen, headdim, device=device, dtype=dtype,
            #                        requires_grad=True) for _ in range(3)]
            # # Try both values of sequence_parallel and pick the faster one
            # f, b = time_fwd_bwd(
            #     attention_triton, q, k, v, causal, headdim**(-0.5),
            #     False, repeats=repeats, verbose=False
            # )
            # _, b0 = time_fwd_bwd(
            #     attention_triton, q, k, v, causal, headdim**(-0.5),
            #     True, repeats=repeats, verbose=False
            # )
            # time_f[(causal, headdim, batch_size, seqlen), "Triton"] = f
            # time_b[(causal, headdim, batch_size, seqlen), "Triton"] = min(b, b0)

            if seqlen <= 8 * 1024:
                qkv = qkv.detach().requires_grad_(True)
                f, b = time_fwd_bwd(
                    attention_pytorch, qkv, dropout_p, causal=causal, repeats=repeats, verbose=False
                )
            else:
                f, b = float('nan'), float('nan')
            time_f[(causal, headdim, batch_size, seqlen), "Pytorch"] = f
            time_b[(causal, headdim, batch_size, seqlen), "Pytorch"] = b
210

Tri Dao's avatar
Tri Dao committed
211
212
213
214
215
216
217
218
219
220
            # q, k, v = [torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=dtype,
            #                        requires_grad=True) for _ in range(3)]
            # import xformers.ops as xops
            # f, b = time_fwd_bwd(
            #     xops.memory_efficient_attention, q, k, v,
            #     attn_bias=xops.LowerTriangularMask() if causal else None,
            #     op=(xops.fmha.cutlass.FwOp, xops.fmha.cutlass.BwOp)
            # )
            # time_f[(causal, headdim, batch_size, seqlen), "xformers"] = f
            # time_b[(causal, headdim, batch_size, seqlen), "xformers"] = b
Tri Dao's avatar
Tri Dao committed
221

222

Tri Dao's avatar
Tri Dao committed
223
224
225
import pickle
with open('flash2_attn_time_h100.plk', 'wb') as fp:
    pickle.dump((time_f, time_b), fp, protocol=pickle.HIGHEST_PROTOCOL)