test_dropout_layer_norm.py 15.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
import math

import torch
import torch.nn.functional as F
import pytest

from einops import rearrange

from flash_attn.ops.layer_norm import DropoutAddLayerNorm, dropout_add_layer_norm


is_sm8x = torch.cuda.get_device_capability('cuda')[0] >= 8

Tri Dao's avatar
Tri Dao committed
14
@pytest.mark.parametrize('has_colscale', [True, False])
15
16
17
18
19
20
21
22
23
24
25
26
27
@pytest.mark.parametrize('has_rowscale', [True, False])
# @pytest.mark.parametrize('has_rowscale', [True])
@pytest.mark.parametrize('has_residual', [True, False])
# @pytest.mark.parametrize('has_residual', [False])
@pytest.mark.parametrize('dropout_p', [0.37, 0.0])
# @pytest.mark.parametrize('dropout_p', [0.0])
@pytest.mark.parametrize('weight_dtype', [torch.float32, torch.float16])
# @pytest.mark.parametrize('weight_dtype', [torch.float32])
@pytest.mark.parametrize('input_dtype,residual_dtype',
                         [(torch.float16, torch.float16), (torch.float16, torch.float32),
                          (torch.float32, torch.float32)]
                         + ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []))
# @pytest.mark.parametrize('input_dtype,residual_dtype', [(torch.float16, torch.float32)])
28
@pytest.mark.parametrize('hidden_size', [192, 256, 384, 768, 1024, 1280, 1536, 1600, 2048, 2560, 3000, 3072, 4096, 5120, 6144])
29
def test_dropout_layer_norm_training(hidden_size, input_dtype, residual_dtype, weight_dtype,
Tri Dao's avatar
Tri Dao committed
30
                                     dropout_p, has_residual, has_rowscale, has_colscale):
31
32
33
34
35
36
37
38
39
40
41
42
43
    if weight_dtype == torch.float16 and input_dtype == torch.bfloat16:
        pytest.skip()  # Not supported
    device = 'cuda'
    # rtol, atol = (1e-5, 1e-6) if input_dtype == torch.float32 else (1e-3, 1e-4)
    rtol, atol = (1e-3, 1e-4)
    # set seed
    torch.random.manual_seed(0)
    batch_size = 8
    seqlen = 512
    x0_pt = torch.randn(batch_size, seqlen, hidden_size, device=device, dtype=input_dtype,
                        requires_grad=True)
    x0 = x0_pt.detach().clone().requires_grad_()
    x0_ref = x0_pt.detach().clone().float().requires_grad_()
Tri Dao's avatar
Tri Dao committed
44
45
46
47
48
49
    if has_colscale:
        colscale = torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True)
        colscale_pt = colscale.detach().clone().requires_grad_()
        colscale_ref = colscale.detach().clone().float().requires_grad_()
    else:
        colscale = None
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
    if has_residual:
        x1_pt = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True)
        x1 = x1_pt.detach().clone().requires_grad_()
        x1_ref = x1_pt.detach().clone().float().requires_grad_()
    else:
        x1 = None
    if has_rowscale:
        rowscale = torch.empty(batch_size, seqlen, device=device, dtype=input_dtype)
        survival_rate = 0.87
        rowscale = rowscale.bernoulli_(survival_rate) / survival_rate
        x0_scaled_pt = x0_pt * rearrange(rowscale, '... -> ... 1')
        x0_scaled_ref = x0_ref * rearrange(rowscale, '... -> ... 1')
    else:
        rowscale = None
        x0_scaled_pt = x0_pt
        x0_scaled_ref = x0_ref
Tri Dao's avatar
Tri Dao committed
66
67
68
    if has_colscale:
        x0_scaled_pt = x0_scaled_pt * colscale_pt
        x0_scaled_ref = x0_scaled_ref * colscale_ref
69
70
71
72
73
74
75
76
77
78
79
80
    model_pt = torch.nn.LayerNorm(hidden_size, device=device, dtype=weight_dtype)
    torch.nn.init.normal_(model_pt.weight)
    torch.nn.init.normal_(model_pt.bias)
    model_ref = torch.nn.LayerNorm(hidden_size, device=device, dtype=torch.float32)
    model = DropoutAddLayerNorm(hidden_size, p=dropout_p, device=device, dtype=weight_dtype)
    with torch.no_grad():
        model.weight.copy_(model_pt.weight)
        model.bias.copy_(model_pt.bias)
        model_ref.weight.copy_(model_pt.weight)
        model_ref.bias.copy_(model_pt.bias)
    residual_in_fp32 = (not has_residual) and residual_dtype == torch.float32
    out, dmask = dropout_add_layer_norm(x0, x1, model.weight, model.bias, model.p,
Tri Dao's avatar
Tri Dao committed
81
                                        model.epsilon, rowscale=rowscale, layerscale=colscale,
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
                                        residual_in_fp32=residual_in_fp32, return_dropout_mask=True)
    assert out.dtype == input_dtype
    print(f'Actual dropout fraction: {1 - dmask.float().mean().item()}')
    if has_residual:
        residual_pt = ((x0_scaled_pt.float() * dmask.float()) / (1 - dropout_p) + x1_pt.float()).to(dtype=residual_dtype)
        residual_ref = (x0_scaled_ref * dmask.float()) / (1 - dropout_p) + x1_ref
    else:
        residual_pt = ((x0_scaled_pt.float() * dmask.float()) / (1 - dropout_p)).to(dtype=residual_dtype)
        residual_ref = (x0_scaled_ref * dmask.float()) / (1 - dropout_p)
    out_pt = model_pt(residual_pt.to(dtype=weight_dtype)).to(dtype=input_dtype)
    out_ref = model_ref(residual_ref)
    assert (out - out_ref).abs().max() <= 4 * (out_pt - out_ref).abs().max() + 1e-4

    g = torch.randn_like(out) / batch_size
    out_pt.backward(g)
    out.backward(g)
    out_ref.backward(g)
    assert (x0.grad - x0_ref.grad).abs().max() <= 4 * (x0_pt.grad - x0_ref.grad).abs().max() + 1e-4
    if has_residual:
        assert (x1.grad - x1_ref.grad).abs().max() <= 4 * (x1_pt.grad - x1_ref.grad).abs().max() + 1e-4
    assert (model.weight.grad - model_ref.weight.grad).abs().max() <= 2 * (model_pt.weight.grad - model_ref.weight.grad).abs().max() + 3e-5
    assert (model.bias.grad - model_ref.bias.grad).abs().max() <= 2 * (model_pt.bias.grad - model_ref.bias.grad).abs().max() + 3e-5
Tri Dao's avatar
Tri Dao committed
104
105
    if has_colscale:
        assert (colscale.grad - colscale_ref.grad).abs().max() <= 2 * (colscale_pt.grad - colscale_ref.grad).abs().max() + 2e-4
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150


@pytest.mark.parametrize('weight_dtype', [torch.float32, torch.float16])
@pytest.mark.parametrize('input_dtype,residual_dtype',
                         [(torch.float16, torch.float16), (torch.float16, torch.float32),
                          (torch.float32, torch.float32)]
                         + ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []))
@pytest.mark.parametrize('hidden_size', [768, 1024, 1280, 1536, 1600, 2048, 2560, 3072, 4096, 5120])
def test_dropout_layer_norm_eval(hidden_size, input_dtype, residual_dtype, weight_dtype):
    if weight_dtype == torch.float16 and input_dtype == torch.bfloat16:
        pytest.skip()  # Not supported
    device = 'cuda'
    # rtol, atol = (1e-5, 1e-6) if dtype == torch.float32 else (1e-3, 1e-4)
    rtol, atol = (1e-3, 1e-4)
    dropout_p = 0.37
    # set seed
    torch.random.manual_seed(0)
    batch_size = 32
    seqlen = 512
    x0_pt = torch.randn(batch_size, seqlen, hidden_size, device=device, dtype=input_dtype,
                        requires_grad=True)
    x0 = x0_pt.detach().clone().requires_grad_()
    x0_ref = x0_pt.detach().clone().float().requires_grad_()
    x1_pt = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True)
    x1 = x1_pt.detach().clone().requires_grad_()
    x1_ref = x1_pt.detach().clone().float().requires_grad_()
    model_pt = torch.nn.LayerNorm(hidden_size, device=device, dtype=weight_dtype)
    model = DropoutAddLayerNorm(hidden_size, p=dropout_p, device=device, dtype=weight_dtype)
    model_ref = torch.nn.LayerNorm(hidden_size, device=device, dtype=torch.float32)
    with torch.no_grad():
        model.weight.copy_(model_pt.weight)
        model.bias.copy_(model_pt.bias)
        model_ref.weight.copy_(model_pt.weight)
        model_ref.bias.copy_(model_pt.bias)
    model_pt.eval()
    model.eval()
    model_ref.eval()
    out = model(x0, x1)
    residual_pt = (x0_pt.float() + x1_pt.float()).to(dtype=residual_dtype)
    residual_ref = x0_ref + x1_ref
    out_pt = model_pt(residual_pt.to(dtype=weight_dtype)).to(input_dtype)
    out_ref = model_ref(residual_ref)
    assert (out - out_ref).abs().max() <= 4 * (out_pt - out_ref).abs().max() + 1e-4


Tri Dao's avatar
Tri Dao committed
151
@pytest.mark.parametrize('has_colscale', [True, False])
152
153
154
155
156
157
158
159
@pytest.mark.parametrize('has_rowscale', [True, False])
@pytest.mark.parametrize('has_residual', [True, False])
@pytest.mark.parametrize('dropout_p', [0.37, 0.0])
@pytest.mark.parametrize('weight_dtype', [torch.float32, torch.float16])
@pytest.mark.parametrize('input_dtype,residual_dtype',
                         [(torch.float16, torch.float16), (torch.float16, torch.float32),
                          (torch.float32, torch.float32)]
                         + ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []))
Tri Dao's avatar
Tri Dao committed
160
# @pytest.mark.parametrize('has_colscale', [True])
161
# @pytest.mark.parametrize('has_rowscale', [False])
Tri Dao's avatar
Tri Dao committed
162
# @pytest.mark.parametrize('has_residual', [False])
163
164
165
166
# @pytest.mark.parametrize('dropout_p', [0.0])
# @pytest.mark.parametrize('weight_dtype', [torch.float32])
# @pytest.mark.parametrize('input_dtype,residual_dtype', [(torch.float32, torch.float32)])
@pytest.mark.parametrize('hidden_size', [192, 256, 384, 768, 1024, 1280, 1536, 1600, 2048, 2560, 3000, 3072, 4096, 5120, 6144])
167
def test_dropout_layer_norm_prenorm_training(hidden_size, input_dtype, residual_dtype, weight_dtype,
Tri Dao's avatar
Tri Dao committed
168
                                             dropout_p, has_residual, has_rowscale, has_colscale):
169
170
171
172
173
174
175
176
177
178
179
180
181
    if weight_dtype == torch.float16 and input_dtype == torch.bfloat16:
        pytest.skip()  # Not supported
    device = 'cuda'
    # rtol, atol = (1e-5, 1e-6) if input_dtype == torch.float32 else (1e-3, 1e-4)
    rtol, atol = (1e-3, 2e-4)
    # set seed
    torch.random.manual_seed(0)
    batch_size = 8
    seqlen = 512
    x0_pt = torch.randn(batch_size, seqlen, hidden_size, device=device, dtype=input_dtype,
                        requires_grad=True)
    x0 = x0_pt.detach().clone().requires_grad_()
    x0_ref = x0_pt.detach().clone().float().requires_grad_()
Tri Dao's avatar
Tri Dao committed
182
183
184
185
186
187
    if has_colscale:
        colscale = torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True)
        colscale_pt = colscale.detach().clone().requires_grad_()
        colscale_ref = colscale.detach().clone().float().requires_grad_()
    else:
        colscale = None
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
    if has_residual:
        x1_pt = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True)
        x1 = x1_pt.detach().clone().requires_grad_()
        x1_ref = x1_pt.detach().clone().float().requires_grad_()
    else:
        x1 = None
    if has_rowscale:
        rowscale = torch.empty(batch_size, seqlen, device=device, dtype=input_dtype)
        survival_rate = 0.87
        rowscale = rowscale.bernoulli_(survival_rate) / survival_rate
        x0_scaled_pt = x0_pt * rearrange(rowscale, '... -> ... 1')
        x0_scaled_ref = x0_ref * rearrange(rowscale, '... -> ... 1')
    else:
        rowscale = None
        x0_scaled_pt = x0_pt
        x0_scaled_ref = x0_ref
Tri Dao's avatar
Tri Dao committed
204
205
206
    if has_colscale:
        x0_scaled_pt = x0_scaled_pt * colscale_pt
        x0_scaled_ref = x0_scaled_ref * colscale_ref
207
208
209
210
211
212
213
214
215
216
217
    model_pt = torch.nn.LayerNorm(hidden_size, device=device, dtype=weight_dtype)
    model_ref = torch.nn.LayerNorm(hidden_size, device=device, dtype=torch.float32)
    model = DropoutAddLayerNorm(hidden_size, prenorm=True, p=dropout_p, device=device,
                                dtype=weight_dtype)
    with torch.no_grad():
        model.weight.copy_(model_pt.weight)
        model.bias.copy_(model_pt.bias)
        model_ref.weight.copy_(model_pt.weight)
        model_ref.bias.copy_(model_pt.bias)
    residual_in_fp32 = (not has_residual) and residual_dtype == torch.float32
    out, residual, dmask = dropout_add_layer_norm(x0, x1, model.weight, model.bias, model.p,
Tri Dao's avatar
Tri Dao committed
218
219
                                                  model.epsilon, rowscale=rowscale,
                                                  layerscale=colscale, prenorm=True,
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
                                                  residual_in_fp32=residual_in_fp32,
                                                  return_dropout_mask=True)
    print(f'Actual dropout fraction: {1 - dmask.float().mean().item()}')
    if has_residual:
        residual_pt = ((x0_scaled_pt.float() * dmask.float()) / (1 - dropout_p) + x1_pt.float()).to(dtype=residual_dtype)
        residual_ref = (x0_scaled_ref * dmask.float()) / (1 - dropout_p) + x1_ref
    else:
        residual_pt = ((x0_scaled_pt.float() * dmask.float()) / (1 - dropout_p)).to(dtype=residual_dtype)
        residual_ref = (x0_scaled_ref * dmask.float()) / (1 - dropout_p)
    out_pt = model_pt(residual_pt.to(dtype=weight_dtype)).to(dtype=input_dtype)
    out_ref = model_ref(residual_ref)
    assert out.dtype == input_dtype
    assert residual.dtype == residual_dtype
    assert (out - out_ref).abs().max() <= 4 * (out_pt - out_ref).abs().max() + 1e-4
    assert (residual - residual_ref).abs().max() <= 4 * (residual_pt - residual_ref).abs().max() + 1e-4

    g = torch.randn_like(out) / batch_size
    (out_pt * F.sigmoid(residual_pt)).backward(g)
    (out * F.sigmoid(residual)).backward(g)
    (out_ref * F.sigmoid(residual_ref.to(dtype=residual_dtype))).backward(g)
    assert (x0.grad - x0_ref.grad).abs().max() <= 4 * (x0_pt.grad - x0_ref.grad).abs().max() + 1e-4
    if has_residual:
        assert (x1.grad - x1_ref.grad).abs().max() <= 4 * (x1_pt.grad - x1_ref.grad).abs().max() + 1e-4
    assert (model.weight.grad - model_ref.weight.grad).abs().max() <= 2 * (model_pt.weight.grad - model_ref.weight.grad).abs().max() + 2e-4
    assert (model.bias.grad - model_ref.bias.grad).abs().max() <= 2 * (model_pt.bias.grad - model_ref.bias.grad).abs().max() + 2e-4
Tri Dao's avatar
Tri Dao committed
245
246
    if has_colscale:
        assert (colscale.grad - colscale_ref.grad).abs().max() <= 2 * (colscale_pt.grad - colscale_ref.grad).abs().max() + 2e-4
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291


@pytest.mark.parametrize('weight_dtype', [torch.float32, torch.float16])
@pytest.mark.parametrize('input_dtype,residual_dtype',
                         [(torch.float16, torch.float16), (torch.float16, torch.float32),
                          (torch.float32, torch.float32)]
                         + ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []))
@pytest.mark.parametrize('hidden_size', [768, 1024, 1280, 1536, 1600, 2048, 2560, 3072, 4096, 5120])
def test_dropout_layer_norm_prenorm_eval(hidden_size, input_dtype, residual_dtype, weight_dtype):
    if weight_dtype == torch.float16 and input_dtype == torch.bfloat16:
        pytest.skip()  # Not supported
    device = 'cuda'
    # rtol, atol = (1e-5, 1e-6) if dtype == torch.float32 else (1e-3, 1e-4)
    rtol, atol = (1e-3, 1e-4)
    dropout_p = 0.37
    # set seed
    torch.random.manual_seed(0)
    batch_size = 32
    seqlen = 512
    x0_pt = torch.randn(batch_size, seqlen, hidden_size, device=device, dtype=input_dtype,
                        requires_grad=True)
    x0 = x0_pt.detach().clone().requires_grad_()
    x0_ref = x0_pt.detach().clone().float().requires_grad_()
    x1_pt = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True)
    x1 = x1_pt.detach().clone().requires_grad_()
    x1_ref = x1_pt.detach().clone().float().requires_grad_()
    model_pt = torch.nn.LayerNorm(hidden_size, device=device, dtype=weight_dtype)
    model = DropoutAddLayerNorm(hidden_size, prenorm=True, p=dropout_p, device=device,
                                dtype=weight_dtype)
    model_ref = torch.nn.LayerNorm(hidden_size, device=device, dtype=torch.float32)
    with torch.no_grad():
        model.weight.copy_(model_pt.weight)
        model.bias.copy_(model_pt.bias)
        model_ref.weight.copy_(model_pt.weight)
        model_ref.bias.copy_(model_pt.bias)
    model_pt.eval()
    model.eval()
    model_ref.eval()
    out, residual = model(x0, x1)
    residual_pt = (x0_pt.float() + x1_pt.float()).to(dtype=residual_dtype)
    residual_ref = x0_ref + x1_ref
    out_pt = model_pt(residual_pt.to(dtype=weight_dtype)).to(input_dtype)
    out_ref = model_ref(residual_ref)
    assert (out - out_ref).abs().max() <= 4 * (out_pt - out_ref).abs().max() + 1e-4
    assert (residual - residual_ref).abs().max() <= 4 * (residual_pt - residual_ref).abs().max() + 1e-4