fmha_api.cpp 29.3 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
/******************************************************************************
Tri Dao's avatar
Tri Dao committed
2
 * Copyright (c) 2022, Tri Dao.
Tri Dao's avatar
Tri Dao committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
 * Copyright (c) 2011-2021, NVIDIA CORPORATION.  All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the NVIDIA CORPORATION nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 ******************************************************************************/

#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>

#include "fmha.h"

Tri Dao's avatar
Tri Dao committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")


void set_params_fprop(FMHA_fprop_params &params,
                      // sizes
                      const size_t b,
                      const size_t seqlen_q,
                      const size_t seqlen_k,
                      const size_t h,
                      const size_t d,
                      // device pointers
                      const at::Tensor q,
                      const at::Tensor k,
                      const at::Tensor v,
                      void *cu_seqlens_q_d,
                      void *cu_seqlens_k_d,
                      void *o_packed_d,
                      void *o_tmp_d,
                      void *s_d,
                      void *softmax_lse_d,
                      float p_dropout,
                      float softmax_scale,
                      bool is_causal) {
Tri Dao's avatar
Tri Dao committed
57
58
59
60
61
62
63
64

    Data_type acc_type = DATA_TYPE_FP32;
    Data_type data_type = DATA_TYPE_FP16;

    // Reset the parameters
    memset(&params, 0, sizeof(params));

    // Set the pointers and strides.
Tri Dao's avatar
Tri Dao committed
65
66
67
68
69
70
71
72
73
    params.q_ptr = q.data_ptr();
    params.k_ptr = k.data_ptr();
    params.v_ptr = v.data_ptr();
    params.q_row_stride_in_elts = q.stride(0);
    params.k_row_stride_in_elts = k.stride(0);
    params.v_row_stride_in_elts = v.stride(0);
    params.q_head_stride_in_elts = q.stride(1);
    params.k_head_stride_in_elts = k.stride(1);
    params.v_head_stride_in_elts = v.stride(1);
Tri Dao's avatar
Tri Dao committed
74
    params.o_ptr = o_packed_d;
75
76
    params.o_row_stride_in_elts = h * d;
    params.o_head_stride_in_elts = d;
Tri Dao's avatar
Tri Dao committed
77
78
    params.o_tmp_ptr = o_tmp_d;

Tri Dao's avatar
Tri Dao committed
79
80
    params.cu_seqlens_q = static_cast<int *>(cu_seqlens_q_d);
    params.cu_seqlens_k = static_cast<int *>(cu_seqlens_k_d);
Tri Dao's avatar
Tri Dao committed
81
82
83

    // S = softmax(P)
    params.s_ptr = s_d;
Tri Dao's avatar
Tri Dao committed
84
    params.s_stride_in_bytes = get_size_in_bytes(b * h * seqlen_k, data_type);
Tri Dao's avatar
Tri Dao committed
85
86
87
88
89
90
91

    // Softmax sum
    params.softmax_lse_ptr = softmax_lse_d;

    // Set the dimensions.
    params.b = b;
    params.h = h;
Tri Dao's avatar
Tri Dao committed
92
93
    params.seqlen_q = seqlen_q;
    params.seqlen_k = seqlen_k;
Tri Dao's avatar
Tri Dao committed
94
95
96
97
98
99
100
101
102
103
104
105
    params.d = d;

    // Set the different scale values.
    // const float scale_bmm1 = 1.f / sqrtf(d);
    const float scale_bmm1 = softmax_scale;

    params.scale_bmm1f = scale_bmm1;
    set_alpha(params.scale_bmm1, scale_bmm1, data_type);

    // Set this to probability of keeping an element to simplify things.
    params.p_dropout = 1.f - p_dropout;
    // Convert p from float to int so we don't have to convert the random uint to float to compare.
106
    // [Minor] We want to round down since when we do the comparison we use <= instead of <
Tri Dao's avatar
Tri Dao committed
107
108
109
110
111
112
113
114
115
    params.p_dropout_in_uint = uint32_t(std::floor(params.p_dropout * 4294967295.0));
    params.p_dropout_in_uint16_t = uint16_t(std::floor(params.p_dropout * 65535.0));
    params.rp_dropout = 1.f / params.p_dropout;
    TORCH_CHECK(p_dropout < 1.f);
    set_alpha(params.scale_dropout, params.rp_dropout, data_type);

    params.is_causal = is_causal;
}

Tri Dao's avatar
Tri Dao committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
void set_params_dgrad(FMHA_dgrad_params &params,
                      // sizes
                      const size_t b,
                      const size_t seqlen_q,
                      const size_t seqlen_k,
                      const size_t h,
                      const size_t d,
                      // device pointers
                      const at::Tensor q,
                      const at::Tensor k,
                      const at::Tensor v,
                      at::Tensor dq,
                      at::Tensor dk,
                      at::Tensor dv,
                      void *cu_seqlens_q_d,
                      void *cu_seqlens_k_d,
                      void *o_packed_d,
                      void *dq_tmp_d,
                      void *do_packed_d,
                      void *softmax_lse_d,
                      void *dsoftmax_sum_d,
                      float p_dropout,
                      float softmax_scale,
                      bool is_causal) {

    set_params_fprop(params,
                     b, seqlen_q, seqlen_k, h, d,
                     q, k, v,
                     cu_seqlens_q_d,
                     cu_seqlens_k_d,
                     o_packed_d,
                     dq_tmp_d,  // Reusing the o_tmp_ptr variable to store dq_tmp
                     nullptr,
                     softmax_lse_d,
                     p_dropout,
                     softmax_scale,
                     is_causal);

    // Set the pointers and strides.
    params.dq_ptr = dq.data_ptr();
    params.dk_ptr = dk.data_ptr();
    params.dv_ptr = dv.data_ptr();
    params.dq_row_stride_in_elts = dq.stride(0);
    params.dk_row_stride_in_elts = dk.stride(0);
    params.dv_row_stride_in_elts = dv.stride(0);
    params.dq_head_stride_in_elts = dq.stride(1);
    params.dk_head_stride_in_elts = dk.stride(1);
    params.dv_head_stride_in_elts = dv.stride(1);
    params.do_ptr = do_packed_d;

    // Softmax sum
    params.dsoftmax_sum = dsoftmax_sum_d;
}

170
std::vector<at::Tensor>
Tri Dao's avatar
Tri Dao committed
171
172
173
174
175
176
177
mha_fwd(const at::Tensor &q,         // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
        const at::Tensor &k,         // total_k x num_heads x head_size, total_k := \sum_{i=0}^{b} s_i
        const at::Tensor &v,         // total_k x num_heads x head_size, total_k := \sum_{i=0}^{b} s_i
        const at::Tensor &cu_seqlens_q,  // b+1
        const at::Tensor &cu_seqlens_k,  // b+1
        const int max_seqlen_q_,
        const int max_seqlen_k_,
Tri Dao's avatar
Tri Dao committed
178
179
180
181
182
183
184
185
        const float p_dropout,
        const float softmax_scale,
        const bool zero_tensors,
        const bool is_causal,
        const bool return_softmax,
        c10::optional<at::Generator> gen_) {

    auto dprops = at::cuda::getCurrentDeviceProperties();
Tri Dao's avatar
Tri Dao committed
186
    bool is_sm75 = dprops->major == 7 && dprops->minor == 5;
Tri Dao's avatar
Tri Dao committed
187
    bool is_sm80 = dprops->major == 8 && dprops->minor == 0;
Tri Dao's avatar
Tri Dao committed
188
189
    bool is_sm8x = dprops->major == 8 && dprops->minor >= 0;
    TORCH_CHECK(is_sm8x || is_sm75);
Tri Dao's avatar
Tri Dao committed
190
191
    auto stream = at::cuda::getCurrentCUDAStream().stream();
    bool is_dropout = p_dropout > 0.0;
Tri Dao's avatar
Tri Dao committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    Launch_params<FMHA_fprop_params> launch_params(dprops, stream, is_dropout, return_softmax);

    TORCH_CHECK(q.dtype() == torch::kFloat16);
    TORCH_CHECK(k.dtype() == torch::kFloat16);
    TORCH_CHECK(v.dtype() == torch::kFloat16);
    TORCH_CHECK(cu_seqlens_q.dtype() == torch::kInt32);
    TORCH_CHECK(cu_seqlens_k.dtype() == torch::kInt32);

    TORCH_CHECK(q.is_cuda());
    TORCH_CHECK(k.is_cuda());
    TORCH_CHECK(v.is_cuda());
    TORCH_CHECK(cu_seqlens_q.is_cuda());
    TORCH_CHECK(cu_seqlens_k.is_cuda());

    TORCH_CHECK(q.stride(-1) == 1);
    TORCH_CHECK(k.stride(-1) == 1);
    TORCH_CHECK(v.stride(-1) == 1);
    TORCH_CHECK(cu_seqlens_k.is_contiguous());
    TORCH_CHECK(cu_seqlens_k.is_contiguous());

    const auto sizes = q.sizes();

    const int batch_size = cu_seqlens_q.numel() - 1;
    const int total_q = sizes[TOTAL_DIM];
Tri Dao's avatar
Tri Dao committed
216
217
    const int num_heads = sizes[H_DIM];
    const int head_size = sizes[D_DIM];
Tri Dao's avatar
Tri Dao committed
218
    const int total_k = k.size(TOTAL_DIM);
Tri Dao's avatar
Tri Dao committed
219
220
221
    TORCH_CHECK(batch_size > 0);
    TORCH_CHECK(head_size == 16 || head_size == 32 || head_size == 64 || head_size == 128);

Tri Dao's avatar
Tri Dao committed
222
223
224
225
226
227
228
229
230
231
232
233
234
    CHECK_SHAPE(q, total_q, num_heads, head_size);
    CHECK_SHAPE(k, total_k, num_heads, head_size);
    CHECK_SHAPE(v, total_k, num_heads, head_size);
    CHECK_SHAPE(cu_seqlens_q, batch_size + 1);
    CHECK_SHAPE(cu_seqlens_k, batch_size + 1);

    int blocksize_c = ((head_size == 128 && (is_dropout || !is_sm80)) || (is_sm75 && head_size == 64 && is_dropout)) ? 128 : 256;
    // Need to round max_seqlen_k to multiples of blocksize_c
    int max_seqlen_k = ((max_seqlen_k_ + blocksize_c - 1) / blocksize_c) * blocksize_c;
    if( max_seqlen_k_ <= 128 ) {
        max_seqlen_k = 128;
    } else if( max_seqlen_k_ <= 256 ) {
        max_seqlen_k = 256;
Tri Dao's avatar
Tri Dao committed
235
    }
Tri Dao's avatar
Tri Dao committed
236
237
    int max_seqlen_q = ((max_seqlen_q_ + 16 - 1) / 16) * 16;
    bool loop = max_seqlen_k > blocksize_c;
Tri Dao's avatar
Tri Dao committed
238

Tri Dao's avatar
Tri Dao committed
239
    auto opts = q.options();
Tri Dao's avatar
Tri Dao committed
240

Tri Dao's avatar
Tri Dao committed
241
    auto o = torch::empty({ total_q, num_heads, head_size }, opts);
Tri Dao's avatar
Tri Dao committed
242
243

    at::Tensor o_tmp;
Tri Dao's avatar
Tri Dao committed
244
    if (loop) { o_tmp = torch::empty({total_q, num_heads, head_size}, opts.dtype(at::kFloat)); }
Tri Dao's avatar
Tri Dao committed
245

Tri Dao's avatar
Tri Dao committed
246
247
    auto softmax_lse = torch::empty({batch_size, num_heads, max_seqlen_q}, opts.dtype(at::kFloat));
    // auto softmax_lse = torch::full({batch_size, num_heads, max_seqlen_k}, -std::numeric_limits<float>::infinity(), opts.dtype(at::kFloat));
Tri Dao's avatar
Tri Dao committed
248
249

    at::Tensor s;
Tri Dao's avatar
Tri Dao committed
250
    if (return_softmax) { s = torch::empty({ batch_size, num_heads, max_seqlen_q, max_seqlen_k }, opts); }
Tri Dao's avatar
Tri Dao committed
251
252

    if( zero_tensors ) {
Tri Dao's avatar
Tri Dao committed
253
        o.zero_();
Tri Dao's avatar
Tri Dao committed
254
255
256
257
258
259
260
        softmax_lse.fill_(-std::numeric_limits<float>::infinity());
        if (return_softmax) {s.zero_();}
    }

    auto gen = at::get_generator_or_default<at::CUDAGeneratorImpl>(
        gen_, at::cuda::detail::getDefaultCUDAGenerator());

Tri Dao's avatar
Tri Dao committed
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
    set_params_fprop(launch_params.params,
                     batch_size,
                     max_seqlen_q,
                     max_seqlen_k,
                     num_heads,
                     head_size,
                     q, k, v,
                     cu_seqlens_q.data_ptr(),
                     cu_seqlens_k.data_ptr(),
                     o.data_ptr(),
                     loop ? o_tmp.data_ptr() : nullptr,
                     return_softmax ? s.data_ptr() : nullptr,
                     softmax_lse.data_ptr(),
                     p_dropout,
                     softmax_scale,
                     is_causal);
Tri Dao's avatar
Tri Dao committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291

    run_fmha_fp16_sm80(launch_params, /*configure=*/ true);
    // number of times random will be generated per thread, to offset philox counter in thc random
    // state
    int64_t counter_offset = launch_params.elts_per_thread;
    at::PhiloxCudaState rng_engine_inputs;

    if( is_dropout ) {
        // See Note [Acquire lock when using random generators]
        std::lock_guard<std::mutex> lock(gen->mutex_);
        launch_params.params.philox_args = gen->philox_cuda_state(counter_offset);
    }

    run_fmha_fp16_sm80(launch_params, /*configure=*/false);

Tri Dao's avatar
Tri Dao committed
292
    std::vector<at::Tensor> result = {o, softmax_lse};
Tri Dao's avatar
Tri Dao committed
293
294
295
296
297
298
    if (return_softmax) {result.push_back(s);}
    return result;
}


std::vector<at::Tensor>
Tri Dao's avatar
Tri Dao committed
299
300
301
302
303
mha_bwd(const at::Tensor &dout,  // total_q x num_heads, x head_size
        const at::Tensor &q,   // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
        const at::Tensor &k,   // total_k x num_heads x head_size, total_k := \sum_{i=0}^{b} s_i
        const at::Tensor &v,   // total_k x num_heads x head_size, total_k := \sum_{i=0}^{b} s_i
        const at::Tensor &out,   // total_q x num_heads x head_size
Tri Dao's avatar
Tri Dao committed
304
        const at::Tensor &softmax_lse_,     // b x h x s softmax logsumexp
Tri Dao's avatar
Tri Dao committed
305
306
307
308
309
310
311
        at::Tensor &dq,   // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
        at::Tensor &dk,   // total_k x num_heads x head_size, total_k := \sum_{i=0}^{b} s_i
        at::Tensor &dv,   // total_k x num_heads x head_size, total_k := \sum_{i=0}^{b} s_i
        const at::Tensor &cu_seqlens_q,  // b+1
        const at::Tensor &cu_seqlens_k,  // b+1
        const int max_seqlen_q_,
        const int max_seqlen_k_,          // max sequence length to choose the kernel
Tri Dao's avatar
Tri Dao committed
312
313
314
315
316
317
318
        const float p_dropout,         // probability to drop
        const float softmax_scale,
        const bool zero_tensors,
        const bool is_causal,
        c10::optional<at::Generator> gen_
) {
    auto dprops = at::cuda::getCurrentDeviceProperties();
Tri Dao's avatar
Tri Dao committed
319
    bool is_sm75 = dprops->major == 7 && dprops->minor == 5;
Tri Dao's avatar
Tri Dao committed
320
    bool is_sm80 = dprops->major == 8 && dprops->minor == 0;
Tri Dao's avatar
Tri Dao committed
321
322
    bool is_sm8x = dprops->major == 8 && dprops->minor >= 0;
    TORCH_CHECK(is_sm8x || is_sm75);
Tri Dao's avatar
Tri Dao committed
323
324
325
326
327
    auto launch = &run_fmha_dgrad_fp16_sm80;

    bool is_dropout = p_dropout > 0.0;
    auto stream = at::cuda::getCurrentCUDAStream().stream();

Tri Dao's avatar
Tri Dao committed
328
329
330
331
    TORCH_CHECK(q.dtype() == torch::kFloat16);
    TORCH_CHECK(k.dtype() == torch::kFloat16);
    TORCH_CHECK(v.dtype() == torch::kFloat16);
    TORCH_CHECK(out.dtype() == torch::kFloat16);
Tri Dao's avatar
Tri Dao committed
332
    TORCH_CHECK(dout.dtype() == torch::kFloat16);
Tri Dao's avatar
Tri Dao committed
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
    TORCH_CHECK(dq.dtype() == torch::kFloat16);
    TORCH_CHECK(dk.dtype() == torch::kFloat16);
    TORCH_CHECK(dv.dtype() == torch::kFloat16);
    TORCH_CHECK(cu_seqlens_q.dtype() == torch::kInt32);
    TORCH_CHECK(cu_seqlens_k.dtype() == torch::kInt32);

    TORCH_CHECK(q.is_cuda());
    TORCH_CHECK(k.is_cuda());
    TORCH_CHECK(v.is_cuda());
    TORCH_CHECK(out.is_cuda());
    TORCH_CHECK(dout.is_cuda());
    TORCH_CHECK(softmax_lse_.is_cuda());
    TORCH_CHECK(cu_seqlens_q.is_cuda());
    TORCH_CHECK(cu_seqlens_k.is_cuda());

    TORCH_CHECK(q.stride(-1) == 1);
    TORCH_CHECK(k.stride(-1) == 1);
    TORCH_CHECK(v.stride(-1) == 1);
    TORCH_CHECK(out.is_contiguous());
    TORCH_CHECK(dout.is_contiguous());
    TORCH_CHECK(dq.stride(-1) == 1);
    TORCH_CHECK(dk.stride(-1) == 1);
    TORCH_CHECK(dv.stride(-1) == 1);
    TORCH_CHECK(cu_seqlens_q.is_contiguous());
    TORCH_CHECK(cu_seqlens_k.is_contiguous());

    const auto sizes = q.sizes();

    const int batch_size = cu_seqlens_q.numel() - 1;
    const int total_q = sizes[TOTAL_DIM];
Tri Dao's avatar
Tri Dao committed
363
364
    const int num_heads = sizes[H_DIM];
    const int head_size = sizes[D_DIM];
Tri Dao's avatar
Tri Dao committed
365
    const int total_k = k.size(TOTAL_DIM);
Tri Dao's avatar
Tri Dao committed
366
367
    TORCH_CHECK(batch_size > 0);
    TORCH_CHECK(head_size == 16 || head_size == 32 || head_size == 64 || head_size == 128);
Tri Dao's avatar
Tri Dao committed
368
369
370
    if (head_size == 128) {  // TODO: eventually we should support SM86 and SM70 with d=128 as well
        TORCH_CHECK(is_sm80);
    }
Tri Dao's avatar
Tri Dao committed
371

Tri Dao's avatar
Tri Dao committed
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
    CHECK_SHAPE(q, total_q, num_heads, head_size);
    CHECK_SHAPE(k, total_k, num_heads, head_size);
    CHECK_SHAPE(v, total_k, num_heads, head_size);
    CHECK_SHAPE(out, total_q, num_heads, head_size);
    CHECK_SHAPE(dout, total_q, num_heads, head_size);
    CHECK_SHAPE(dq, total_q, num_heads, head_size);
    CHECK_SHAPE(dk, total_k, num_heads, head_size);
    CHECK_SHAPE(dv, total_k, num_heads, head_size);
    CHECK_SHAPE(cu_seqlens_q, batch_size + 1);
    CHECK_SHAPE(cu_seqlens_k, batch_size + 1);

    int blocksize_c = (head_size == 128 || (is_sm75 && head_size == 64)) ? 128 : 256;
    int max_seqlen_k = ((max_seqlen_k_ + blocksize_c - 1) / blocksize_c) * blocksize_c;
    if( max_seqlen_k_ <= 128 ) {
        max_seqlen_k = 128;
    } else if( max_seqlen_k_ <= 256 ) {
        max_seqlen_k = 256;
Tri Dao's avatar
Tri Dao committed
389
    }
Tri Dao's avatar
Tri Dao committed
390
391
    int max_seqlen_q = ((max_seqlen_q_ + 16 - 1) / 16) * 16;
    bool loop = max_seqlen_k > blocksize_c;
Tri Dao's avatar
Tri Dao committed
392

Tri Dao's avatar
Tri Dao committed
393
394
    // It's possible the softmax_lse_ from the fwd has a different length since blocksize_c could be different.
    auto softmax_lse = softmax_lse_.index({torch::indexing::Slice(), torch::indexing::Slice(), torch::indexing::Slice(torch::indexing::None, max_seqlen_q)}).contiguous();
Tri Dao's avatar
Tri Dao committed
395

Tri Dao's avatar
Tri Dao committed
396
397
    auto opts = q.options();
    auto softmax_d = torch::empty({batch_size, num_heads, max_seqlen_q}, opts.dtype(at::kFloat));
Tri Dao's avatar
Tri Dao committed
398
    at::Tensor dq_tmp;
Tri Dao's avatar
Tri Dao committed
399
    if (loop) { dq_tmp = torch::empty({total_q, num_heads, head_size}, opts.dtype(at::kFloat)); }
Tri Dao's avatar
Tri Dao committed
400
401

    if( zero_tensors ) {
Tri Dao's avatar
Tri Dao committed
402
403
404
        dq.zero_();
        dk.zero_();
        dv.zero_();
Tri Dao's avatar
Tri Dao committed
405
406
407
        softmax_d.zero_();
    }

Tri Dao's avatar
Tri Dao committed
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
    FMHA_dgrad_params params;

    set_params_dgrad(params,
                     batch_size,
                     max_seqlen_q,
                     max_seqlen_k,
                     num_heads,
                     head_size,
                     q, k, v,
                     dq, dk, dv,
                     cu_seqlens_q.data_ptr(),
                     cu_seqlens_k.data_ptr(),
                     out.data_ptr(),
                     loop ? dq_tmp.data_ptr() : nullptr,
                     dout.data_ptr(),
                     softmax_lse.data_ptr(),
                     softmax_d.data_ptr(),
                     p_dropout,
                     softmax_scale,
                     is_causal);
Tri Dao's avatar
Tri Dao committed
428
429
430
431
432

    auto gen = at::get_generator_or_default<at::CUDAGeneratorImpl>(
        gen_, at::cuda::detail::getDefaultCUDAGenerator());

    // We're gonna reset the rng state in Python after this kernel, so the counter offset
Tri Dao's avatar
Tri Dao committed
433
    // here doesn't matter at all. We just choose an arbitrary number.
Tri Dao's avatar
Tri Dao committed
434
435
436
437
438
439
440
441
442
    int64_t counter_offset = 4;

    if( is_dropout ) {
        // See Note [Acquire lock when using random generators]
        std::lock_guard<std::mutex> lock(gen->mutex_);
        params.philox_args = gen->philox_cuda_state(counter_offset);
    }

    launch(params, stream);
Tri Dao's avatar
Tri Dao committed
443
    return { dq, dk, dv, softmax_d };
Tri Dao's avatar
Tri Dao committed
444
445
446
}

std::vector<at::Tensor>
Tri Dao's avatar
Tri Dao committed
447
448
449
450
451
mha_fwd_block(const at::Tensor &q,         // total_q x num_heads x head_size, total := \sum_{i=0}^{b} s_i
              const at::Tensor &k,         // total_k x num_heads x head_size, total_k := \sum_{i=0}^{b} s_i
              const at::Tensor &v,         // total_k x num_heads x head_size, total_k := \sum_{i=0}^{b} s_i
              const at::Tensor &cu_seqlens_q,  // b+1
              const at::Tensor &cu_seqlens_k,  // b+1
Tri Dao's avatar
Tri Dao committed
452
              const at::Tensor &blockmask,   // (seqlen / 256, seqlen / 16)
Tri Dao's avatar
Tri Dao committed
453
454
              const int max_seqlen_q_,
              const int max_seqlen_k_,
Tri Dao's avatar
Tri Dao committed
455
456
457
458
459
460
461
462
463
464
              const float p_dropout,
              const float softmax_scale,
              const bool is_causal,
              const bool return_softmax,
              c10::optional<at::Generator> gen_) {

    auto dprops = at::cuda::getCurrentDeviceProperties();
    TORCH_CHECK(dprops->major == 8 && dprops->minor >= 0);
    auto stream = at::cuda::getCurrentCUDAStream().stream();
    bool is_dropout = p_dropout > 0.0;
Tri Dao's avatar
Tri Dao committed
465
    Launch_params<FMHA_fprop_params> launch_params(dprops, stream, is_dropout, return_softmax);
Tri Dao's avatar
Tri Dao committed
466

Tri Dao's avatar
Tri Dao committed
467
468
469
470
471
472
    TORCH_CHECK(q.dtype() == torch::kFloat16);
    TORCH_CHECK(k.dtype() == torch::kFloat16);
    TORCH_CHECK(v.dtype() == torch::kFloat16);
    TORCH_CHECK(cu_seqlens_q.dtype() == torch::kInt32);
    TORCH_CHECK(cu_seqlens_k.dtype() == torch::kInt32);
    TORCH_CHECK(blockmask.dtype() == torch::kInt32);
Tri Dao's avatar
Tri Dao committed
473

Tri Dao's avatar
Tri Dao committed
474
475
476
477
478
    TORCH_CHECK(q.is_cuda());
    TORCH_CHECK(k.is_cuda());
    TORCH_CHECK(v.is_cuda());
    TORCH_CHECK(cu_seqlens_q.is_cuda());
    TORCH_CHECK(cu_seqlens_k.is_cuda());
Tri Dao's avatar
Tri Dao committed
479
480
    TORCH_CHECK(blockmask.is_cuda())

Tri Dao's avatar
Tri Dao committed
481
482
483
484
485
    TORCH_CHECK(q.stride(-1) == 1);
    TORCH_CHECK(k.stride(-1) == 1);
    TORCH_CHECK(v.stride(-1) == 1);
    TORCH_CHECK(cu_seqlens_k.is_contiguous());
    TORCH_CHECK(cu_seqlens_k.is_contiguous());
Tri Dao's avatar
Tri Dao committed
486
487
    TORCH_CHECK(blockmask.is_contiguous())

Tri Dao's avatar
Tri Dao committed
488
    const auto sizes = q.sizes();
Tri Dao's avatar
Tri Dao committed
489

Tri Dao's avatar
Tri Dao committed
490
491
    const int batch_size = cu_seqlens_q.numel() - 1;
    const int total_q = sizes[TOTAL_DIM];
Tri Dao's avatar
Tri Dao committed
492
493
    const int num_heads = sizes[H_DIM];
    const int head_size = sizes[D_DIM];
Tri Dao's avatar
Tri Dao committed
494
    const int total_k = k.size(TOTAL_DIM);
Tri Dao's avatar
Tri Dao committed
495
    TORCH_CHECK(batch_size > 0);
Tri Dao's avatar
Tri Dao committed
496
    TORCH_CHECK(head_size == 16 || head_size == 32 || head_size == 64 || head_size == 128);
Tri Dao's avatar
Tri Dao committed
497

Tri Dao's avatar
Tri Dao committed
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
    CHECK_SHAPE(q, total_q, num_heads, head_size);
    CHECK_SHAPE(k, total_k, num_heads, head_size);
    CHECK_SHAPE(v, total_k, num_heads, head_size);
    CHECK_SHAPE(cu_seqlens_q, batch_size + 1);
    CHECK_SHAPE(cu_seqlens_k, batch_size + 1);

    int max_seqlen_k = ((max_seqlen_k_ + 256 - 1) / 256) * 256;
    if( max_seqlen_k <= 256 ) {
        max_seqlen_k = 256;
    }
    int max_seqlen_q = ((max_seqlen_q_ + 16 - 1) / 16) * 16;
    bool loop = max_seqlen_k > 256;
    CHECK_SHAPE(blockmask, max_seqlen_k / 256, max_seqlen_q / 16);

    auto opts = q.options();

    auto o = torch::zeros({ total_q, num_heads, head_size }, opts);
Tri Dao's avatar
Tri Dao committed
515
516
517
518

    at::Tensor o_tmp;
    if (loop) {
        // o_tmp = torch::zeros({total, num_heads, head_size}, opts.dtype(at::kFloat));
Tri Dao's avatar
Tri Dao committed
519
        o_tmp = torch::empty({total_q, num_heads, head_size}, opts.dtype(at::kFloat));
Tri Dao's avatar
Tri Dao committed
520
521
    }

Tri Dao's avatar
Tri Dao committed
522
523
    // auto softmax_lse = torch::full({batch_size, num_heads, max_seqlen_k}, -std::numeric_limits<float>::infinity(), opts.dtype(at::kFloat));
    auto softmax_lse = torch::empty({batch_size, num_heads, max_seqlen_q}, opts.dtype(at::kFloat));
Tri Dao's avatar
Tri Dao committed
524
525
526

    at::Tensor s;
    if (return_softmax) {
Tri Dao's avatar
Tri Dao committed
527
        s = torch::zeros({ batch_size, num_heads, max_seqlen_q, max_seqlen_k }, opts);
Tri Dao's avatar
Tri Dao committed
528
529
530
531
532
    }

    auto gen = at::get_generator_or_default<at::CUDAGeneratorImpl>(
        gen_, at::cuda::detail::getDefaultCUDAGenerator());

Tri Dao's avatar
Tri Dao committed
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
    set_params_fprop(launch_params.params,
                     batch_size,
                     max_seqlen_q,
                     max_seqlen_k,
                     num_heads,
                     head_size,
                     q, k, v,
                     cu_seqlens_q.data_ptr(),
                     cu_seqlens_k.data_ptr(),
                     o.data_ptr(),
                     loop ? o_tmp.data_ptr() : nullptr,
                     return_softmax ? s.data_ptr() : nullptr,
                     softmax_lse.data_ptr(),
                     p_dropout,
                     softmax_scale,
                     is_causal);
Tri Dao's avatar
Tri Dao committed
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
    launch_params.params.blockmask = static_cast<int *>(blockmask.data_ptr());

    run_fmha_block_fp16_sm80(launch_params, /*configure=*/ true);
    // number of times random will be generated per thread, to offset philox counter in thc random
    // state
    int64_t counter_offset = launch_params.elts_per_thread;
    at::PhiloxCudaState rng_engine_inputs;

    if( is_dropout ) {
        // See Note [Acquire lock when using random generators]
        std::lock_guard<std::mutex> lock(gen->mutex_);
        launch_params.params.philox_args = gen->philox_cuda_state(counter_offset);
    }

    run_fmha_block_fp16_sm80(launch_params, /*configure=*/false);

Tri Dao's avatar
Tri Dao committed
565
    std::vector<at::Tensor> result = {o, softmax_lse};
Tri Dao's avatar
Tri Dao committed
566
567
568
569
570
571
    if (return_softmax) {result.push_back(s);}
    return result;
}

std::vector<at::Tensor>
mha_bwd_block(const at::Tensor &dout,  // total x num_heads, x head_size
Tri Dao's avatar
Tri Dao committed
572
573
574
575
576
577
578
579
580
581
              const at::Tensor &q,   // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
              const at::Tensor &k,   // total_k x num_heads x head_size, total_k := \sum_{i=0}^{b} s_i
              const at::Tensor &v,   // total_k x num_heads x head_size, total_k := \sum_{i=0}^{b} s_i
              const at::Tensor &out,   // total_q x num_heads x head_size
              const at::Tensor &softmax_lse_,     // b x h x s softmax logsumexp
              at::Tensor &dq,   // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
              at::Tensor &dk,   // total_k x num_heads x head_size, total_k := \sum_{i=0}^{b} s_i
              at::Tensor &dv,   // total_k x num_heads x head_size, total_k := \sum_{i=0}^{b} s_i
              const at::Tensor &cu_seqlens_q,  // b+1
              const at::Tensor &cu_seqlens_k,  // b+1
Tri Dao's avatar
Tri Dao committed
582
              const at::Tensor &blockmask,   // (seqlen / 256, seqlen / 16)
Tri Dao's avatar
Tri Dao committed
583
584
              const int max_seqlen_q_,
              const int max_seqlen_k_,          // max sequence length to choose the kernel
Tri Dao's avatar
Tri Dao committed
585
586
587
588
589
590
              const float p_dropout,         // probability to drop
              const float softmax_scale,
              const bool is_causal,
              c10::optional<at::Generator> gen_
) {
    auto dprops = at::cuda::getCurrentDeviceProperties();
Tri Dao's avatar
Tri Dao committed
591
592
    bool is_sm80 = dprops->major == 8 && dprops->minor == 0;
    bool is_sm8x = dprops->major == 8 && dprops->minor >= 0;
Tri Dao's avatar
Tri Dao committed
593
594
595
596
597
598
    TORCH_CHECK(dprops->major == 8 && dprops->minor >= 0);
    auto launch = &run_fmha_block_dgrad_fp16_sm80;

    bool is_dropout = p_dropout > 0.0;
    auto stream = at::cuda::getCurrentCUDAStream().stream();

Tri Dao's avatar
Tri Dao committed
599
600
601
602
    TORCH_CHECK(q.dtype() == torch::kFloat16);
    TORCH_CHECK(k.dtype() == torch::kFloat16);
    TORCH_CHECK(v.dtype() == torch::kFloat16);
    TORCH_CHECK(out.dtype() == torch::kFloat16);
Tri Dao's avatar
Tri Dao committed
603
    TORCH_CHECK(dout.dtype() == torch::kFloat16);
Tri Dao's avatar
Tri Dao committed
604
605
606
607
608
    TORCH_CHECK(dq.dtype() == torch::kFloat16);
    TORCH_CHECK(dk.dtype() == torch::kFloat16);
    TORCH_CHECK(dv.dtype() == torch::kFloat16);
    TORCH_CHECK(cu_seqlens_q.dtype() == torch::kInt32);
    TORCH_CHECK(cu_seqlens_k.dtype() == torch::kInt32);
Tri Dao's avatar
Tri Dao committed
609
610
    TORCH_CHECK(blockmask.dtype() == torch::kInt32);

Tri Dao's avatar
Tri Dao committed
611
612
613
614
615
616
617
618
    TORCH_CHECK(q.is_cuda());
    TORCH_CHECK(k.is_cuda());
    TORCH_CHECK(v.is_cuda());
    TORCH_CHECK(out.is_cuda());
    TORCH_CHECK(dout.is_cuda());
    TORCH_CHECK(softmax_lse_.is_cuda());
    TORCH_CHECK(cu_seqlens_q.is_cuda());
    TORCH_CHECK(cu_seqlens_k.is_cuda());
Tri Dao's avatar
Tri Dao committed
619
620
    TORCH_CHECK(blockmask.is_cuda());

Tri Dao's avatar
Tri Dao committed
621
622
623
624
625
626
627
628
629
630
    TORCH_CHECK(q.stride(-1) == 1);
    TORCH_CHECK(k.stride(-1) == 1);
    TORCH_CHECK(v.stride(-1) == 1);
    TORCH_CHECK(out.is_contiguous());
    TORCH_CHECK(dout.is_contiguous());
    TORCH_CHECK(dq.stride(-1) == 1);
    TORCH_CHECK(dk.stride(-1) == 1);
    TORCH_CHECK(dv.stride(-1) == 1);
    TORCH_CHECK(cu_seqlens_q.is_contiguous());
    TORCH_CHECK(cu_seqlens_k.is_contiguous());
Tri Dao's avatar
Tri Dao committed
631
632
    TORCH_CHECK(blockmask.is_contiguous());

Tri Dao's avatar
Tri Dao committed
633
    const auto sizes = q.sizes();
Tri Dao's avatar
Tri Dao committed
634

Tri Dao's avatar
Tri Dao committed
635
636
    const int batch_size = cu_seqlens_q.numel() - 1;
    const int total_q = sizes[TOTAL_DIM];
Tri Dao's avatar
Tri Dao committed
637
638
    const int num_heads = sizes[H_DIM];
    const int head_size = sizes[D_DIM];
Tri Dao's avatar
Tri Dao committed
639
    const int total_k = k.size(TOTAL_DIM);
Tri Dao's avatar
Tri Dao committed
640
    TORCH_CHECK(batch_size > 0);
Tri Dao's avatar
Tri Dao committed
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
    TORCH_CHECK(head_size == 16 || head_size == 32 || head_size == 64 || head_size == 128);
    if (head_size == 128) {  // TODO: eventually we should support SM86 and SM70 with d=128 as well
        TORCH_CHECK(is_sm80);
    }

    CHECK_SHAPE(q, total_q, num_heads, head_size);
    CHECK_SHAPE(k, total_k, num_heads, head_size);
    CHECK_SHAPE(v, total_k, num_heads, head_size);
    CHECK_SHAPE(out, total_q, num_heads, head_size);
    CHECK_SHAPE(dout, total_q, num_heads, head_size);
    CHECK_SHAPE(dq, total_q, num_heads, head_size);
    CHECK_SHAPE(dk, total_k, num_heads, head_size);
    CHECK_SHAPE(dv, total_k, num_heads, head_size);
    CHECK_SHAPE(cu_seqlens_q, batch_size + 1);
    CHECK_SHAPE(cu_seqlens_k, batch_size + 1);

    int max_seqlen_k = ((max_seqlen_k_ + 256 - 1) / 256) * 256;
    if( max_seqlen_k <= 256 ) {
        max_seqlen_k = 256;
    }
    int max_seqlen_q = ((max_seqlen_q_ + 16 - 1) / 16) * 16;
    bool loop = max_seqlen_k > 256;
    CHECK_SHAPE(blockmask, max_seqlen_k / 256, max_seqlen_q / 16);
Tri Dao's avatar
Tri Dao committed
664

Tri Dao's avatar
Tri Dao committed
665
666
667
668
669
    // It's possible the softmax_lse_ from the fwd has a different length since blocksize_c could be different.
    auto softmax_lse = softmax_lse_.index({torch::indexing::Slice(), torch::indexing::Slice(), torch::indexing::Slice(torch::indexing::None, max_seqlen_q)}).contiguous();

    auto opts = q.options();
    auto softmax_d = torch::empty({batch_size, num_heads, max_seqlen_q}, opts.dtype(at::kFloat));
Tri Dao's avatar
Tri Dao committed
670
671
672
    at::Tensor dq_tmp;
    if (loop) {
        // dq_tmp = torch::zeros({total, num_heads, head_size}, opts.dtype(at::kFloat));
Tri Dao's avatar
Tri Dao committed
673
        dq_tmp = torch::empty({total_q, num_heads, head_size}, opts.dtype(at::kFloat));
Tri Dao's avatar
Tri Dao committed
674
675
    }

Tri Dao's avatar
Tri Dao committed
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
    FMHA_dgrad_params params;

    set_params_dgrad(params,
                     batch_size,
                     max_seqlen_q,
                     max_seqlen_k,
                     num_heads,
                     head_size,
                     q, k, v,
                     dq, dk, dv,
                     cu_seqlens_q.data_ptr(),
                     cu_seqlens_k.data_ptr(),
                     out.data_ptr(),
                     loop ? dq_tmp.data_ptr() : nullptr,
                     dout.data_ptr(),
                     softmax_lse.data_ptr(),
                     softmax_d.data_ptr(),
                     p_dropout,
                     softmax_scale,
                     is_causal);
Tri Dao's avatar
Tri Dao committed
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
    params.blockmask = static_cast<int *>(blockmask.data_ptr());

    auto gen = at::get_generator_or_default<at::CUDAGeneratorImpl>(
        gen_, at::cuda::detail::getDefaultCUDAGenerator());

    // We're gonna reset the rng state in Python after this kernel, so the counter offset
    // here doesn't matter at all. We just choose an arbitrary number;
    int64_t counter_offset = 4;

    if( is_dropout ) {
        // See Note [Acquire lock when using random generators]
        std::lock_guard<std::mutex> lock(gen->mutex_);
        params.philox_args = gen->philox_cuda_state(counter_offset);
    }

    launch(params, stream);
Tri Dao's avatar
Tri Dao committed
712
    return { dq, dk, dv, softmax_d };
Tri Dao's avatar
Tri Dao committed
713
714
715
716
717
718
719
720
721
722
}


PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.doc() = "Fused Multi-head Self-attention";
    m.def("fwd", &mha_fwd, "Forward pass");
    m.def("bwd", &mha_bwd, "Backward pass");
    m.def("fwd_block", &mha_fwd_block, "Forward pass (blocksparse)");
    m.def("bwd_block", &mha_bwd_block, "Backward pass (blocksparse)");
}