flash_attn_interface.py 19.5 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
import torch
import torch.nn as nn
3
import torch.nn.functional as F
Tri Dao's avatar
Tri Dao committed
4

Tri Dao's avatar
Tri Dao committed
5
import flash_attn_cuda
Tri Dao's avatar
Tri Dao committed
6
7


Tri Dao's avatar
Tri Dao committed
8
9
def _get_block_size(device, head_dim, is_dropout):
    assert head_dim in [16, 32, 64, 128]
10
    if head_dim in [16, 32, 64]:
Tri Dao's avatar
Tri Dao committed
11
12
        return 256
    elif head_dim == 128:
13
        return 256 if (torch.cuda.get_device_capability(device) == (8, 0)) else 128
Tri Dao's avatar
Tri Dao committed
14
15


16
def _flash_attn_forward(q, k, v, out, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
Tri Dao's avatar
Tri Dao committed
17
18
19
20
21
22
23
                        dropout_p, softmax_scale, causal, return_softmax, num_splits=0,
                        generator=None):
    """
    num_splits: how much to parallelize over the seqlen_q dimension. num_splits=0 means
    it will be set by an internal heuristic. We're exposing num_splits mostly for benchmarking.
    Don't change it unless you know what you're doing.
    """
24
25
    softmax_lse, *rest = flash_attn_cuda.fwd(
        q, k, v, out, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p,
Tri Dao's avatar
Tri Dao committed
26
        softmax_scale, False, causal, return_softmax, num_splits, generator
Tri Dao's avatar
Tri Dao committed
27
28
    )
    # if out.isnan().any() or softmax_lse.isnan().any():
Tri Dao's avatar
Tri Dao committed
29
30
    #     breakpoint()
    S_dmask = rest[0] if return_softmax else None
Tri Dao's avatar
Tri Dao committed
31
    return out, softmax_lse, S_dmask
Tri Dao's avatar
Tri Dao committed
32
33


Tri Dao's avatar
Tri Dao committed
34
def _flash_attn_backward(dout, q, k, v, out, softmax_lse, dq, dk, dv, cu_seqlens_q, cu_seqlens_k,
35
36
                         max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, causal,
                         generator=None):
Tri Dao's avatar
Tri Dao committed
37
38
    softmax_d = flash_attn_cuda.bwd(
        dout, q, k, v, out, softmax_lse, dq, dk, dv, cu_seqlens_q, cu_seqlens_k,
39
        max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, False, causal, generator)
Tri Dao's avatar
Tri Dao committed
40
    # if dk.isnan().any() or dk.isnan().any() or dv.isnan().any() or softmax_d.isnan().any():
Tri Dao's avatar
Tri Dao committed
41
    #     breakpoint()
Tri Dao's avatar
Tri Dao committed
42
    return dq, dk, dv, softmax_d
Tri Dao's avatar
Tri Dao committed
43
44


Tri Dao's avatar
Tri Dao committed
45
class FlashAttnQKVPackedFunc(torch.autograd.Function):
Tri Dao's avatar
Tri Dao committed
46
47

    @staticmethod
Tri Dao's avatar
Tri Dao committed
48
    def forward(ctx, qkv, cu_seqlens, max_seqlen, dropout_p, softmax_scale, causal, return_softmax):
Tri Dao's avatar
Tri Dao committed
49
50
51
52
        # Save rng_state because the backward pass will regenerate the dropout mask
        rng_state = torch.cuda.get_rng_state() if dropout_p > 0 else None
        if softmax_scale is None:
            softmax_scale = qkv.shape[-1] ** (-0.5)
Tri Dao's avatar
Tri Dao committed
53
        out, softmax_lse, S_dmask = _flash_attn_forward(
54
55
56
            qkv[:, 0], qkv[:, 1], qkv[:, 2], torch.empty_like(qkv[:, 0]), cu_seqlens, cu_seqlens,
            max_seqlen, max_seqlen, dropout_p, softmax_scale, causal=causal,
            return_softmax=return_softmax
Tri Dao's avatar
Tri Dao committed
57
        )
Tri Dao's avatar
Tri Dao committed
58
        ctx.save_for_backward(qkv, out, softmax_lse, cu_seqlens, rng_state)
Tri Dao's avatar
Tri Dao committed
59
        ctx.dropout_p = dropout_p
Tri Dao's avatar
Tri Dao committed
60
        ctx.max_seqlen = max_seqlen
Tri Dao's avatar
Tri Dao committed
61
62
        ctx.softmax_scale = softmax_scale
        ctx.causal = causal
Tri Dao's avatar
Tri Dao committed
63
        return out if not return_softmax else (out, softmax_lse, S_dmask)
Tri Dao's avatar
Tri Dao committed
64
65

    @staticmethod
Tri Dao's avatar
Tri Dao committed
66
67
    def backward(ctx, dout, *args):
        qkv, out, softmax_lse, cu_seqlens, rng_state = ctx.saved_tensors
Tri Dao's avatar
Tri Dao committed
68
69
70
        if rng_state is not None:
            cur_rng_state = torch.cuda.get_rng_state()
            torch.cuda.set_rng_state(rng_state)
Tri Dao's avatar
Tri Dao committed
71
72
73
74
75
        dqkv = torch.empty_like(qkv)
        _flash_attn_backward(
            dout, qkv[:, 0], qkv[:, 1], qkv[:, 2], out, softmax_lse,
            dqkv[:, 0], dqkv[:, 1], dqkv[:, 2], cu_seqlens, cu_seqlens,
            ctx.max_seqlen, ctx.max_seqlen, ctx.dropout_p, ctx.softmax_scale, ctx.causal
Tri Dao's avatar
Tri Dao committed
76
77
78
79
80
81
        )
        if rng_state is not None:
            torch.cuda.set_rng_state(cur_rng_state)
        return dqkv, None, None, None, None, None, None


Tri Dao's avatar
Tri Dao committed
82
class FlashAttnKVPackedFunc(torch.autograd.Function):
Tri Dao's avatar
Tri Dao committed
83
84

    @staticmethod
Tri Dao's avatar
Tri Dao committed
85
86
87
    def forward(ctx, q, kv, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p,
                softmax_scale, causal, return_softmax):
        # Save rng_state because the backward pass will regenerate the dropout mask
Tri Dao's avatar
Tri Dao committed
88
89
        rng_state = torch.cuda.get_rng_state() if dropout_p > 0 else None
        if softmax_scale is None:
Tri Dao's avatar
Tri Dao committed
90
91
            softmax_scale = q.shape[-1] ** (-0.5)
        out, softmax_lse, S_dmask = _flash_attn_forward(
92
93
            q, kv[:, 0], kv[:, 1], torch.empty_like(q), cu_seqlens_q, cu_seqlens_k, max_seqlen_q,
            max_seqlen_k, dropout_p, softmax_scale, causal=causal, return_softmax=return_softmax
Tri Dao's avatar
Tri Dao committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
        )
        ctx.save_for_backward(q, kv, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state)
        ctx.dropout_p = dropout_p
        ctx.max_seqlen_q = max_seqlen_q
        ctx.max_seqlen_k = max_seqlen_k
        ctx.softmax_scale = softmax_scale
        ctx.causal = causal
        return out if not return_softmax else (out, softmax_lse, S_dmask)

    @staticmethod
    def backward(ctx, dout, *args):
        q, kv, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state = ctx.saved_tensors
        if rng_state is not None:
            cur_rng_state = torch.cuda.get_rng_state()
            torch.cuda.set_rng_state(rng_state)
        dq = torch.empty_like(q)
        dkv = torch.empty_like(kv)
        _flash_attn_backward(
            dout, q, kv[:, 0], kv[:, 1], out, softmax_lse,
            dq, dkv[:, 0], dkv[:, 1], cu_seqlens_q, cu_seqlens_k,
            ctx.max_seqlen_q, ctx.max_seqlen_k, ctx.dropout_p, ctx.softmax_scale, ctx.causal
        )
        if rng_state is not None:
            torch.cuda.set_rng_state(cur_rng_state)
        return dq, dkv, None, None, None, None, None, None, None, None


class FlashAttnFunc(torch.autograd.Function):

    @staticmethod
    def forward(ctx, q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p,
                softmax_scale, causal, return_softmax):
        # Save rng_state because the backward pass will regenerate the dropout mask
        rng_state = torch.cuda.get_rng_state() if dropout_p > 0 else None
        if softmax_scale is None:
            softmax_scale = q.shape[-1] ** (-0.5)
        out, softmax_lse, S_dmask = _flash_attn_forward(
131
            q, k, v, torch.empty_like(q), cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
Tri Dao's avatar
Tri Dao committed
132
            dropout_p, softmax_scale, causal=causal, return_softmax=return_softmax
Tri Dao's avatar
Tri Dao committed
133
        )
Tri Dao's avatar
Tri Dao committed
134
        ctx.save_for_backward(q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state)
Tri Dao's avatar
Tri Dao committed
135
        ctx.dropout_p = dropout_p
Tri Dao's avatar
Tri Dao committed
136
137
        ctx.max_seqlen_q = max_seqlen_q
        ctx.max_seqlen_k = max_seqlen_k
Tri Dao's avatar
Tri Dao committed
138
139
        ctx.softmax_scale = softmax_scale
        ctx.causal = causal
Tri Dao's avatar
Tri Dao committed
140
        return out if not return_softmax else (out, softmax_lse, S_dmask)
Tri Dao's avatar
Tri Dao committed
141
142

    @staticmethod
Tri Dao's avatar
Tri Dao committed
143
144
    def backward(ctx, dout, *args):
        q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state = ctx.saved_tensors
Tri Dao's avatar
Tri Dao committed
145
146
147
        if rng_state is not None:
            cur_rng_state = torch.cuda.get_rng_state()
            torch.cuda.set_rng_state(rng_state)
Tri Dao's avatar
Tri Dao committed
148
149
150
151
        dq, dk, dv = torch.empty_like(q), torch.empty_like(k), torch.empty_like(v)
        _flash_attn_backward(
            dout, q, k, v, out, softmax_lse, dq, dk, dv, cu_seqlens_q, cu_seqlens_k,
            ctx.max_seqlen_q, ctx.max_seqlen_k, ctx.dropout_p, ctx.softmax_scale, ctx.causal
Tri Dao's avatar
Tri Dao committed
152
153
154
        )
        if rng_state is not None:
            torch.cuda.set_rng_state(cur_rng_state)
Tri Dao's avatar
Tri Dao committed
155
156
157
        return dq, dk, dv, None, None, None, None, None, None, None, None


158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
class FlashAttnQKVPackedSplitFunc(torch.autograd.Function):

    @staticmethod
    def forward(ctx, qkv, cu_seqlens, max_seqlen0, max_seqlen1, batch_size0, dropout_p,
                softmax_scale, causal, return_softmax):
        # Save rng_state because the backward pass will regenerate the dropout mask
        if dropout_p > 0:
            rng_state0 = torch.cuda.get_rng_state()
            generator1 = torch.Generator(device='cuda')
            rng_state1 = generator1.get_state()
        else:
            rng_state0, generator1, rng_state1 = None, None, None
        if softmax_scale is None:
            softmax_scale = qkv.shape[-1] ** (-0.5)
        out = torch.empty_like(qkv[:, 0])
        _, softmax_lse0, S_dmask0 = _flash_attn_forward(
            qkv[:, 0], qkv[:, 1], qkv[:, 2], out, cu_seqlens[:batch_size0 + 1],
            cu_seqlens[:batch_size0 + 1], max_seqlen0, max_seqlen0, dropout_p, softmax_scale,
            causal=causal, return_softmax=return_softmax
        )
        s = torch.cuda.Stream()
        with torch.cuda.stream(s):
            _, softmax_lse1, S_dmask1 = _flash_attn_forward(
                qkv[:, 0], qkv[:, 1], qkv[:, 2], out, cu_seqlens[batch_size0:],
                cu_seqlens[batch_size0:], max_seqlen1, max_seqlen1, dropout_p, softmax_scale,
                causal=causal, return_softmax=return_softmax, generator=generator1
            )
        torch.cuda.current_stream().wait_stream(s)
        ctx.save_for_backward(qkv, out, softmax_lse0, softmax_lse1, cu_seqlens,
                              rng_state0, rng_state1)
        ctx.dropout_p = dropout_p
        ctx.max_seqlen0 = max_seqlen0
        ctx.max_seqlen1 = max_seqlen1
        ctx.batch_size0 = batch_size0
        ctx.softmax_scale = softmax_scale
        ctx.causal = causal
        if not return_softmax:
            return out
        else:
            max_seqlen_q = max(softmax_lse0.shape[2], softmax_lse1.shape[2])
            max_seqlen_k = max(S_dmask0.shape[3], S_dmask1.shape[3])
            softmax_lse = torch.cat([F.pad(softmax_lse0, (0, max_seqlen_q - softmax_lse0.shape[2])),
                                     F.pad(softmax_lse1, (0, max_seqlen_q - softmax_lse1.shape[2]))],
                                    dim=0)
            return out, softmax_lse, S_dmask0, S_dmask1

    @staticmethod
    def backward(ctx, dout, *args):
        qkv, out, softmax_lse0, softmax_lse1, cu_seqlens, rng_state0, rng_state1 = ctx.saved_tensors
        batch_size0 = ctx.batch_size0
        if rng_state0 is not None:
            cur_rng_state = torch.cuda.get_rng_state()
            torch.cuda.set_rng_state(rng_state0)
        if rng_state1 is not None:
            generator1 = torch.Generator(device='cuda')
            generator1.set_state(rng_state1)
        else:
            generator1 = None
        dqkv = torch.empty_like(qkv)
        _flash_attn_backward(
            dout, qkv[:, 0], qkv[:, 1], qkv[:, 2], out, softmax_lse0,
            dqkv[:, 0], dqkv[:, 1], dqkv[:, 2], cu_seqlens[:batch_size0 + 1],
            cu_seqlens[:batch_size0 + 1], ctx.max_seqlen0, ctx.max_seqlen0, ctx.dropout_p,
            ctx.softmax_scale, ctx.causal
        )
        s = torch.cuda.Stream()
        with torch.cuda.stream(s):
            _flash_attn_backward(
                dout, qkv[:, 0], qkv[:, 1], qkv[:, 2], out, softmax_lse1,
                dqkv[:, 0], dqkv[:, 1], dqkv[:, 2], cu_seqlens[batch_size0:],
                cu_seqlens[batch_size0:], ctx.max_seqlen1, ctx.max_seqlen1, ctx.dropout_p,
                ctx.softmax_scale, ctx.causal, generator=generator1
            )
        torch.cuda.current_stream().wait_stream(s)
        if rng_state0 is not None:
            torch.cuda.set_rng_state(cur_rng_state)
        return dqkv, None, None, None, None, None, None, None, None


Tri Dao's avatar
Tri Dao committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
def flash_attn_unpadded_qkvpacked_func(qkv, cu_seqlens, max_seqlen, dropout_p, softmax_scale=None,
                                       causal=False, return_attn_probs=False):
    """dropout_p should be set to 0.0 during evaluation
    Arguments:
        qkv: (total, 3, nheads, headdim), where total = total number of tokens in the batch.
        cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
           of the sequences in the batch, used to index into qkv.
        max_seqlen: int. Maximum sequence length in the batch.
        dropout_p: float. Dropout probability.
        softmax_scale: float. The scaling of QK^T before applying softmax.
            Default to 1 / sqrt(headdim).
        causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
        return_attn_probs: bool. Whether to return the attention probabilities. This option is for
           testing only. The returned probabilities are not guaranteed to be correct
           (they might not have the right scaling).
    Return:
        out: (total, nheads, headdim).
        softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
            logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
            normalization factor).
        S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
            The output of softmax (possibly with different scaling). It also encodes the dropout
            pattern (negative means that location was dropped, nonnegative means it was kept).
    """
    return FlashAttnQKVPackedFunc.apply(qkv, cu_seqlens, max_seqlen, dropout_p, softmax_scale,
                                        causal, return_attn_probs)


def flash_attn_unpadded_kvpacked_func(q, kv, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
                                      dropout_p, softmax_scale=None, causal=False,
                                      return_attn_probs=False):
    """dropout_p should be set to 0.0 during evaluation
    Arguments:
        q: (total_q, nheads, headdim), where total_q = total number of query tokens in the batch.
        kv: (total_k, 2, nheads, headdim), where total_k = total number of key tokens in the batch.
        cu_seqlens_q: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
           of the sequences in the batch, used to index into q.
        cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
           of the sequences in the batch, used to index into kv.
        max_seqlen_q: int. Maximum query sequence length in the batch.
        max_seqlen_k: int. Maximum key sequence length in the batch.
        dropout_p: float. Dropout probability.
        softmax_scale: float. The scaling of QK^T before applying softmax.
            Default to 1 / sqrt(headdim).
        causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
        return_attn_probs: bool. Whether to return the attention probabilities. This option is for
           testing only. The returned probabilities are not guaranteed to be correct
           (they might not have the right scaling).
    Return:
        out: (total, nheads, headdim).
        softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
            logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
            normalization factor).
        S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
            The output of softmax (possibly with different scaling). It also encodes the dropout
            pattern (negative means that location was dropped, nonnegative means it was kept).
    """
    return FlashAttnKVPackedFunc.apply(q, kv, cu_seqlens_q, cu_seqlens_k,
                                       max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, causal,
                                       return_attn_probs)


def flash_attn_unpadded_func(q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
                             dropout_p, softmax_scale=None, causal=False, return_attn_probs=False):
    """dropout_p should be set to 0.0 during evaluation
    Arguments:
        q: (total_q, nheads, headdim), where total_q = total number of query tokens in the batch.
304
305
        k: (total_k, nheads, headdim), where total_k = total number of key tokens in the batch.
        v: (total_k, nheads, headdim), where total_k = total number of key tokens in the batch.
Tri Dao's avatar
Tri Dao committed
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
        cu_seqlens_q: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
           of the sequences in the batch, used to index into q.
        cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
           of the sequences in the batch, used to index into kv.
        max_seqlen_q: int. Maximum query sequence length in the batch.
        max_seqlen_k: int. Maximum key sequence length in the batch.
        dropout_p: float. Dropout probability.
        softmax_scale: float. The scaling of QK^T before applying softmax.
            Default to 1 / sqrt(headdim).
        causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
        return_attn_probs: bool. Whether to return the attention probabilities. This option is for
           testing only. The returned probabilities are not guaranteed to be correct
           (they might not have the right scaling).
    Return:
        out: (total, nheads, headdim).
        softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
            logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
            normalization factor).
        S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
            The output of softmax (possibly with different scaling). It also encodes the dropout
            pattern (negative means that location was dropped, nonnegative means it was kept).
    """
    return FlashAttnFunc.apply(q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
                               dropout_p, softmax_scale, causal, return_attn_probs)
Tri Dao's avatar
Tri Dao committed
330
331


332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
def flash_attn_unpadded_qkvpacked_split_func(
        qkv, cu_seqlens, max_seqlen0, max_seqlen1, batch_size0, dropout_p, softmax_scale=None,
        causal=False, return_attn_probs=False):
    """
    Split attention into 2 kernels running on 2 separate streams for performance reason:
    e.g., if the batch has some sequences of length <= 128 and some > 128, it might be faster to
    have one kernel dealing with seqlen <= 128 and one kernel for seqlen > 128.

    dropout_p should be set to 0.0 during evaluation.

    Arguments:
        qkv: (total, 3, nheads, headdim), where total = total number of tokens in the batch.
        cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
           of the sequences in the batch, used to index into qkv.
        max_seqlen0: int. Maximum sequence length in 1st part of the batch.
        max_seqlen1: int. Maximum sequence length in 2nd part of the batch.
        batch_size0: int. Number of sequences in the 1st part of the batch.
        dropout_p: float. Dropout probability.
        softmax_scale: float. The scaling of QK^T before applying softmax.
            Default to 1 / sqrt(headdim).
        causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
        return_attn_probs: bool. Whether to return the attention probabilities. This option is for
           testing only. The returned probabilities are not guaranteed to be correct
           (they might not have the right scaling).
    Return:
        out: (total, nheads, headdim).
        softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
            logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
            normalization factor).
        S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
            The output of softmax (possibly with different scaling). It also encodes the dropout
            pattern (negative means that location was dropped, nonnegative means it was kept).
    """
    return FlashAttnQKVPackedSplitFunc.apply(qkv, cu_seqlens, max_seqlen0, max_seqlen1, batch_size0,
                                             dropout_p, softmax_scale, causal, return_attn_probs)


Tri Dao's avatar
Tri Dao committed
369
def flash_attn_func(qkv, cu_seqlens, dropout_p, max_s, softmax_scale=None, causal=False,
Tri Dao's avatar
Tri Dao committed
370
                     return_attn_probs=False):
Tri Dao's avatar
Tri Dao committed
371
372
    """For backward-compatibility only, will remove soon.
    dropout_p should be set to 0.0 during evaluation
Tri Dao's avatar
Tri Dao committed
373
    """
Tri Dao's avatar
Tri Dao committed
374
375
    return flash_attn_unpadded_qkvpacked_func(qkv, cu_seqlens, max_s, dropout_p, softmax_scale,
                                              causal, return_attn_probs)