flash_fwd_launch_template.h 14.8 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
5
6
7
8
9
10
11
12
/******************************************************************************
 * Copyright (c) 2023, Tri Dao.
 ******************************************************************************/

#pragma once

#include <ATen/cuda/CUDAContext.h>

#include "static_switch.h"
#include "flash.h"
#include "flash_fwd_kernel.h"

13
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_even_MN, bool Is_even_K, bool Return_softmax>
Tri Dao's avatar
Tri Dao committed
14
__global__ void flash_fwd_kernel(Flash_fwd_params params) {
15
    flash::compute_attn<Kernel_traits, Is_dropout, Is_causal, Is_even_MN, Is_even_K, Return_softmax>(params);
Tri Dao's avatar
Tri Dao committed
16
17
18
19
20
21
22
23
24
25
26
27
28
}

template<typename Kernel_traits, bool Is_dropout, bool Is_causal>
void run_flash_fwd(Flash_fwd_params &params, cudaStream_t stream) {
    constexpr size_t smem_size = Kernel_traits::kSmemSize;
    // printf("smem_size = %d\n", smem_size);

    // Work-around for gcc 7. It doesn't like nested BOOL_SWITCH.
    // https://github.com/kokkos/kokkos-kernels/issues/349
    // https://github.com/HazyResearch/flash-attention/issues/21

    const int num_m_block = (params.seqlen_q + Kernel_traits::kBlockM - 1) / Kernel_traits::kBlockM;
    dim3 grid(num_m_block, params.b, params.h);
29
    const bool is_even_MN = params.cu_seqlens_q == nullptr && params.cu_seqlens_k == nullptr && params.seqlen_k % Kernel_traits::kBlockN == 0 && params.seqlen_q % Kernel_traits::kBlockM == 0;
Tri Dao's avatar
Tri Dao committed
30
31
    const bool is_even_K = params.d == Kernel_traits::kHeadDim;
    const bool return_softmax = params.p_ptr != nullptr;
32
    BOOL_SWITCH(is_even_MN, IsEvenMNConst, [&] {
Tri Dao's avatar
Tri Dao committed
33
34
35
        BOOL_SWITCH(is_even_K, IsEvenKConst, [&] {
            BOOL_SWITCH(return_softmax, ReturnSoftmaxConst, [&] {
                // Will only return softmax if dropout, to reduce compilation time.
36
37
                auto kernel = &flash_fwd_kernel<Kernel_traits, Is_dropout, Is_causal, IsEvenMNConst, IsEvenKConst, ReturnSoftmaxConst && Is_dropout>;
                // auto kernel = &flash_fwd_kernel<Kernel_traits, Is_dropout, Is_causal, IsEvenMNConst, true, ReturnSoftmaxConst && Is_dropout>;
Tri Dao's avatar
Tri Dao committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
                if (smem_size >= 48 * 1024) {
                    C10_CUDA_CHECK(cudaFuncSetAttribute(
                        kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
                }
                int ctas_per_sm;
                cudaError status_ = cudaOccupancyMaxActiveBlocksPerMultiprocessor(
                    &ctas_per_sm, kernel, Kernel_traits::kNThreads, smem_size);
                // printf("smem_size = %d, CTAs per SM = %d\n", int(smem_size), ctas_per_sm);
                kernel<<<grid, Kernel_traits::kNThreads, smem_size, stream>>>(params);
                C10_CUDA_KERNEL_LAUNCH_CHECK();
            });
        });
    });
}

template<typename T>
void run_mha_fwd_hdim32(Flash_fwd_params &params, cudaStream_t stream) {
    constexpr int Headdim = 32;
    BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
        BOOL_SWITCH(params.is_causal, Is_causal, [&] {
            run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 128, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
        });
    });
}

template<typename T>
void run_mha_fwd_hdim64(Flash_fwd_params &params, cudaStream_t stream) {
    constexpr int Headdim = 64;
    BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
        BOOL_SWITCH(params.is_causal, Is_causal, [&] {
            if constexpr(!Is_dropout) {
                // Using 8 warps is 18% slower for seqlen=2k, 2 warps is 5% slower
                // Using block size (64 x 256) is 27% slower for seqlen=2k
                // Using block size (256 x 64) is 85% slower for seqlen=2k, because of register spilling
                run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 128, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
                // run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, true, false, T>, Is_dropout, Is_causal>(params, stream);
                // run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, true, true, T>, Is_dropout, Is_causal>(params, stream);
            } else {
                run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
                // run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, true, true, T>, Is_dropout, Is_causal>(params, stream);
                // run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, true, false, T>, Is_dropout, Is_causal>(params, stream);
                // run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 128, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
            }
        });
    });
}

template<typename T>
void run_mha_fwd_hdim96(Flash_fwd_params &params, cudaStream_t stream) {
    constexpr int Headdim = 96;
    auto dprops = at::cuda::getCurrentDeviceProperties();
    bool is_sm8x = dprops->major == 8 && dprops->minor > 0;
    BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
        BOOL_SWITCH(params.is_causal, Is_causal, [&] {
            // For sm86 or sm89, 64 x 64 is the fastest for causal (because it's square),
            if (is_sm8x) {
                if constexpr(!Is_causal) {
                    run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
                } else {
                    run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
                }
            } else {
                run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
            }
            // run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, true, false, T>, Is_dropout, Is_causal>(params, stream);
            // run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, true, true, T>, Is_dropout, Is_causal>(params, stream);
            // These two are always slower
            // run_flash_fwd<Flash_fwd_kernel_traits<96, 128, 128, 4, true, T>>(params, stream);
            // run_flash_fwd<Flash_fwd_kernel_traits<96, 64, 128, 4, true, T>>(params, stream);
        });
    });
}

template<typename T>
void run_mha_fwd_hdim128(Flash_fwd_params &params, cudaStream_t stream) {
    constexpr int Headdim = 128;
    auto dprops = at::cuda::getCurrentDeviceProperties();
    bool is_sm8x = dprops->major == 8 && dprops->minor > 0;
    BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
        BOOL_SWITCH(params.is_causal, Is_causal, [&] {
            if constexpr(!Is_dropout) {
                // For sm86 or sm89, 64 x 64 is the fastest for causal (because it's square),
                // and 128 x 32 (48 KB smem) is the fastest for non-causal since we get 2 CTAs per SM.
                if (is_sm8x) {
                    if constexpr(!Is_causal) {
                        run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 32, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
                    } else {
                        run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
                    }
                } else {
                    run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
                }
                // run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, true, false, T>, Is_dropout, Is_causal>(params, stream);
                // run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, true, true, T>, Is_dropout, Is_causal>(params, stream);
                // run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 128, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
                // Using 8 warps (128 x 128 and 256 x 64) is 28% slower for seqlen=2k
                // run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 128, 8, false, false, T>, Is_dropout, Is_causal>(params, stream);
                // run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 8, false, false, T>, Is_dropout, Is_causal>(params, stream);
                // 1st ones are good for H100, A100
                // 2nd one is good for A6000 bc we get slightly better occupancy
            } else {
                run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 32, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
                // run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
                // run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 32, 4, true, false, T>, Is_dropout, Is_causal>(params, stream);
                // run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 32, 4, true, true, T>, Is_dropout, Is_causal>(params, stream);
            }
        });
    });
}

template<typename T>
void run_mha_fwd_hdim160(Flash_fwd_params &params, cudaStream_t stream) {
    constexpr int Headdim = 160;
    auto dprops = at::cuda::getCurrentDeviceProperties();
    bool is_sm8x = dprops->major == 8 && dprops->minor > 0;
    BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
        BOOL_SWITCH(params.is_causal, Is_causal, [&] {
            // For A100, H100, 128 x 32 is the fastest.
            // For sm86 or sm89, 64 x 64 is the fastest for causal (because it's square),
            // and 128 x 64 with 8 warps is the fastest for non-causal.
            if (is_sm8x) {
                if constexpr(!Is_causal) {
                    run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 8, false, false, T>, Is_dropout, Is_causal>(params, stream);
                } else {
                    run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
                }
            } else {
                run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 32, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
            }
            // run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 32, 4, false, true, T>, Is_dropout, Is_causal>(params, stream);
            // run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
            // run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, false, T>>(params, stream);
            // run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 128, 4, false, T>>(params, stream);
            // run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 64, 4, false, T>>(params, stream);
            // run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 8, false, T>>(params, stream);
            // run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 128, 8, false, T>>(params, stream);
        });
    });
}

template<typename T>
void run_mha_fwd_hdim192(Flash_fwd_params &params, cudaStream_t stream) {
    constexpr int Headdim = 192;
    BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
        BOOL_SWITCH(params.is_causal, Is_causal, [&] {
            if constexpr(!Is_dropout) {
                run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 8, false, false, T>, Is_dropout, Is_causal>(params, stream);
            } else {
                run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
            }
            // run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 32, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
            // run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 32, 8, false, false, T>, Is_dropout, Is_causal>(params, stream);
            // run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, false, T>>(params, stream);
            // run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 128, 4, false, T>>(params, stream);
            // run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 128, 8, false, T>>(params, stream);
        });
    });
}

template<typename T>
void run_mha_fwd_hdim224(Flash_fwd_params &params, cudaStream_t stream) {
    constexpr int Headdim = 224;
    int device;
    cudaGetDevice(&device);
    int max_smem_per_block;
    cudaError status_ = cudaDeviceGetAttribute(
        &max_smem_per_block, cudaDevAttrMaxSharedMemoryPerBlockOptin, device);
    // printf("max_smem_per_block = %d\n", max_smem_per_block);
    BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
        BOOL_SWITCH(params.is_causal, Is_causal, [&] {
            if (max_smem_per_block >= 2 * Headdim * (128 + 2 * 64)) {  // 112 KB
                run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 8, false, false, T>, Is_dropout, Is_causal>(params, stream);
            } else {
                run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
            }
            // run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 32, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
            // run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 32, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
            // We can't do 128 x 32 with 8 warps because with headdim 224, kBlockKSmem = 32.
            // If we have N = 32, there are only 1024 elements to load at once, where each load
            // is 8 elements. This means we can only use 128 threads and not 256 threads.
            // run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 32, 8, false, false, T>, Is_dropout, Is_causal>(params, stream);
        });
    });
}

template<typename T>
void run_mha_fwd_hdim256(Flash_fwd_params &params, cudaStream_t stream) {
    constexpr int Headdim = 256;
    int device;
    cudaGetDevice(&device);
    int max_smem_per_sm, max_smem_per_block;
    cudaError status_ = cudaDeviceGetAttribute(
        &max_smem_per_sm, cudaDevAttrMaxSharedMemoryPerMultiprocessor, device);
    status_ = cudaDeviceGetAttribute(
        &max_smem_per_block, cudaDevAttrMaxSharedMemoryPerBlockOptin, device);
    // printf("max_smem_per_sm = %d, max_smem_per_block = %d\n", max_smem_per_sm, max_smem_per_block);
    BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
        BOOL_SWITCH(params.is_causal, Is_causal, [&] {
            // For A100, we want to run with 128 x 64 (128KB smem).
            // For H100 we want to run with 64 x 64 (96KB smem) since then we can get 2 CTAs per SM.
            if (max_smem_per_block >= 2 * Headdim * (128 + 2 * 64) && max_smem_per_sm < 4 * Headdim * (64 + 2 * 64)) {
                run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 8, false, false, T>, Is_dropout, Is_causal>(params, stream);
            } else {
                run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
            }
            // 64 KB
            // run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 32, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
            // 96 KB
            // run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 32, 8, false, false, T>, Is_dropout, Is_causal>(params, stream);
        });
    });
}