utils.py 4.54 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Adapted from https://github.com/HazyResearch/hippo/blob/datasets/benchmark/utils.py
""" Useful functions for writing test code. """

import torch
import torch.utils.benchmark as benchmark


def benchmark_forward(fn, *inputs, min_run_time = 0.2, repeats = 10, desc='', verbose=True, **kwinputs):
    """ Use Pytorch Benchmark on the forward pass of an arbitrary function. """
    if verbose:
        print(desc, '- Forward pass')
    t = benchmark.Timer(
            stmt='fn(*inputs, **kwinputs)',
            globals={'fn': fn, 'inputs': inputs, 'kwinputs': kwinputs},
            num_threads=torch.get_num_threads(),
            )
    m = t.timeit(repeats)
    if verbose:
        print(m)
    return t, m


def benchmark_backward(fn, *inputs, grad=None, repeats=10, desc='', verbose=True, **kwinputs):
    """ Use Pytorch Benchmark on the backward pass of an arbitrary function. """
    if verbose:
        print(desc, '- Backward pass')
    y = fn(*inputs, **kwinputs)
    if type(y) is tuple:
        y = y[0]
    if grad is None:
        grad = torch.randn_like(y)
    else:
        if grad.shape != y.shape:
            raise RuntimeError('Grad shape does not match output shape')
    t = benchmark.Timer(
            stmt='y.backward(grad, retain_graph=True)',
            globals={'y': y, 'grad': grad},
            num_threads=torch.get_num_threads(),
            )
    m = t.timeit(repeats)
    if verbose:
        print(m)
    return t, m


def benchmark_combined(fn, *inputs, grad=None, repeats=10, desc='', verbose=True, **kwinputs):
    """ Use Pytorch Benchmark on the forward+backward pass of an arbitrary function. """
    if verbose:
        print(desc, '- Forward + Backward pass')
    # y = fn(*inputs, **kwinputs)
    # if grad is None:
    #     grad = torch.randn_like(y)
    # else:
    #     if grad.shape != y.shape:
    #         raise RuntimeError('Grad shape does not match output shape')
    # del y
    def f(grad, *inputs, **kwinputs):
        y = fn(*inputs, **kwinputs)
        if type(y) is tuple:
            y = y[0]
        if grad is None:
            grad = torch.randn_like(y)
        else:
            if grad.shape != y.shape:
                raise RuntimeError('Grad shape does not match output shape')
        y.backward(grad, retain_graph=True)
    t = benchmark.Timer(
            stmt='f(grad, *inputs, **kwinputs)',
            globals={'f': f, 'fn': fn, 'inputs': inputs, 'grad': grad, 'kwinputs': kwinputs},
            num_threads=torch.get_num_threads(),
            )
    m = t.timeit(repeats)
    if verbose:
        print(m)
    return t, m


def benchmark_all(fn, *inputs, grad=None, repeats=10, desc='', verbose=True, **kwinputs):
    """ Use Pytorch Benchmark on the forward+backward pass of an arbitrary function. """
    return (
        benchmark_forward(fn, *inputs, repeats=repeats, desc=desc, verbose=verbose, **kwinputs),
        benchmark_backward(fn, *inputs, grad=grad, repeats=repeats, desc=desc, verbose=verbose,
                           **kwinputs),
        benchmark_combined(fn, *inputs, grad=grad, repeats=repeats, desc=desc, verbose=verbose,
                           **kwinputs),
    )


def pytorch_profiler(fn, *inputs, repeats=10):
    """ Wrap benchmark functions in Pytorch profiler to see CUDA information. """
    with torch.profiler.profile(
            activities=[
                torch.profiler.ProfilerActivity.CPU,
                torch.profiler.ProfilerActivity.CUDA,
                ],
            record_shapes=True,
            profile_memory=True,
            with_stack=True,
            ) as p:
            # benchmark_forward(repeats, fn, *inputs)
            fn(*inputs)
    print(p.key_averages().table(
        sort_by="self_cuda_time_total", row_limit=-1))


def convert_data(*tensors, device='cuda'):
    tensors = tuple(t.to(device) for t in tensors)
    for t in tensors:
        if t.is_leaf: t.requires_grad = True
        t.retain_grad()
    return tensors


def log_backward(output, *inputs):
    """ Perform backward pass of output and print gradients of input tensors. """

    #print(f"{output=}")
    output.sum().backward(retain_graph=True)
    print("Gradients:")
    for t in inputs:
        print(t.grad)
        t.grad.zero_()


def benchmark_memory(fn, *inputs, desc='', verbose=True, **kwinputs):
    torch.cuda.empty_cache()
    torch.cuda.reset_peak_memory_stats()
    torch.cuda.synchronize()
    fn(*inputs, **kwinputs)
    torch.cuda.synchronize()
    mem = torch.cuda.max_memory_allocated() / ((2 ** 20) * 1000)
    if verbose:
        print(f'{desc} max memory: ', mem)
    torch.cuda.empty_cache()
    return mem