test_layer_norm.py 9.63 KB
Newer Older
1
# Copyright (c) 2023, Tri Dao.
2
3
4
5
6

import pytest
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
7
8
9
10
11
12
13

from flash_attn.ops.triton.layernorm import (
    layer_norm_fn,
    layer_norm_ref,
    rms_norm_ref,
    layer_norm_linear_fn,
)
14
15
16
17
18


is_sm8x = torch.cuda.get_device_capability("cuda")[0] >= 8


19
20
@pytest.mark.parametrize("prenorm", [True, False])
# @pytest.mark.parametrize("prenorm", [True])
21
22
23
@pytest.mark.parametrize("is_rms_norm", [False, True])
# @pytest.mark.parametrize("is_rms_norm", [True])
@pytest.mark.parametrize("has_residual", [True, False])
24
# @pytest.mark.parametrize("has_residual", [False])
25
@pytest.mark.parametrize(
26
    "weight_dtype", [torch.float32, torch.float16] + ([torch.bfloat16] if is_sm8x else [])
27
28
29
)
# @pytest.mark.parametrize("weight_dtype", [torch.float32])
@pytest.mark.parametrize(
30
31
32
    "input_dtype,residual_dtype",
    [(torch.float16, torch.float16), (torch.float16, torch.float32), (torch.float32, torch.float32)]
    + ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []),
33
34
35
36
37
)
# @pytest.mark.parametrize("input_dtype,residual_dtype", [(torch.bfloat16, torch.float32)])
@pytest.mark.parametrize("hidden_size", [192, 2048, 2560, 3000, 8192])
# @pytest.mark.parametrize("hidden_size", [256])
def test_layer_norm(
38
    hidden_size, input_dtype, residual_dtype, weight_dtype, has_residual, is_rms_norm, prenorm
39
40
41
42
43
):
    device = "cuda"
    if any(x == torch.bfloat16 for x in [input_dtype, residual_dtype, weight_dtype]):
        atol = 5e-2
    elif any(x == torch.float16 for x in [input_dtype, residual_dtype, weight_dtype]):
44
        atol = 1e-2
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    else:
        atol = 1e-4
    # set seed
    torch.random.manual_seed(0)
    batch_size = 8
    seqlen = 512
    # batch_size = 1
    # seqlen = 1
    layer_norm_ref_fn = layer_norm_ref if not is_rms_norm else rms_norm_ref
    allclose = (
        lambda x, x_pt, x_ref, atol=atol: (x - x_ref).abs().max()
        <= 2 * (x_pt - x_ref).abs().max() + atol
    )
    x0 = torch.randn(
        batch_size, seqlen, hidden_size, device=device, dtype=input_dtype, requires_grad=True
    )
    x0_pt = x0.detach().clone().requires_grad_()
    x0_ref = x0.detach().clone().requires_grad_()
    if has_residual:
        res = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True)
        res_pt = res.detach().clone().requires_grad_()
        res_ref = res.detach().clone().requires_grad_()
    else:
        res, res_pt, res_ref = None, None, None
    weight = torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True)
    if not is_rms_norm:
        bias = torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True)
    else:
        bias = None
    weight_pt = weight.detach().clone().requires_grad_()
    weight_ref = weight.detach().clone().requires_grad_()
    bias_pt = bias.detach().clone().requires_grad_() if bias is not None else None
    bias_ref = bias.detach().clone().requires_grad_() if bias is not None else None

79
80
81
82
83
84
85
86
87
88
89
90
91
92
    residual_in_fp32 = (not has_residual) and residual_dtype == torch.float32
    out, *rest = layer_norm_fn(
        x0,
        weight,
        bias,
        residual=res,
        eps=1e-6,
        prenorm=prenorm,
        residual_in_fp32=residual_in_fp32,
        is_rms_norm=is_rms_norm,
    )
    out_pt, *rest_pt = layer_norm_ref_fn(
        x0_pt, weight_pt, bias_pt, residual=res_pt, eps=1e-6, prenorm=prenorm
    )
93
    out_ref, *rest_ref = layer_norm_ref_fn(
94
        x0_ref, weight_ref, bias_ref, residual=res_ref, eps=1e-6, prenorm=prenorm, upcast=True
95
    )
96
    if prenorm:
97
98
99
100
        residual = rest[0]
        residual_pt = rest_pt[0]
        residual_ref = rest_ref[0]
    assert out.dtype == input_dtype
101
    if prenorm:
102
103
104
105
106
        assert residual.dtype == residual_dtype
        assert allclose(residual, residual_pt, residual_ref)
    assert allclose(out, out_pt, out_ref)

    g = torch.randn_like(out) / batch_size
107
    if not prenorm:
108
109
110
111
112
113
114
115
116
117
118
119
120
        out.backward(g)
        out_pt.backward(g)
        out_ref.backward(g)
    else:
        (out * F.sigmoid(residual)).backward(g)
        (out_pt * F.sigmoid(residual_pt)).backward(g)
        (out_ref * F.sigmoid(residual_ref.to(dtype=residual_dtype))).backward(g)
    assert allclose(x0.grad, x0_pt.grad, x0_ref.grad)
    if has_residual:
        assert allclose(res.grad, res_pt.grad, res_ref.grad)
    assert allclose(weight.grad, weight_pt.grad, weight_ref.grad)
    if bias is not None:
        assert allclose(bias.grad, bias_pt.grad, bias_ref.grad)
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249


@pytest.mark.parametrize("prenorm", [True, False])
# @pytest.mark.parametrize("prenorm", [True])
@pytest.mark.parametrize("is_rms_norm", [False, True])
# @pytest.mark.parametrize("is_rms_norm", [True])
@pytest.mark.parametrize("has_residual", [True, False])
# @pytest.mark.parametrize("has_residual", [False])
@pytest.mark.parametrize("weight_dtype", [torch.float32])
@pytest.mark.parametrize(
"input_dtype,residual_dtype",
[(torch.float16, torch.float16), (torch.float16, torch.float32)]
+ ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []),
)
# @pytest.mark.parametrize("input_dtype,residual_dtype", [(torch.bfloat16, torch.float32)])
@pytest.mark.parametrize("hidden_size", [192, 2048, 2560, 3000])
# @pytest.mark.parametrize("hidden_size", [256])
def test_layer_norm_linear(
    hidden_size, input_dtype, residual_dtype, weight_dtype, has_residual, is_rms_norm, prenorm
):
    device = "cuda"
    if any(x == torch.bfloat16 for x in [input_dtype, residual_dtype, weight_dtype]):
        atol = 5e-2
    elif any(x == torch.float16 for x in [input_dtype, residual_dtype, weight_dtype]):
        atol = 1e-2
    else:
        atol = 1e-4
    # set seed
    torch.random.manual_seed(0)
    batch_size = 4
    seqlen = 512
    # batch_size = 1
    # seqlen = 1
    layer_norm_ref_fn = layer_norm_ref if not is_rms_norm else rms_norm_ref
    allclose = (
        lambda x, x_pt, x_ref, atol=atol: (x - x_ref).abs().max()
        <= 2 * (x_pt - x_ref).abs().max() + atol
    )
    x0 = torch.randn(
        batch_size, seqlen, hidden_size, device=device, dtype=input_dtype, requires_grad=True
    )
    x0_pt = x0.detach().clone().requires_grad_()
    x0_ref = x0.detach().clone().requires_grad_()
    if has_residual:
        res = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True)
        res_pt = res.detach().clone().requires_grad_()
        res_ref = res.detach().clone().requires_grad_()
    else:
        res, res_pt, res_ref = None, None, None
    norm_weight = torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True)
    if not is_rms_norm:
        norm_bias = torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True)
    else:
        norm_bias = None
    norm_weight_pt = norm_weight.detach().clone().requires_grad_()
    norm_weight_ref = norm_weight.detach().clone().requires_grad_()
    norm_bias_pt = norm_bias.detach().clone().requires_grad_() if norm_bias is not None else None
    norm_bias_ref = norm_bias.detach().clone().requires_grad_() if norm_bias is not None else None
    linear_weight = torch.empty(
        2 * hidden_size, hidden_size, device=device, dtype=weight_dtype, requires_grad=True
    )
    torch.nn.init.xavier_uniform_(linear_weight)
    if not is_rms_norm:
        linear_bias = torch.randn(
            2 * hidden_size, device=device, dtype=weight_dtype, requires_grad=True
        )
    else:
        linear_bias = None
    linear_weight_pt = linear_weight.detach().clone().requires_grad_()
    linear_weight_ref = linear_weight.detach().clone().requires_grad_()
    linear_bias_pt = (
        linear_bias.detach().clone().requires_grad_() if linear_bias is not None else None
    )
    linear_bias_ref = (
        linear_bias.detach().clone().requires_grad_() if linear_bias is not None else None
    )

    residual_in_fp32 = (not has_residual) and residual_dtype == torch.float32
    with torch.autocast(device_type="cuda", dtype=input_dtype):
        out, *rest = layer_norm_linear_fn(
            x0,
            norm_weight,
            norm_bias,
            linear_weight,
            linear_bias,
            residual=res,
            eps=1e-6,
            prenorm=prenorm,
            residual_in_fp32=residual_in_fp32,
            is_rms_norm=is_rms_norm,
        )
    out_pt, *rest_pt = layer_norm_ref_fn(
        x0_pt, norm_weight_pt, norm_bias_pt, residual=res_pt, eps=1e-6, prenorm=prenorm
    )
    with torch.autocast(device_type="cuda", dtype=input_dtype):
        out_pt = F.linear(out_pt, linear_weight_pt, linear_bias_pt)
    out_ref, *rest_ref = layer_norm_ref_fn(
        x0_ref,
        norm_weight_ref,
        norm_bias_ref,
        residual=res_ref,
        eps=1e-6,
        prenorm=prenorm,
        upcast=True,
    )
    out_ref = F.linear(out_ref.to(linear_weight_ref.dtype), linear_weight_ref, linear_bias_ref)
    if prenorm:
        residual = rest[0]
        residual_pt = rest_pt[0]
        residual_ref = rest_ref[0]
    assert out.dtype == input_dtype
    if prenorm:
        assert residual.dtype == residual_dtype
        assert allclose(residual, residual_pt, residual_ref)
    assert allclose(out, out_pt, out_ref)

    g = torch.randn_like(out) / batch_size
    out.backward(g)
    out_pt.backward(g)
    out_ref.backward(g)
    assert allclose(x0.grad, x0_pt.grad, x0_ref.grad)
    if has_residual:
        assert allclose(res.grad, res_pt.grad, res_ref.grad)
    assert allclose(norm_weight.grad, norm_weight_pt.grad, norm_weight_ref.grad)
    if norm_bias is not None:
        assert allclose(norm_bias.grad, norm_bias_pt.grad, norm_bias_ref.grad)
    assert allclose(linear_weight.grad, linear_weight_pt.grad, linear_weight_ref.grad)
    if linear_bias is not None:
        assert allclose(linear_bias.grad, linear_bias_pt.grad, linear_bias_ref.grad)