test_block_parallel.py 9.29 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Run test with:
# torchrun --no_python --nproc_per_node=8 pytest -q -s tests/modules/test_block_parallel.py

import math
from functools import partial

import torch
import torch.nn as nn
import torch.nn.functional as F
import pytest

from einops import rearrange

from apex.transformer import parallel_state
from apex.transformer import tensor_parallel

from flash_attn.modules.mha import MHA, ParallelMHA
from flash_attn.modules.mlp import FusedDenseGeluDense, ParallelFusedDenseGeluDense
from flash_attn.modules.block import Block
20
from flash_attn.utils.distributed import allreduce_sequence_parallel_grad
21
22
23
24
25

is_sm8x = torch.cuda.get_device_capability('cuda')[0] >= 8


@pytest.mark.parametrize('dtype', [torch.float16] + ([torch.bfloat16] if is_sm8x else []))
26
# @pytest.mark.parametrize('dtype', [torch.float16])
27
28
@pytest.mark.parametrize('world_size', [1, 2, 4, 8])
# @pytest.mark.parametrize('world_size', [2])
29
30
@pytest.mark.parametrize('sequence_parallel', [True, False])
# @pytest.mark.parametrize('sequence_parallel', [False])
31
@pytest.mark.parametrize('dim', [1024])
32
def test_block_parallel(dim, sequence_parallel, world_size, dtype):
33
34
35
36
37
38
39
40
41
42
43
44
45
    head_dim = 64
    assert dim % head_dim == 0
    num_heads = dim // head_dim
    assert num_heads % world_size == 0
    rtol, atol = (3e-3, 5e-2) if dtype == torch.bfloat16 else (3e-3, 3e-3)
    if not torch.distributed.is_initialized():
        torch.distributed.init_process_group(backend='nccl', init_method='env://')
    device = f'cuda:{torch.distributed.get_rank()}'
    assert world_size <= torch.distributed.get_world_size()
    parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
    rank = parallel_state.get_tensor_model_parallel_rank()
    # set seed
    torch.random.manual_seed(0)
46
    batch_size = 2
47
48
49
50
51
52
53
54
55
    seqlen = 1024
    assert (batch_size * seqlen) % world_size == 0
    x_pt = torch.randn(batch_size * seqlen, dim, device=device, dtype=dtype,
                       requires_grad=True)
    residual_pt = torch.randn(batch_size * seqlen, dim, device=device, requires_grad=True)
    # We need to generate g here so that all processes get the same gradient,
    # as rank 0 will have an extra bias that changes the RNG.
    # If we don't divide by batch_size, the gradient gets a bit too large.
    g = torch.randn_like(x_pt) / 32
56
57
58
59
60
61
    if sequence_parallel:
        x = tensor_parallel.scatter_to_sequence_parallel_region(x_pt).detach().clone().requires_grad_()
        residual = tensor_parallel.scatter_to_sequence_parallel_region(residual_pt).detach().clone().requires_grad_()
    else:
        x = x_pt.detach().clone().requires_grad_()
        residual = residual_pt.detach().clone().requires_grad_()
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

    mixer_cls_pt = partial(MHA, num_heads=num_heads, rotary_emb_dim=int(head_dim // 2),
                           use_flash_attn=True, device=device, dtype=dtype)
    mlp_cls_pt = partial(FusedDenseGeluDense, hidden_features=4 * dim,
                         device=device, dtype=dtype)
    norm_cls = partial(nn.LayerNorm, device=device, dtype=dtype)
    model_pt = Block(dim, mixer_cls_pt, mlp_cls_pt, norm_cls, fused_dropout_add_ln=True)
    with torch.no_grad():
        nn.init.normal_(model_pt.norm1.weight)
        nn.init.normal_(model_pt.norm1.bias)
        nn.init.normal_(model_pt.norm2.weight)
        nn.init.normal_(model_pt.norm2.bias)

    mixer_cls = partial(ParallelMHA, num_heads=num_heads,
                        process_group=parallel_state.get_tensor_model_parallel_group(),
                        rotary_emb_dim=int(head_dim // 2), use_flash_attn=True,
78
                        sequence_parallel=sequence_parallel, device=device, dtype=dtype)
79
80
    mlp_cls = partial(ParallelFusedDenseGeluDense, hidden_features=4 * dim,
                      process_group=parallel_state.get_tensor_model_parallel_group(),
81
                      sequence_parallel=sequence_parallel, device=device, dtype=dtype)
82
    model = Block(dim, mixer_cls, mlp_cls, norm_cls, fused_dropout_add_ln=True,
83
                  sequence_parallel=sequence_parallel, mark_shared_params=True)
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

    partition_dim = dim // world_size
    partition_hidden_dim = 4 * dim // world_size
    with torch.no_grad():
        model.mixer.Wqkv.weight.copy_(
            rearrange(rearrange(model_pt.mixer.Wqkv.weight, '(three o) i -> three o i', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim],
                      'three o i -> (three o) i')
        )
        model.mixer.Wqkv.bias.copy_(
            rearrange(rearrange(model_pt.mixer.Wqkv.bias, '(three o) -> three o', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim],
                      'three o -> (three o)')
        )
        model.mixer.out_proj.weight.copy_(
            model_pt.mixer.out_proj.weight[:, rank * partition_dim:(rank + 1) * partition_dim]
        )
        if rank == 0:
            model.mixer.out_proj.bias.copy_(model_pt.mixer.out_proj.bias)
        model.mlp.fc1.weight.copy_(
            model_pt.mlp.fc1.weight[rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim]
        )
        model.mlp.fc1.bias.copy_(
            model_pt.mlp.fc1.bias[rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim]
        )
        model.mlp.fc2.weight.copy_(
            model_pt.mlp.fc2.weight[:, rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim]
        )
        if rank == 0:
            model.mlp.fc2.bias.copy_(model_pt.mlp.fc2.bias)
        model.norm1.weight.copy_(model_pt.norm1.weight)
        model.norm1.bias.copy_(model_pt.norm1.bias)
        model.norm2.weight.copy_(model_pt.norm2.weight)
        model.norm2.bias.copy_(model_pt.norm2.bias)

    mixer_kwargs = {'seqlen': seqlen}
    out, out_residual = model(x, residual, mixer_kwargs=mixer_kwargs)
    out_pt, out_residual_pt = model_pt(rearrange(x_pt, '(b s) d -> b s d', s=seqlen),
                                       rearrange(residual_pt, '(b s) d -> b s d', s=seqlen))
    out_pt, out_residual_pt = [rearrange(x, 'b s d -> (b s) d') for x in [out_pt, out_residual_pt]]
    partition_batch_dim = batch_size * seqlen // world_size
    assert torch.allclose(
124
125
126
        out,
        out_pt[rank * partition_batch_dim:(rank + 1) * partition_batch_dim]
        if sequence_parallel else out_pt,
127
128
129
        rtol=rtol, atol=atol
    )
    assert torch.allclose(
130
131
132
        out_residual,
        out_residual_pt[rank * partition_batch_dim:(rank + 1) * partition_batch_dim]
        if sequence_parallel else out_residual_pt,
133
134
135
        rtol=rtol, atol=atol
    )

136
137
138
    (out_pt + 2 * out_residual_pt).backward(g)
    (out + 2 * out_residual).backward(g[rank * partition_batch_dim:(rank + 1) * partition_batch_dim]
                                      if sequence_parallel else g)
139
    allreduce_sequence_parallel_grad(model, parallel_state.get_tensor_model_parallel_group())
140
141
142
    parallel_state.destroy_model_parallel()

    assert torch.allclose(
143
144
145
146
        x.grad,
        x_pt.grad[rank * partition_batch_dim:(rank + 1) * partition_batch_dim]
        if sequence_parallel else x_pt.grad,
        rtol=rtol, atol=atol / 100  # magnitude of x.grad is quite small
147
148
    )
    assert torch.allclose(
149
150
151
        residual.grad,
        residual_pt.grad[rank * partition_batch_dim:(rank + 1) * partition_batch_dim]
        if sequence_parallel else residual_pt.grad,
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
        rtol=rtol, atol=atol
    )
    # The error for d_weight and d_bias is quite a bit higher
    assert torch.allclose(
        model.mixer.Wqkv.weight.grad,
        rearrange(rearrange(model_pt.mixer.Wqkv.weight.grad, '(three o) i -> three o i', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim],
                  'three o i -> (three o) i'),
        rtol=rtol, atol=atol * 10
    )
    assert torch.allclose(
        model.mixer.Wqkv.bias.grad,
        rearrange(rearrange(model_pt.mixer.Wqkv.bias.grad, '(three o) -> three o', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim],
                  'three o -> (three o)'),
        rtol=rtol, atol=atol * 5
    )
    assert torch.allclose(
        model.mixer.out_proj.weight.grad,
        model_pt.mixer.out_proj.weight.grad[:, rank * partition_dim:(rank + 1) * partition_dim],
        rtol=rtol, atol=atol * 10
    )
    if rank == 0:
        assert torch.allclose(model.mixer.out_proj.bias.grad, model_pt.mixer.out_proj.bias.grad, rtol=rtol, atol=atol * 5)
    assert torch.allclose(
        model.mlp.fc1.weight.grad,
        model_pt.mlp.fc1.weight.grad[rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim],
        rtol=rtol, atol=atol * 10
    )
    assert torch.allclose(
        model.mlp.fc1.bias.grad,
        model_pt.mlp.fc1.bias.grad[rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim],
        rtol=rtol, atol=atol * 5
    )
    assert torch.allclose(
        model.mlp.fc2.weight.grad,
        model_pt.mlp.fc2.weight.grad[:, rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim],
        rtol=rtol, atol=atol * 10
    )
    if rank == 0:
        assert torch.allclose(model.mlp.fc2.bias.grad, model_pt.mlp.fc2.bias.grad,
                              rtol=rtol, atol=atol * 5)

    assert torch.allclose(model.norm1.weight.grad, model_pt.norm1.weight.grad, rtol=rtol, atol=atol * 5)
    assert torch.allclose(model.norm1.bias.grad, model_pt.norm1.bias.grad, rtol=rtol, atol=atol * 5)
    assert torch.allclose(model.norm2.weight.grad, model_pt.norm2.weight.grad, rtol=rtol, atol=atol * 5)
    assert torch.allclose(model.norm2.bias.grad, model_pt.norm2.bias.grad, rtol=rtol, atol=atol * 5)