ln_bwd_kernels.cuh 18.8 KB
Newer Older
1
2
#pragma once

3
4
5
6
7
#include "ln.h"
#include "ln_utils.cuh"
#include "ln_kernel_traits.h"
#include "static_switch.h"

8
9
namespace layer_norm {

10
template<typename Ktraits, bool Prenorm, bool Is_dropout, bool Has_residual, bool Is_even_cols>
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
__global__ __launch_bounds__(Ktraits::THREADS_PER_CTA) 
void ln_bwd_kernel(layer_norm::BwdParams params) {

    enum { ROWS_PER_CTA = Ktraits::ROWS_PER_CTA };
    enum { WARPS_M = Ktraits::WARPS_M };
    enum { WARPS_N = Ktraits::WARPS_N };
    enum { THREADS_PER_ROW = Ktraits::THREADS_PER_ROW };
    enum { COLS = Ktraits::COLS };
    enum { BYTES_PER_ROW = Ktraits::BYTES_PER_ROW };
    enum { LDGS = Ktraits::LDGS };
    enum { NUM_ELTS = Ktraits::ELTS_PER_LDG };
    enum { THREADS_PER_WARP = Ktraits::THREADS_PER_WARP };
    enum { CTAS_PER_ROW = Ktraits::CTAS_PER_ROW };

    using input_t = typename Ktraits::input_t;
    using compute_t = typename Ktraits::compute_t;
    using index_t = typename Ktraits::index_t;
    using mask_t = typename Ktraits::mask_t;
    using Ivec = typename Ktraits::Ivec;
    using Rvec = typename Ktraits::Rvec;
    using Ovec = typename Ktraits::Ovec;
    using Wvec = typename Ktraits::Wvec;
    using Cvec = typename Ktraits::Cvec;
    using Mvec = typename Ktraits::Mvec;
    using Reducer = typename Ktraits::Reducer;
    using reduce_t = typename Reducer::Type;

    extern __shared__ char smem_[];

    const index_t tidx = threadIdx.x;
    const index_t bidn = blockIdx.x % CTAS_PER_ROW;
    const index_t bidm = blockIdx.x / CTAS_PER_ROW;
    const index_t lane = tidx % THREADS_PER_WARP;
    const index_t warp = tidx / THREADS_PER_WARP;
    const index_t warp_m = warp / Ktraits::WARPS_N;
    const index_t warp_n = warp % Ktraits::WARPS_N;
    const index_t tid_r = warp_n * THREADS_PER_WARP + lane;

    const index_t r = bidm * Ktraits::ROWS_PER_CTA + warp_m;
    const index_t c = bidn * THREADS_PER_ROW + warp_n * THREADS_PER_WARP + lane;

    static_assert(COLS == THREADS_PER_ROW * LDGS * NUM_ELTS * CTAS_PER_ROW);

    Cvec dzy_sum[LDGS];
    Cvec dz_sum[LDGS];

    memset(dzy_sum, 0, sizeof(dzy_sum));
    memset(dz_sum, 0, sizeof(dz_sum));

    compute_t * smem_wgrad = reinterpret_cast<compute_t*>(smem_);
    char *smem_dgrad = smem_ + Ktraits::SMEM_BYTES_WGRAD;

    Reducer reducer(params, bidm, bidn, warp_m, warp_n, lane, smem_dgrad);

    Sum<reduce_t> sum;

67
68
69
    const index_t num_valid_ldgs =
        ((params.cols / Ktraits::ELTS_PER_LDG) - 1 - c + Ktraits::VEC_COLS_PER_LDG) / Ktraits::VEC_COLS_PER_LDG;

70
71
72
73
    Wvec gamma[LDGS];
    index_t idx = c;
    #pragma unroll
    for( int it = 0; it < LDGS; it++ ) {
74
75
76
77
        if (Is_even_cols || (it < num_valid_ldgs)) {
            gamma[it].load_from(params.gamma, idx);
            idx += Ktraits::VEC_COLS_PER_LDG;
        }
78
79
80
81
82
83
84
85
    }
    // TODO if ROWS_PER_CTA does not divide rows, we might get divergence in the
    // last blocks with syncthreads!
    // grid stride over rows
    #pragma unroll 1
    for( int row = r; row < params.rows; row += params.ctas_per_col * ROWS_PER_CTA ) {
        const compute_t mu_r = static_cast<const compute_t *>(params.mu)[row];
        const compute_t rs_r = static_cast<const compute_t *>(params.rs)[row];
86
87
        const compute_t rowscale_val =
            params.rowscale == nullptr ? 1.0f : compute_t(static_cast<const input_t *>(params.rowscale)[row]);
88
89
90
91
92
93
        Mvec dmask[LDGS];
        Rvec dx[LDGS];
        compute_t dy[LDGS * NUM_ELTS];
        compute_t y[LDGS * NUM_ELTS];
        compute_t mdy_local = 0.f;
        compute_t mdyy_local = 0.f;
94
        index_t idx = row * params.cols / Ktraits::ELTS_PER_LDG + c;
95
96
        #pragma unroll
        for( int it = 0; it < LDGS; it++ ) {
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
            if (Is_even_cols || (it < num_valid_ldgs)) {
                Rvec x;
                Ovec dz;
                dz.load_from(params.dz, idx);
                if (Prenorm) { dx[it].load_from(params.dx, idx); }
                x.load_from(params.x, idx);
                if (Is_dropout) { dmask[it].load_from(params.dmask, idx); }
                idx += Ktraits::VEC_COLS_PER_LDG;
                #pragma unroll
                for( int jt = 0; jt < NUM_ELTS; jt++ ) {
                    compute_t x_tmp = x.data.elt[jt];
                    compute_t y_tmp = rs_r * (x_tmp - mu_r);
                    compute_t dy_tmp = compute_t(gamma[it].data.elt[jt]) * compute_t(dz.data.elt[jt]);
                    compute_t dz_tmp = dz.data.elt[jt];

                    mdy_local += dy_tmp;
                    mdyy_local += dy_tmp * y_tmp;

                    dy[it * NUM_ELTS + jt] = dy_tmp;
                    y[it * NUM_ELTS + jt] = y_tmp;

                    dzy_sum[it].data.elt[jt] += dz_tmp * y_tmp;
                    dz_sum[it].data.elt[jt] += dz_tmp;
                }
121
122
123
124
            }
        }

        reduce_t result = reducer.allreduce({mdy_local, mdyy_local}, sum);
125
126
        mdy_local = layer_norm::Get<0>::of<reduce_t, compute_t>(result) * params.inverse_cols;
        mdyy_local = layer_norm::Get<1>::of<reduce_t, compute_t>(result) * params.inverse_cols;
127

128
        idx = row * params.cols / Ktraits::ELTS_PER_LDG + c;
129
130
        #pragma unroll
        for( int it = 0; it < LDGS; it++ ) {
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
            if (Is_even_cols || (it < num_valid_ldgs)) {
                Ivec dx0;
                Rvec dx1;
                #pragma unroll
                for( int jt = 0; jt < NUM_ELTS; jt++ ) {
                    compute_t dy_tmp = dy[it * NUM_ELTS + jt];
                    compute_t y_tmp = y[it * NUM_ELTS + jt];
                    compute_t dx_tmp = rs_r * (dy_tmp - (mdyy_local * y_tmp + mdy_local));
                    compute_t dx_tmp_res = Prenorm ? dx_tmp + compute_t(dx[it].data.elt[jt]) : dx_tmp;
                    if (Has_residual) { dx1.data.elt[jt] = dx_tmp_res; }
                    compute_t dx0_tmp_res = dx_tmp_res * rowscale_val;
                    if (Is_dropout) {
                        dx0.data.elt[jt] = dmask[it].data.elt[jt] ? dx0_tmp_res * params.dropout_scale : 0.f;
                    } else {
                        dx0.data.elt[jt] = dx0_tmp_res;
                    }
147
                }
148
149
150
                if (Has_residual) { dx1.store_to(params.dx1, idx); }
                dx0.store_to(params.dx0, idx);
                idx += Ktraits::VEC_COLS_PER_LDG;
151
152
153
154
155
156
            }
        }

    }  // end: grid stride loop

    if( WARPS_M == 1 ) {
157
        idx = r * params.cols / Ktraits::ELTS_PER_LDG + c;
158
159
        #pragma unroll
        for( int it = 0; it < LDGS; it++ ) {
160
161
162
163
164
            if (Is_even_cols || (it < num_valid_ldgs)) {
                dz_sum[it].store_to(params.dbeta_part, idx);
                dzy_sum[it].store_to(params.dgamma_part, idx);
                idx += Ktraits::VEC_COLS_PER_LDG;
            }
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
        }
    } else {
        static_assert(WARPS_M == 1 || Ktraits::CTAS_PER_ROW == 1, "Multiple rows per CTA not supported for Multi-CTA.");
        // Finalize reduction of part dgamma and dbeta for this CTA
        // by reducing over the rows held across the WARPS_M warps

        // Assumption: blockSize divides hidden size.
        enum { NUM_RES = COLS / Ktraits::THREADS_PER_CTA };
        static_assert(NUM_RES * Ktraits::THREADS_PER_CTA == COLS, "");

        idx = warp_m * Ktraits::VEC_COLS + tid_r;
        #pragma unroll
        for( int it = 0; it < LDGS; it++ ) {
            dz_sum[it].store_to(smem_wgrad, idx);
            idx += THREADS_PER_ROW;
        }
        __syncthreads();
        compute_t cta_dz_sum[NUM_RES];
        memset(cta_dz_sum, 0, sizeof(compute_t) * NUM_RES);
        for( int it = 0; it < ROWS_PER_CTA; it++ ) {
            for( int jt = 0; jt < NUM_RES; jt++ ) {
                cta_dz_sum[jt] += smem_wgrad[it * COLS + tidx + jt * Ktraits::THREADS_PER_CTA];
            }
        }
        __syncthreads();

        idx = warp_m * Ktraits::VEC_COLS + tid_r;
        #pragma unroll
        for( int it = 0; it < LDGS; it++ ) {
            dzy_sum[it].store_to(smem_wgrad, idx);
            idx += THREADS_PER_ROW;
        }
        __syncthreads();
        compute_t cta_dzy_sum[NUM_RES];
        memset(cta_dzy_sum, 0, sizeof(compute_t) * NUM_RES);
        for( int it = 0; it < ROWS_PER_CTA; it++ ) {
            for( int jt = 0; jt < NUM_RES; jt++ ) {
                cta_dzy_sum[jt] += smem_wgrad[it * COLS + tidx + jt * Ktraits::THREADS_PER_CTA];
            }
        }

206
207
208
209
        const index_t num_valid_writes
            = (params.cols - 1 - tidx + Ktraits::THREADS_PER_CTA) / Ktraits::THREADS_PER_CTA;
        compute_t *dgamma_part = static_cast<compute_t *>(params.dgamma_part) + bidm * params.cols + tidx;
        compute_t *dbeta_part = static_cast<compute_t *>(params.dbeta_part) + bidm * params.cols + tidx;
210
        for( int jt = 0; jt < NUM_RES; jt++ ) {
211
212
213
214
215
216
            if (Is_even_cols || (jt < num_valid_writes)) {
                *dgamma_part = cta_dzy_sum[jt];
                dgamma_part += Ktraits::THREADS_PER_CTA;
                *dbeta_part = cta_dz_sum[jt];
                dbeta_part += Ktraits::THREADS_PER_CTA;
            }
217
218
219
220
221
        }

    }
}

222
template<typename Kernel_traits, bool Is_even_cols>
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
__global__ __launch_bounds__(Kernel_traits::THREADS_PER_CTA)
void ln_bwd_finalize_kernel(BwdParams params)
{

    using compute_t = typename Kernel_traits::compute_t;
    using weight_t = typename Kernel_traits::weight_t;
    using index_t = typename Kernel_traits::index_t;
    using Reducer = typename Kernel_traits::Reducer;
    using reduce_t = typename Reducer::Type;

    Sum<reduce_t> sum;
    enum { NUM_ELT = Kernel_traits::ELTS_PER_LDG };
    enum { THREADS_PER_WARP = Kernel_traits::THREADS_PER_WARP };

    __shared__ char smem_[Kernel_traits::SMEM_BYTES_PER_CTA];

    constexpr uint32_t bidm = 0;

    const uint32_t bidn = blockIdx.x;
    const uint32_t tidx = threadIdx.x;
    const uint32_t warp = tidx / THREADS_PER_WARP;
    const uint32_t lane = tidx % THREADS_PER_WARP;

    Reducer reducer(params, bidm, bidn, 0, 0, lane, smem_);

    const uint32_t c = bidn * THREADS_PER_WARP + lane;
    const uint32_t c_out = bidn * THREADS_PER_WARP / 2 + lane;
    constexpr uint32_t COL_STRIDE = Kernel_traits::CTAS * THREADS_PER_WARP;
    for( uint32_t col = c, col_out = c_out; col < Kernel_traits::COLS; col += COL_STRIDE, col_out += COL_STRIDE / 2 ) {
        // Each thread sums over NUM_ELT columns.
        Vec<compute_t, NUM_ELT> dbeta_local, dgamma_local;
        memset(&dgamma_local, 0, sizeof(dgamma_local));
        memset(&dbeta_local, 0, sizeof(dbeta_local));
256
257
258
259
260
261
262
263
264
265
266
267
268
        if (Is_even_cols || col < params.cols) {
            for( uint32_t row = warp; row < params.ctas_per_col; row += Kernel_traits::ROWS_PER_CTA ) {
                // index_t idx = row * Kernel_traits::COLS + col;
                index_t idx = row * params.cols + col;

                Vec<compute_t, NUM_ELT> dbeta_part, dgamma_part;
                dbeta_part.load_from(params.dbeta_part, idx);
                dgamma_part.load_from(params.dgamma_part, idx);
                #pragma unroll
                for( int it = 0; it < NUM_ELT; it++ ) {
                    dgamma_local.data.elt[it] += dgamma_part.data.elt[it];
                    dbeta_local.data.elt[it] += dbeta_part.data.elt[it];
                }
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
            }
        }
        void * smem_gamma = smem_;
        void * smem_beta = &smem_[Kernel_traits::SMEM_BYTES_TRANSPOSE];

        const int write_row = warp;
        const int write_col = lane ^ write_row;
        const int write_idx = write_row * THREADS_PER_WARP + write_col;

        dgamma_local.store_to(smem_gamma, write_idx);
        dbeta_local.store_to(smem_beta, write_idx);

        __syncthreads();

        // It would be probably safe to reuse the first row of smem_beta and smem_gamma
        void * smem_gamma_out = &smem_[2 * Kernel_traits::SMEM_BYTES_TRANSPOSE];
        void * smem_beta_out = &smem_[2 * Kernel_traits::SMEM_BYTES_TRANSPOSE + Kernel_traits::SMEM_BYTES_OUTPUT];


        // More than one iter iff ROWS_PER_CTA < 32.
        for( int w = warp; w < THREADS_PER_WARP; w += Kernel_traits::ROWS_PER_CTA ) {
            const int read_row = lane;
            const int read_col = w ^ read_row;
            const int read_idx = read_row * THREADS_PER_WARP + read_col;

            memset(&dbeta_local, 0, sizeof(dbeta_local));
            memset(&dgamma_local, 0, sizeof(dgamma_local));

            // Load beta and gamma transposed 
            if(read_row < Kernel_traits::ROWS_PER_CTA){
                dbeta_local.load_from(smem_beta, read_idx);
                dgamma_local.load_from(smem_gamma, read_idx);
            }

            // Call reducer on the loaded value(s) and convert.
            #pragma unroll
            for( int it = 0; it < NUM_ELT; it++ ) {
                compute_t b_i = dbeta_local.data.elt[it];
                compute_t g_i = dgamma_local.data.elt[it];
                b_i = reducer.allreduce(b_i, sum);
                g_i = reducer.allreduce(g_i, sum);

                dgamma_local.data.elt[it] = g_i;
                dbeta_local.data.elt[it] = b_i;
            }

            // Leader stores the result at the current column.
            if(lane == 0){
                dgamma_local.store_to(smem_gamma_out, w);
                dbeta_local.store_to(smem_beta_out, w);
            }

        }

        // All writes done.
        __syncthreads();

        // Pack and store: 2-wide stores with half the threads.
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
        if (Is_even_cols || col_out * 2 < params.cols) {
            if( warp == Kernel_traits::ROWS_PER_CTA - 1 && lane < THREADS_PER_WARP / 2 ) {

                using src_t = typename TypeToVec2<compute_t>::Type;
                using dst_t = typename TypeToVec2<weight_t>::Type;
                Vec<src_t, NUM_ELT> dbeta_vec2, dgamma_vec2;
                Vec<dst_t, NUM_ELT> dbeta_out2, dgamma_out2;

                dgamma_vec2.load_from(smem_gamma_out, lane);
                dbeta_vec2.load_from(smem_beta_out, lane);
                #pragma unroll
                for( int it = 0; it < NUM_ELT; it++ ) {
                    dgamma_out2.data.elt[it] = Converter<src_t,dst_t>::convert(dgamma_vec2.data.elt[it]);
                    dbeta_out2.data.elt[it] = Converter<src_t,dst_t>::convert(dbeta_vec2.data.elt[it]);
                }
                dgamma_out2.store_to(params.dgamma, col_out);
                dbeta_out2.store_to(params.dbeta, col_out);
344
345
346
347
348
349

            }
        }
    }
}
}  // namespace layer_norm
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438

using namespace layer_norm;

template<
    typename weight_t,
    typename input_t,
    typename residual_t,
    typename output_t,
    typename compute_t,
    typename index_t,
    int HIDDEN_SIZE,
    int CTAS_PER_ROW,
    int WARPS_M,
    int WARPS_N,
    int BYTES_PER_LDG_MAIN,
    int BYTES_PER_LDG_FINAL
>
void launch_(LaunchParams<BwdParams> &launch_params, const bool configure_params, const bool prenorm){

    using Kernel_traits = Kernel_traits<weight_t,
                                        input_t,
                                        residual_t,
                                        output_t,
                                        compute_t,
                                        index_t,
                                        HIDDEN_SIZE,
                                        CTAS_PER_ROW,
                                        WARPS_M,
                                        WARPS_N,
                                        BYTES_PER_LDG_MAIN
                                        >;
    bool is_dropout = launch_params.params.dropout_keep_p < 1.f;
    bool has_residual = launch_params.params.dx1 != nullptr;
    bool is_even_cols = launch_params.params.cols == HIDDEN_SIZE;
    BOOL_SWITCH(prenorm, PrenormConst, [&] {
        BOOL_SWITCH(is_dropout, IsDropoutConst, [&] {
            BOOL_SWITCH(has_residual, HasResidualConst, [&] {
                BOOL_SWITCH(is_even_cols, IsEvenColsConst, [&] {
                    auto kernel = &ln_bwd_kernel<Kernel_traits, PrenormConst, IsDropoutConst, HasResidualConst, IsEvenColsConst>;
                    if( configure_params ) {
                        int ctas_per_sm;
                        CHECK_CUDA(cudaOccupancyMaxActiveBlocksPerMultiprocessor(
                            &ctas_per_sm, kernel, Kernel_traits::THREADS_PER_CTA, Kernel_traits::SMEM_BYTES));
                        launch_params.params.ctas_per_col = launch_params.props->multiProcessorCount * ctas_per_sm / Kernel_traits::CTAS_PER_ROW;
                        launch_params.barrier_size = 0;
                        launch_params.workspace_bytes = 0;
                        if(Kernel_traits::CTAS_PER_ROW > 1) {
                            launch_params.barrier_size = 2 * launch_params.params.ctas_per_col;
                            launch_params.workspace_bytes = launch_params.params.ctas_per_col
                                                          * Kernel_traits::WARPS_M
                                                          * Kernel_traits::CTAS_PER_ROW
                                                          * sizeof(typename Kernel_traits::reduce_t)
                                                          * 2;
                        }
                        return;
                    }

                    if( Kernel_traits::SMEM_BYTES >= 48 * 1024 ) {
                        CHECK_CUDA(cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, Kernel_traits::SMEM_BYTES));
                    }
                    auto stream = launch_params.stream;
                    auto ctas_per_col = launch_params.params.ctas_per_col;

                    if( Kernel_traits::CTAS_PER_ROW == 1 ) {
                        kernel<<<ctas_per_col, Kernel_traits::THREADS_PER_CTA, Kernel_traits::SMEM_BYTES, stream>>>(launch_params.params);
                    } else {
                        dim3 grid(Kernel_traits::CTAS_PER_ROW * ctas_per_col);
                        dim3 block(Kernel_traits::THREADS_PER_CTA);
                        void *params_ = (void *)&launch_params.params;
                        cudaLaunchCooperativeKernel((void *)kernel, grid, block, (void **)&params_, Kernel_traits::SMEM_BYTES, stream);
                    }

                    using Kernel_traits_f = layer_norm::Kernel_traits_finalize<HIDDEN_SIZE,
                                                                              weight_t,
                                                                              input_t,
                                                                              residual_t,
                                                                              output_t,
                                                                              compute_t,
                                                                              index_t,
                                                                              32 * 32,  // THREADS_PER_CTA
                                                                              BYTES_PER_LDG_FINAL>;

                    auto kernel_f = &layer_norm::ln_bwd_finalize_kernel<Kernel_traits_f, IsEvenColsConst>;
                    kernel_f<<<Kernel_traits_f::CTAS, Kernel_traits_f::THREADS_PER_CTA, 0, stream>>>(launch_params.params);
                });
            });
        });
    });
}