test_bert.py 13.8 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
import re
from collections import OrderedDict

Tri Dao's avatar
Tri Dao committed
4
import pytest
Tri Dao's avatar
Tri Dao committed
5
6
7
8
import torch
import torch.nn.functional as F
from einops import rearrange
from transformers import BertConfig
Kevin Hu's avatar
Kevin Hu committed
9
10
from transformers.models.bert.modeling_bert import \
    BertForPreTraining as BertForPreTrainingHF
Tri Dao's avatar
Tri Dao committed
11
from transformers.models.bert.modeling_bert import BertModel as BertModelHF
Tri Dao's avatar
Tri Dao committed
12

Kevin Hu's avatar
Kevin Hu committed
13
14
15
16
from flash_attn.models.bert import (BertForPreTraining, BertModel,
                                    inv_remap_state_dict, remap_state_dict)
from flash_attn.utils.pretrained import state_dict_from_pretrained

Tri Dao's avatar
Tri Dao committed
17

Tri Dao's avatar
Tri Dao committed
18
@pytest.mark.parametrize("model_name", ["bert-base-uncased", "bert-large-uncased"])
Tri Dao's avatar
Tri Dao committed
19
20
21
22
23
24
25
26
27
28
29
30
31
# @pytest.mark.parametrize('model_name', ["bert-base-uncased"])
def test_bert_state_dict(model_name):
    config = BertConfig.from_pretrained(model_name)
    pretrained_state_dict = remap_state_dict(state_dict_from_pretrained(model_name), config)
    model = BertForPreTraining(config)
    state_dict = model.state_dict()
    assert state_dict.keys() == pretrained_state_dict.keys()
    for k in state_dict.keys():
        assert state_dict[k].shape == pretrained_state_dict[k].shape


def get_hf_models(model_name, config, dtype):
    pretrained_state_dict = state_dict_from_pretrained(model_name)
Tri Dao's avatar
Tri Dao committed
32

Tri Dao's avatar
Tri Dao committed
33
    def key_mapping_ln_gamma_beta(key):
Tri Dao's avatar
Tri Dao committed
34
35
        key = re.sub(r"LayerNorm.gamma$", "LayerNorm.weight", key)
        key = re.sub(r"LayerNorm.beta$", "LayerNorm.bias", key)
Tri Dao's avatar
Tri Dao committed
36
        return key
Tri Dao's avatar
Tri Dao committed
37
38
39
40

    pretrained_state_dict = OrderedDict(
        (key_mapping_ln_gamma_beta(k), v) for k, v in pretrained_state_dict.items()
    )
Tri Dao's avatar
Tri Dao committed
41
42
43
44
45
46
47
48
    model_hf = BertForPreTrainingHF(config)
    # Missing key(s) in state_dict: "bert.embeddings.position_ids", "cls.predictions.decoder.bias"
    # position_ids is a buffer, and predictions.decoder.bias is tied to predictions.bias.
    model_hf.load_state_dict(pretrained_state_dict, strict=False)
    model_hf.cuda().to(dtype=dtype)
    return model_hf


Kevin Hu's avatar
Kevin Hu committed
49
@pytest.mark.parametrize("model_name", ["bert-base-uncased"])
Tri Dao's avatar
Tri Dao committed
50
51
52
53
54
55
56
57
58
59
60
61
def test_bert_non_optimized(model_name):
    """Check that our implementation of BERT (without any optimizations enabled) matches the
    HF implementation: the output of our forward pass in fp16 should be around the same as the HF
    forward pass in fp16, when compared to the HF forward pass in fp32.
    """
    dtype = torch.float16
    config = BertConfig.from_pretrained(model_name)

    model = BertForPreTraining.from_pretrained(model_name, config)
    model = model.cuda().to(dtype=dtype)

    model_ref = get_hf_models(model_name, config, torch.float32)
62
    model_hf = get_hf_models(model_name, config, dtype)
Tri Dao's avatar
Tri Dao committed
63
64
65
66
67
68
69
70

    model.eval()
    model_ref.eval()
    model_hf.eval()

    torch.manual_seed(0)
    batch_size = 4
    max_seqlen = 512
Tri Dao's avatar
Tri Dao committed
71
72
73
74
75
    seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device="cuda")
    attention_mask = torch.arange(max_seqlen, device="cuda")[None, :] < seqlens[:, None]
    input_ids = torch.randint(
        0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device="cuda"
    )
76
77
    out = model.bert(input_ids, attention_mask=attention_mask)
    sequence_output, pooled_output = out.last_hidden_state, out.pooler_output
Tri Dao's avatar
Tri Dao committed
78
79
80
81
82
    out_hf = model_hf.bert(input_ids, attention_mask=attention_mask)
    sequence_output_hf, pooled_output_hf = out_hf.last_hidden_state, out_hf.pooler_output
    out_ref = model_ref.bert(input_ids, attention_mask=attention_mask)
    sequence_output_ref, pooled_output_ref = out_ref.last_hidden_state, out_ref.pooler_output

Tri Dao's avatar
Tri Dao committed
83
84
85
86
87
88
89
90
91
92
    print(f"Output max diff: {(sequence_output - sequence_output_ref).abs().max().item()}")
    print(f"Output mean diff: {(sequence_output - sequence_output_ref).abs().mean().item()}")
    print(f"HF fp16 max diff: {(sequence_output_hf - sequence_output_ref).abs().max().item()}")
    print(f"HF fp16 mean diff: {(sequence_output_hf - sequence_output_ref).abs().mean().item()}")
    assert (sequence_output - sequence_output_ref).abs().max().item() < 3 * (
        sequence_output_hf - sequence_output_ref
    ).abs().max().item()
    assert (pooled_output - pooled_output_ref).abs().max().item() < 3 * (
        pooled_output_hf - pooled_output_ref
    ).abs().max().item()
Tri Dao's avatar
Tri Dao committed
93
94


Tri Dao's avatar
Tri Dao committed
95
@pytest.mark.parametrize("model_name", ["bert-base-uncased", "bert-large-uncased"])
Tri Dao's avatar
Tri Dao committed
96
97
98
99
100
101
102
103
# @pytest.mark.parametrize('model_name', ["bert-base-uncased"])
def test_bert_optimized(model_name):
    """Check that our implementation of BERT (with all optimizations enabled) matches the
    HF implementation: the output of our forward pass in fp16 should be around the same as the HF
    forward pass in fp16, when compared to the HF forward pass in fp32.
    """
    dtype = torch.float16
    config = BertConfig.from_pretrained(model_name)
104
    # Our implementation of fused_mlp assumes the activation is
105
    # nn.GELU(approximate='tanh'). Huggingface calls it "gelu_new" or "gelu_fast".
106
    # If you just want "gelu", disable fused_mlp.
Tri Dao's avatar
Tri Dao committed
107
108
109
    config.hidden_act = "gelu_new"
    config.use_flash_attn = True
    config.fused_bias_fc = True
110
    config.fused_mlp = True
Tri Dao's avatar
Tri Dao committed
111
112
113
114
115
116
    config.fused_dropout_add_ln = True

    model = BertForPreTraining.from_pretrained(model_name, config)
    model = model.cuda().to(dtype=dtype)

    model_ref = get_hf_models(model_name, config, torch.float32)
117
    model_hf = get_hf_models(model_name, config, dtype)
Tri Dao's avatar
Tri Dao committed
118
119
120
121
122
123
124
125

    model.eval()
    model_ref.eval()
    model_hf.eval()

    torch.manual_seed(0)
    batch_size = 4
    max_seqlen = 512
Tri Dao's avatar
Tri Dao committed
126
127
128
129
130
    seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device="cuda")
    attention_mask = torch.arange(max_seqlen, device="cuda")[None, :] < seqlens[:, None]
    input_ids = torch.randint(
        0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device="cuda"
    )
131
132
    out = model.bert(input_ids, attention_mask=attention_mask)
    sequence_output, pooled_output = out.last_hidden_state, out.pooler_output
Tri Dao's avatar
Tri Dao committed
133
134
135
136
137
138
139
140
    out_hf = model_hf.bert(input_ids, attention_mask=attention_mask)
    sequence_output_hf, pooled_output_hf = out_hf.last_hidden_state, out_hf.pooler_output
    # Need to zero out the padded tokens in the sequence before comparison.
    sequence_output_hf[~attention_mask, :] = 0.0
    out_ref = model_ref.bert(input_ids, attention_mask=attention_mask)
    sequence_output_ref, pooled_output_ref = out_ref.last_hidden_state, out_ref.pooler_output
    sequence_output_ref[~attention_mask, :] = 0.0

Tri Dao's avatar
Tri Dao committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
    print(
        f"BertModel output max diff: {(sequence_output - sequence_output_ref).abs().max().item()}"
    )
    print(
        f"BertModel output mean diff: {(sequence_output - sequence_output_ref).abs().mean().item()}"
    )
    print(
        f"HF fp16 BertModel max diff: {(sequence_output_hf - sequence_output_ref).abs().max().item()}"
    )
    print(
        f"HF fp16 BertModel mean diff: {(sequence_output_hf - sequence_output_ref).abs().mean().item()}"
    )
    assert (sequence_output - sequence_output_ref).abs().max().item() < 4 * (
        sequence_output_hf - sequence_output_ref
    ).abs().max().item()
    assert (pooled_output - pooled_output_ref).abs().max().item() < 4 * (
        pooled_output_hf - pooled_output_ref
    ).abs().max().item()
Tri Dao's avatar
Tri Dao committed
159

160
161
    out = model(input_ids, attention_mask=attention_mask)
    prediction_scores, seq_relationship_scores = out.prediction_logits, out.seq_relationship_logits
Tri Dao's avatar
Tri Dao committed
162
163
164
165
    # Need to zero out the padded tokens in the sequence before comparison.
    prediction_scores = prediction_scores.clone()
    prediction_scores[~attention_mask, :] = 0.0
    out_hf = model_hf(input_ids, attention_mask=attention_mask)
Tri Dao's avatar
Tri Dao committed
166
167
168
169
    prediction_scores_hf, seq_relationship_scores_hf = (
        out_hf.prediction_logits,
        out_hf.seq_relationship_logits,
    )
Tri Dao's avatar
Tri Dao committed
170
171
    prediction_scores_hf[~attention_mask, :] = 0.0
    out_ref = model_ref(input_ids, attention_mask=attention_mask)
Tri Dao's avatar
Tri Dao committed
172
173
174
175
    prediction_scores_ref, seq_relationship_scores_ref = (
        out_ref.prediction_logits,
        out_ref.seq_relationship_logits,
    )
Tri Dao's avatar
Tri Dao committed
176
177
    prediction_scores_ref[~attention_mask, :] = 0.0

Tri Dao's avatar
Tri Dao committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
    print(
        f"prediction_scores max diff: {(prediction_scores - prediction_scores_ref).abs().max().item()}"
    )
    print(
        f"prediction_scores mean diff: {(prediction_scores - prediction_scores_ref).abs().mean().item()}"
    )
    print(
        f"HF fp16 prediction_scoresff: {(prediction_scores_hf - prediction_scores_ref).abs().max().item()}"
    )
    print(
        f"HF fp16 prediction_scoresiff: {(prediction_scores_hf - prediction_scores_ref).abs().mean().item()}"
    )
    assert (prediction_scores - prediction_scores_ref).abs().max().item() < 2 * (
        prediction_scores_hf - prediction_scores_ref
    ).abs().max().item()
    assert (seq_relationship_scores - seq_relationship_scores_ref).abs().max().item() < 2 * (
        seq_relationship_scores_hf - seq_relationship_scores_ref
    ).abs().max().item()
Tri Dao's avatar
Tri Dao committed
196
197


Tri Dao's avatar
Tri Dao committed
198
@pytest.mark.parametrize("last_layer_subset", [False, True])
199
# @pytest.mark.parametrize('last_layer_subset', [True])
Tri Dao's avatar
Tri Dao committed
200
@pytest.mark.parametrize("has_key_padding_mask", [True, False])
201
# @pytest.mark.parametrize('has_key_padding_mask', [True])
Tri Dao's avatar
Tri Dao committed
202
@pytest.mark.parametrize("model_name", ["bert-base-uncased", "bert-large-uncased"])
Tri Dao's avatar
Tri Dao committed
203
# @pytest.mark.parametrize('model_name', ["bert-base-uncased"])
204
def test_bert_dense_seq_output(model_name, has_key_padding_mask, last_layer_subset):
Tri Dao's avatar
Tri Dao committed
205
206
207
208
209
210
    """Check that our implementation of BERT (with all optimizations enabled) matches the
    HF implementation: the output of our forward pass in fp16 should be around the same as the HF
    forward pass in fp16, when compared to the HF forward pass in fp32.
    """
    dtype = torch.float16
    config = BertConfig.from_pretrained(model_name)
211
    # Our implementation of fused_mlp assumes the activation is
212
    # nn.GELU(approximate='tanh'). Huggingface calls it "gelu_new" or "gelu_fast".
213
    # If you just want "gelu", disable fused_mlp.
Tri Dao's avatar
Tri Dao committed
214
215
216
    config.hidden_act = "gelu_new"
    config.use_flash_attn = True
    config.fused_bias_fc = True
217
    config.fused_mlp = True
Tri Dao's avatar
Tri Dao committed
218
219
    config.fused_dropout_add_ln = True
    config.dense_seq_output = True
220
    config.last_layer_subset = last_layer_subset
Tri Dao's avatar
Tri Dao committed
221
222
223
224
225
226
    config.use_xentropy = True

    model = BertForPreTraining.from_pretrained(model_name, config)
    model = model.cuda().to(dtype=dtype)

    model_ref = get_hf_models(model_name, config, torch.float32)
227
    model_hf = get_hf_models(model_name, config, dtype)
Tri Dao's avatar
Tri Dao committed
228
229
230
231
232
233
234
235

    model.eval()
    model_ref.eval()
    model_hf.eval()

    torch.manual_seed(0)
    batch_size = 4
    max_seqlen = 512
Tri Dao's avatar
Tri Dao committed
236
    seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device="cuda")
237
    if has_key_padding_mask:
Tri Dao's avatar
Tri Dao committed
238
        attention_mask = torch.arange(max_seqlen, device="cuda")[None, :] < seqlens[:, None]
239
240
    else:
        attention_mask = None
Tri Dao's avatar
Tri Dao committed
241
242
243
244
245
246
    input_ids = torch.randint(
        0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device="cuda"
    )
    labels = torch.randint(
        0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device="cuda"
    )
247
248
    if attention_mask is not None:
        labels[~attention_mask] = 0
Tri Dao's avatar
Tri Dao committed
249
    labels[(torch.rand(batch_size, max_seqlen, device="cuda") > 0.15)] = 0
Tri Dao's avatar
Tri Dao committed
250
    masked_tokens_mask = labels.flatten() > 0
Tri Dao's avatar
Tri Dao committed
251
    next_sequence_label = torch.randint(0, 2, (batch_size,), device="cuda")
Tri Dao's avatar
Tri Dao committed
252

253
    out = model(
Tri Dao's avatar
Tri Dao committed
254
255
256
257
        input_ids,
        attention_mask=attention_mask,
        labels=labels,
        next_sentence_label=next_sequence_label,
Tri Dao's avatar
Tri Dao committed
258
    )
259
    prediction_scores, seq_relationship_scores = out.prediction_logits, out.seq_relationship_logits
Tri Dao's avatar
Tri Dao committed
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
    out_hf = model_hf(
        input_ids,
        attention_mask=attention_mask,
        labels=labels,
        next_sentence_label=next_sequence_label,
    )
    prediction_scores_hf, seq_relationship_scores_hf = (
        out_hf.prediction_logits,
        out_hf.seq_relationship_logits,
    )
    prediction_scores_hf = rearrange(prediction_scores_hf, "b s d -> (b s) d")[masked_tokens_mask]
    out_ref = model_ref(
        input_ids,
        attention_mask=attention_mask,
        labels=labels,
        next_sentence_label=next_sequence_label,
    )
    prediction_scores_ref, seq_relationship_scores_ref = (
        out_ref.prediction_logits,
        out_ref.seq_relationship_logits,
    )
    prediction_scores_ref = rearrange(prediction_scores_ref, "b s d -> (b s) d")[masked_tokens_mask]

    print(
        f"prediction_scores max diff: {(prediction_scores - prediction_scores_ref).abs().max().item()}"
    )
    print(
        f"prediction_scores mean diff: {(prediction_scores - prediction_scores_ref).abs().mean().item()}"
    )
    print(
        f"HF fp16 prediction_scoresff: {(prediction_scores_hf - prediction_scores_ref).abs().max().item()}"
    )
    print(
        f"HF fp16 prediction_scoresiff: {(prediction_scores_hf - prediction_scores_ref).abs().mean().item()}"
    )
    assert (prediction_scores - prediction_scores_ref).abs().max().item() < 2 * (
        prediction_scores_hf - prediction_scores_ref
    ).abs().max().item()
    assert (seq_relationship_scores - seq_relationship_scores_ref).abs().max().item() < 2 * (
        seq_relationship_scores_hf - seq_relationship_scores_ref
    ).abs().max().item()
301
302
    # The loss calculation from HF is wrong: it doesn't ignore the labels that are 0.
    # assert (out.loss - out_ref.loss).abs().max().item() < 2 * (out_hf.loss - out_ref.loss).abs().max().item()
Kevin Hu's avatar
Kevin Hu committed
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321


@pytest.mark.parametrize("model_name", ["bert-base-uncased", "bert-large-uncased"])
def test_inv_remap_state_dict(model_name: str):
    """
    Verify that we can convert a HF BERT model to flash_attn and back.
    """

    state_dict = state_dict_from_pretrained(model_name)
    config = BertConfig.from_pretrained(model_name)

    flash_state_dict = remap_state_dict(state_dict, config)
    recovered_state_dict = inv_remap_state_dict(flash_state_dict, config)

    assert set(state_dict.keys()) == set(recovered_state_dict.keys())

    for k in state_dict.keys():
        assert state_dict[k].shape == recovered_state_dict[k].shape
        torch.testing.assert_close(state_dict[k], recovered_state_dict[k], rtol=1e-6, atol=1e-6)