test_fused_dense.py 6.05 KB
Newer Older
1
import math
2
from functools import partial
3
4
5
6
7
8
9

import torch
import torch.nn.functional as F
import pytest

from einops import rearrange

10
from flash_attn.ops.fused_dense import FusedDense, FusedMLP
11
12
13


@pytest.mark.parametrize('dtype', [torch.float16, torch.bfloat16])
Tri Dao's avatar
Tri Dao committed
14
15
@pytest.mark.parametrize('return_residual', [False, True])
@pytest.mark.parametrize('has_bias', [True, False])
16
17
@pytest.mark.parametrize('out_features', [1024, 4096])
@pytest.mark.parametrize('in_features', [1024, 4096])
Tri Dao's avatar
Tri Dao committed
18
def test_fused_linear_bias(in_features, out_features, has_bias, return_residual, dtype):
19
20
21
22
23
24
    device = 'cuda'
    rtol, atol = (3e-3, 1e-2) if dtype == torch.bfloat16 else (3e-3, 1e-3)
    # set seed
    torch.random.manual_seed(0)
    batch_size = 8
    seqlen = 512
Tri Dao's avatar
Tri Dao committed
25
26
    x_pt = torch.randn(batch_size, seqlen, in_features, device=device, dtype=dtype,
                       requires_grad=True)
27
    x = x_pt.detach().clone().requires_grad_()
Tri Dao's avatar
Tri Dao committed
28
29
30
    model_pt = torch.nn.Linear(in_features, out_features, bias=has_bias, device=device, dtype=dtype)
    model = FusedDense(in_features, out_features, bias=has_bias, return_residual=return_residual,
                       device=device, dtype=dtype)
31
32
    with torch.no_grad():
        model.weight.copy_(model_pt.weight)
Tri Dao's avatar
Tri Dao committed
33
34
        if has_bias:
            model.bias.copy_(model_pt.bias)
35
    out_pt = model_pt(x_pt)
Tri Dao's avatar
Tri Dao committed
36
37
38
39
40
41
42
43
44
45
46
47
    if not return_residual:
        out = model(x)
    else:
        out, x_copy = model(x)
        x_copy = (x_copy[..., :out_features] if out_features < in_features
                  else F.pad(x_copy, (0, out_features - in_features)))
        x_pt_copy = (x_pt[..., :out_features] if out_features < in_features
                     else F.pad(x_pt, (0, out_features - in_features)))
        # Just add some random function of the residual
        out_pt = out_pt + F.gelu(x_pt_copy)
        out = out + F.gelu(x_copy)

48
49
50
51
52
53
54
55
56
57
58
    # with torch.no_grad():
    #     out_fl = F.linear(x_pt.float(), model.weight.float(), model.bias.float()).half()
    assert torch.allclose(out, out_pt, rtol=rtol, atol=atol)

    # If we don't divide by batch_size, the gradient gets a bit too large.
    g = torch.randn_like(out) / 32
    out_pt.backward(g)
    out.backward(g)
    assert torch.allclose(x.grad, x_pt.grad, rtol=rtol, atol=atol)
    # The error for d_weight and d_bias is quite a bit higher
    assert torch.allclose(model.weight.grad, model_pt.weight.grad, rtol=rtol, atol=atol * 10)
Tri Dao's avatar
Tri Dao committed
59
60
    if has_bias:
        assert torch.allclose(model.bias.grad, model_pt.bias.grad, rtol=rtol, atol=atol * 5)
61
62
63


@pytest.mark.parametrize('dtype', [torch.float16, torch.bfloat16])
64
65
66
# @pytest.mark.parametrize('dtype', [torch.float16])
@pytest.mark.parametrize('heuristic', ['auto', -1])
# @pytest.mark.parametrize('heuristic', ['auto'])
67
@pytest.mark.parametrize('checkpoint_lvl', [0, 1, 2])
68
# @pytest.mark.parametrize('checkpoint_lvl', [1])
Tri Dao's avatar
Tri Dao committed
69
@pytest.mark.parametrize('return_residual', [False, True])
70
# @pytest.mark.parametrize('return_residual', [False])
Tri Dao's avatar
Tri Dao committed
71
72
@pytest.mark.parametrize('has_bias2', [True, False])
@pytest.mark.parametrize('has_bias1', [True, False])
73
74
75
76
# @pytest.mark.parametrize('has_bias2', [True])
# @pytest.mark.parametrize('has_bias1', [True])
@pytest.mark.parametrize('activation', ['gelu_approx', 'relu'])
# @pytest.mark.parametrize('activation', ['relu'])
77
78
@pytest.mark.parametrize('out_features', [1024, 4096])
@pytest.mark.parametrize('in_features', [1024, 4096])
79
80
81
82
# @pytest.mark.parametrize('out_features', [4096])
# @pytest.mark.parametrize('in_features', [1024])
def test_fused_mlp(in_features, out_features, activation, has_bias1, has_bias2, return_residual,
                   checkpoint_lvl, heuristic, dtype):
83
    device = 'cuda'
Tri Dao's avatar
Tri Dao committed
84
    rtol, atol = (3e-3, 3e-2) if dtype == torch.bfloat16 else (3e-3, 1e-3)
85
86
87
88
    # set seed
    torch.random.manual_seed(0)
    batch_size = 8
    seqlen = 512
Tri Dao's avatar
Tri Dao committed
89
90
    x_pt = torch.randn(batch_size, seqlen, in_features, device=device, dtype=dtype,
                       requires_grad=True)
91
    x = x_pt.detach().clone().requires_grad_()
Tri Dao's avatar
Tri Dao committed
92
93
94
95
    model_pt_fc1 = torch.nn.Linear(in_features, out_features, bias=has_bias1, device=device,
                                   dtype=dtype)
    model_pt_fc2 = torch.nn.Linear(out_features, in_features, bias=has_bias2, device=device,
                                   dtype=dtype)
96
97
98
99
    model = FusedMLP(in_features, out_features, in_features, activation=activation,
                     bias1=has_bias1, bias2=has_bias2, return_residual=return_residual,
                     checkpoint_lvl=checkpoint_lvl, heuristic=heuristic,
                     device=device, dtype=dtype)
100
101
    with torch.no_grad():
        model.fc1.weight.copy_(model_pt_fc1.weight)
Tri Dao's avatar
Tri Dao committed
102
103
        if has_bias1:
            model.fc1.bias.copy_(model_pt_fc1.bias)
104
        model.fc2.weight.copy_(model_pt_fc2.weight)
Tri Dao's avatar
Tri Dao committed
105
106
        if has_bias2:
            model.fc2.bias.copy_(model_pt_fc2.bias)
107
108
109
    activation_fn = (partial(F.gelu, approximate='tanh') if activation == 'gelu_approx'
                     else partial(F.relu, inplace=True))
    out_pt = model_pt_fc2(activation_fn(model_pt_fc1(x_pt)))
Tri Dao's avatar
Tri Dao committed
110
111
112
113
114
115
116
    if not return_residual:
        out = model(x)
    else:
        out, x_copy = model(x)
        # Just add some random function of the residual
        out_pt = out_pt + F.gelu(x_pt)
        out = out + F.gelu(x_copy)
117
118
119
120
121
122
    assert torch.allclose(out, out_pt, rtol=rtol, atol=atol)

    # If we don't divide by batch_size, the gradient gets a bit too large.
    g = torch.randn_like(out) / 32
    out_pt.backward(g)
    out.backward(g)
123
124
125
    # The error for relu is higher still
    if activation == 'relu':
        atol = 1e-1 if dtype == torch.bfloat16 else 5e-2
126
127
128
    assert torch.allclose(x.grad, x_pt.grad, rtol=rtol, atol=atol)
    # The error for d_weight and d_bias is quite a bit higher
    assert torch.allclose(model.fc1.weight.grad, model_pt_fc1.weight.grad, rtol=rtol, atol=atol * 10)
Tri Dao's avatar
Tri Dao committed
129
130
    if has_bias1:
        assert torch.allclose(model.fc1.bias.grad, model_pt_fc1.bias.grad, rtol=rtol, atol=atol * 5)
131
    assert torch.allclose(model.fc2.weight.grad, model_pt_fc2.weight.grad, rtol=rtol, atol=atol * 10)
Tri Dao's avatar
Tri Dao committed
132
133
    if has_bias2:
        assert torch.allclose(model.fc2.bias.grad, model_pt_fc2.bias.grad, rtol=rtol, atol=atol * 5)