flash_bwd_kernel.h 126 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
/******************************************************************************
 * Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
 ******************************************************************************/

#pragma once


#include "cute/tensor.hpp"

#include <cutlass/cutlass.h>
#include <cutlass/arch/reg_reconfig.h>
#include <cutlass/array.h>
#include <cutlass/barrier.h>
#include <cutlass/numeric_types.h>
#include <cutlass/numeric_conversion.h>
#include "cutlass/pipeline/pipeline.hpp"

#include "flash.h"
#include "utils.h"
#include "softmax.h"

namespace flash {

using namespace cute;

template <typename Ktraits, bool Is_causal, typename TiledCopyQ, typename TiledCopydO,
          typename TiledCopyK, typename TiledCopyV, typename TiledCopydK, typename TiledCopydV>
__global__ void __launch_bounds__(Ktraits::kNWarps * cutlass::NumThreadsPerWarp, 1)
    compute_dqkv(CUTE_GRID_CONSTANT Flash_bwd_params const params,
                 CUTE_GRID_CONSTANT TiledCopyQ const tma_load_Q,
                 CUTE_GRID_CONSTANT TiledCopydO const tma_load_dO,
                 CUTE_GRID_CONSTANT TiledCopyK const tma_load_K,
                 CUTE_GRID_CONSTANT TiledCopyV const tma_load_V,
                 CUTE_GRID_CONSTANT TiledCopydK const tma_store_dK,
                 CUTE_GRID_CONSTANT TiledCopydV const tma_store_dV) {

    using Element = typename Ktraits::Element;
    using ElementAccum = typename Ktraits::ElementAccum;
    using SoftType = ElementAccum;
    using index_t = typename Ktraits::index_t;
    using TileShape_MNK = typename Ktraits::TileShape_MNK;
    using ClusterShape = typename Ktraits::ClusterShape_MNK;

    static constexpr int kNThreads = Ktraits::kNThreads;
    // static constexpr int NumMmaThreads = size(typename Ktraits::TiledMmaSdP{});
    static constexpr int NumMmaThreads = Ktraits::kNThreads;
    static constexpr int kBlockM = Ktraits::kBlockM;
    // static constexpr int kBlockN = Ktraits::kBlockN;
    // constexpr int kHeadDim = Ktraits::kHeadDim;
    static constexpr int kStages = Ktraits::kStages;

    static constexpr bool SdP_swapAB = Ktraits::SdP_swapAB;
    static constexpr bool dKV_swapAB = Ktraits::dKV_swapAB;
    static constexpr bool dQ_swapAB = Ktraits::dQ_swapAB;

    static constexpr bool Mma_dQ_is_RS = Ktraits::Mma_dQ_is_RS;
    if constexpr (dQ_swapAB) { static_assert(!Mma_dQ_is_RS); }

    using MainloopPipeline = typename Ktraits::MainloopPipeline;
    using PipelineParams = typename MainloopPipeline::Params;
    using PipelineState = typename MainloopPipeline::PipelineState;

    extern __shared__ char shared_memory[];
    auto &shared_storage = *reinterpret_cast<typename Ktraits::SharedStorage*>(shared_memory);

    int const n_block = blockIdx.x;
    int const bidb = blockIdx.z;  // The block index for the batch.
    int const bidh = blockIdx.y;  // The block index for the head.

    int lane_predicate = cute::elect_one_sync();
    int warp_idx = cutlass::canonical_warp_idx_sync();

    // Issue Tma Descriptor Prefetch from a single thread
    if (warp_idx == 0 && lane_predicate) {
        cute::prefetch_tma_descriptor(tma_load_Q.get_tma_descriptor());
        cute::prefetch_tma_descriptor(tma_load_dO.get_tma_descriptor());
        cute::prefetch_tma_descriptor(tma_load_K.get_tma_descriptor());
        cute::prefetch_tma_descriptor(tma_load_V.get_tma_descriptor());
        cute::prefetch_tma_descriptor(tma_store_dK.get_tma_descriptor());
        cute::prefetch_tma_descriptor(tma_store_dV.get_tma_descriptor());
    }

    Tensor mQ = tma_load_Q.get_tma_tensor(make_shape(params.seqlen_q, params.d, params.h, params.b));
    Tensor mdO = tma_load_dO.get_tma_tensor(make_shape(params.seqlen_q, params.d, params.h, params.b));
    Tensor mK = tma_load_K.get_tma_tensor(make_shape(params.seqlen_k, params.d, params.h, params.b));
    Tensor mV = tma_load_V.get_tma_tensor(make_shape(params.seqlen_k, params.d, params.h, params.b));
    Tensor mLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum*>(params.softmax_lse_ptr)),
                              make_shape(params.b, params.h, params.seqlen_q),
                              make_stride(params.h * params.seqlen_q, params.seqlen_q, _1{}));
    Tensor mdPsum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum*>(params.dsoftmax_sum)),
                                make_shape(params.b, params.h, params.seqlen_q),
                                make_stride(params.h * params.seqlen_q_rounded, params.seqlen_q_rounded, _1{}));
    Tensor mdQaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum*>(params.dq_accum_ptr)),
                                  make_shape(params.seqlen_q, params.d, params.h, params.b),
                                  make_stride(params.d * params.h, _1{}, params.d, params.d * params.h * params.seqlen_q_rounded));


    Tensor gQ = local_tile(mQ(_, _, bidh, bidb), select<0, 2>(TileShape_MNK{}), make_coord(_, _0{}));  // (M, K, _)
    Tensor gdO = local_tile(mdO(_, _, bidh, bidb), select<0, 2>(TileShape_MNK{}), make_coord(_, _0{}));  // (M, K, _)
    Tensor gK = local_tile(mK(_, _, bidh, bidb), select<1, 2>(TileShape_MNK{}), make_coord(n_block, _0{}));  // (N, K)
    Tensor gV = local_tile(mV(_, _, bidh, bidb), select<1, 2>(TileShape_MNK{}), make_coord(n_block, _0{}));  // (N, K)
    Tensor gdQaccum = local_tile(mdQaccum(_, _, bidh, bidb), select<0, 2>(TileShape_MNK{}), make_coord(_, _0{}));  // (M, K, _)
    // if (cute::thread0()) { print(tma_load_K); printf("\n"); }
    // if (cute::thread0()) { print(mK); printf("\n"); print(gK); printf("\n"); }

    typename Ktraits::GmemTiledCopydQaccum gmem_tiled_copy_dQaccum;
    auto gmem_thr_copy_dQaccum = gmem_tiled_copy_dQaccum.get_thread_slice(threadIdx.x);
    Tensor tdQgdQaccum = gmem_thr_copy_dQaccum.partition_D(gdQaccum);

    // Construct SMEM tensors.
    Tensor sQ = make_tensor(make_smem_ptr(shared_storage.smem_q.data()), typename Ktraits::SmemLayoutQ{});
    Tensor sdO = make_tensor(make_smem_ptr(shared_storage.smem_do.data()), typename Ktraits::SmemLayoutdO{});
    Tensor sK = make_tensor(make_smem_ptr(shared_storage.smem_k.data()), typename Ktraits::SmemLayoutK{});
    Tensor sV = make_tensor(make_smem_ptr(shared_storage.smem_v.data()), typename Ktraits::SmemLayoutV{});
    Tensor sP = make_tensor(make_smem_ptr(shared_storage.smem_p.data()), typename Ktraits::SmemLayoutP{});
    Tensor sdS = make_tensor(make_smem_ptr(shared_storage.smem_ds.data()), typename Ktraits::SmemLayoutdS{});
    Tensor sQt = make_tensor(make_smem_ptr(shared_storage.smem_q.data()), typename Ktraits::SmemLayoutQt{});
    Tensor sdOt = make_tensor(make_smem_ptr(shared_storage.smem_do.data()), typename Ktraits::SmemLayoutdOt{});
    Tensor sKt = make_tensor(make_smem_ptr(shared_storage.smem_k.data()), typename Ktraits::SmemLayoutKt{});
    Tensor sPt = make_tensor(make_smem_ptr(shared_storage.smem_p.data()), typename Ktraits::SmemLayoutPt{});
    Tensor sdSt = make_tensor(make_smem_ptr(shared_storage.smem_ds.data()), typename Ktraits::SmemLayoutdSt{});

    // Prepare the TMA loads
    uint32_t block_rank_in_cluster = cute::block_rank_in_cluster();
    constexpr uint32_t cluster_shape_x = get<0>(ClusterShape());
    uint2 cluster_local_block_id = {block_rank_in_cluster % cluster_shape_x, block_rank_in_cluster / cluster_shape_x};
    auto block_tma_Q = tma_load_Q.get_slice(cluster_local_block_id.y);
    auto block_tma_dO = tma_load_dO.get_slice(cluster_local_block_id.y);
    auto block_tma_K = tma_load_K.get_slice(_0{});
    auto block_tma_V = tma_load_V.get_slice(_0{});

    Tensor tQgQ = block_tma_Q.partition_S(gQ);  // (TMA, TMA_M, TMA_K, k)
    Tensor tQsQ = block_tma_Q.partition_D(sQ);  // (TMA, TMA_M, TMA_K, PIPE)
    Tensor tdOgdO = block_tma_dO.partition_S(gdO);  // (TMA, TMA_M, TMA_K, k)
    Tensor tdOsdO = block_tma_dO.partition_D(sdO);  // (TMA, TMA_M, TMA_K, PIPE)
    Tensor tKgK = block_tma_K.partition_S(gK);  // (TMA, TMA_N, TMA_K)
    Tensor tKsK = block_tma_K.partition_D(sK);  // (TMA, TMA_N, TMA_K)
    Tensor tVgV = block_tma_V.partition_S(gV);  // (TMA, TMA_N, TMA_K)
    Tensor tVsV = block_tma_V.partition_D(sV); // (TMA, TMA_N, TMA_K)
    // if (cute::thread0()) { print(tQgQ); printf("\n"); print(tQsQ); printf("\n"); }
    // if (cute::thread0()) { print(tKgK); printf("\n"); print(tKsK); printf("\n"); }

    // Set the bytes transferred in this TMA transaction (may involve multiple issues)
    constexpr uint32_t TmaTransactionBytesQ = static_cast<uint32_t>(size<0>(sQ) * size<1>(sQ) * cutlass::sizeof_bits_v<Element> / 8);
    constexpr uint32_t TmaTransactionBytesdO = static_cast<uint32_t>(size<0>(sdO) * size<1>(sdO) * cutlass::sizeof_bits_v<Element> / 8);
    static_assert(TmaTransactionBytesQ == TmaTransactionBytesdO);
    constexpr uint32_t TmaTransactionBytesK = static_cast<uint32_t>(size<0>(sK) * size<1>(sK) * cutlass::sizeof_bits_v<Element> / 8);
    constexpr uint32_t TmaTransactionBytesV = static_cast<uint32_t>(size<0>(sV) * size<1>(sV) * cutlass::sizeof_bits_v<Element> / 8);
    static_assert(TmaTransactionBytesK == TmaTransactionBytesV);

    // Obtain warp index
    int thread_idx = int(threadIdx.x);
    int warp_group_thread_idx = thread_idx % cutlass::NumThreadsPerWarpGroup;
    // int const warp_group_thread_idx = threadIdx.x % cutlass::NumThreadsPerWarpGroup;

    PipelineParams pipeline_params;
    pipeline_params.transaction_bytes = TmaTransactionBytesQ;
    pipeline_params.role = MainloopPipeline::ThreadCategory::ProducerConsumer;
    pipeline_params.is_leader = warp_group_thread_idx == 0;
    pipeline_params.num_consumers = NumMmaThreads;

    if (warp_idx == 0 && lane_predicate) {
        shared_storage.barrier_K.init(1 /*numThreads*/);
        shared_storage.barrier_V.init(1 /*numThreads*/);
    }
    // cutlass::arch::fence_barrier_init();
    // We're counting on pipeline_q to call fence_barrier_init();
    MainloopPipeline pipeline_q(shared_storage.pipeline_q, pipeline_params, ClusterShape{});
    MainloopPipeline pipeline_do(shared_storage.pipeline_do, pipeline_params, ClusterShape{});

    // We need this to guarantee that the Pipeline init is visible
    // To all producers and consumer blocks in the Cluster
    if constexpr (size(ClusterShape{}) > 1) {
        cute::cluster_arrive_relaxed();
        cute::cluster_wait();
    } else {
        __syncthreads();
    }

    // State variables used for iterating the circular buffer
    // smem_pipe_read / release is used by the consumer of SMEM data - i.e MMA
    // smem_pipe_write is used by the producer of SMEM data - i.e TMA
    PipelineState smem_pipe_read_q, smem_pipe_read_do;
    PipelineState smem_pipe_release_q, smem_pipe_release_do;
    PipelineState smem_pipe_write_q = cutlass::make_producer_start_state<MainloopPipeline>();
    PipelineState smem_pipe_write_do = cutlass::make_producer_start_state<MainloopPipeline>();

    // Copy K tile and V tile from GMEM to SMEM.
    if (warp_idx == 0 && lane_predicate) {
        shared_storage.barrier_K.arrive_and_expect_tx(TmaTransactionBytesK);
        copy(tma_load_K.with(reinterpret_cast<cutlass::arch::ClusterTransactionBarrier::ValueType&>(shared_storage.barrier_K), 0 /*mcast_mask*/), tKgK, tKsK);
        shared_storage.barrier_V.arrive_and_expect_tx(TmaTransactionBytesV);
        copy(tma_load_V.with(reinterpret_cast<cutlass::arch::ClusterTransactionBarrier::ValueType&>(shared_storage.barrier_V), 0 /*mcast_mask*/), tVgV, tVsV);
    }
    // if (cute::thread0()) { print_tensor(sQ); printf("\n"); } __syncthreads();

    int m_block = cute::ceil_div(params.seqlen_q, kBlockM) - 1;

    uint16_t mcast_mask_qdo = 0;
    if constexpr (cute::is_same_v<typename Ktraits::GmemTiledCopyQdO, SM90_TMA_LOAD_MULTICAST>) {
        auto block_layout = Layout<ClusterShape>{}; // (m,n) -> block_id
        for (int n = 0; n < size<1>(block_layout); ++n) {
            mcast_mask_qdo |= (uint16_t(1) << block_layout(n, cluster_local_block_id.x, _0{}));
        }
    }
    // Issue TmaLoads (Prologue fetches)
    if (warp_idx == 0 && lane_predicate) {
        // Issue the prologue loads
        CUTLASS_PRAGMA_UNROLL
        for (int stage = 0; stage < kStages && stage <= m_block; ++stage) {
            pipeline_q.producer_acquire(smem_pipe_write_q);
            copy(tma_load_Q.with(*pipeline_q.producer_get_barrier(smem_pipe_write_q), mcast_mask_qdo), tQgQ(_, _, _, m_block - stage), tQsQ(_, _, _, stage));
            ++smem_pipe_write_q;
            pipeline_do.producer_acquire(smem_pipe_write_do);
            copy(tma_load_dO.with(*pipeline_do.producer_get_barrier(smem_pipe_write_do), mcast_mask_qdo), tdOgdO(_, _, _, m_block - stage), tdOsdO(_, _, _, stage));
            ++smem_pipe_write_do;
        }
    }

    Tensor gLSE = local_tile(mLSE(bidb, bidh, _), Shape<Int<kBlockM>>{}, make_coord(m_block));
    Tensor gdPsum = local_tile(mdPsum(bidb, bidh, _), Shape<Int<kBlockM>>{}, make_coord(m_block));

    // Initialize matmul objects.
    typename Ktraits::TiledMmaSdP tiledMmaSdP;
    auto threadMmaSdP = tiledMmaSdP.get_thread_slice(threadIdx.x);
    typename Ktraits::TiledMmadKV tiledMmadKV;
    auto threadMmadKV = tiledMmadKV.get_thread_slice(threadIdx.x);
    typename Ktraits::TiledMmadQ tiledMmadQ;
    auto threadMmadQ = tiledMmadQ.get_thread_slice(threadIdx.x);

    // Allocate accumulator
    Tensor tdKrdK = partition_fragment_C(tiledMmadKV, select<!dKV_swapAB ? 1 : 2, !dKV_swapAB? 2 : 1>(TileShape_MNK{}));
    Tensor tdVrdV = partition_fragment_C(tiledMmadKV, select<!dKV_swapAB ? 1 : 2, !dKV_swapAB? 2 : 1>(TileShape_MNK{}));

    auto smem_tiled_copy_PdS = make_tiled_copy_C(typename Ktraits::SmemCopyAtomPdS{}, tiledMmaSdP);
    auto smem_thr_copy_PdS = smem_tiled_copy_PdS.get_thread_slice(threadIdx.x);

    if constexpr (!SdP_swapAB) {
        Tensor tPsP = smem_thr_copy_PdS.partition_D(sP);      // ((Atom,AtomNum),PIPE_M,PIPE_N)
        Tensor tdSsdS = smem_thr_copy_PdS.partition_D(sdS);      // ((Atom,AtomNum),PIPE_M,PIPE_N)

        // Allocate "fragments/descriptors"
        Tensor tSrQ = threadMmaSdP.partition_fragment_A(sQ);
        Tensor tSrK = threadMmaSdP.partition_fragment_B(sK);
        Tensor tdPrdO = threadMmaSdP.partition_fragment_A(sdO);
        Tensor tdPrV = threadMmaSdP.partition_fragment_B(sV);

        Tensor caccS = make_identity_tensor(select<0, 1>(TileShape_MNK{}));    // (BLK_M,BLK_N) -> (blk_m,blk_n)
        Tensor taccScS = threadMmaSdP.partition_C(caccS);                           // (MMA,MMA_N,MMA_N)
        static_assert(decltype(size<0, 0>(taccScS))::value == 2);
        static_assert(decltype(size<0, 1>(taccScS))::value == 2);
        // taccScS has shape ((2, 2, V), MMA_M, MMA_N), we only take only the row indices.
        Tensor taccScS_row = taccScS(make_coord(_0{}, _, _0{}), _, _0{});
        Tensor lse = make_tensor<ElementAccum>(Shape<Int<decltype(size(taccScS_row))::value>>{});
        Tensor dP_sum = make_fragment_like(lse);
        #pragma unroll
        for (int mi = 0; mi < size(lse); ++mi) {
            const int row = get<0>(taccScS_row(mi));
            lse(mi) = row < params.seqlen_q - m_block * kBlockM ? gLSE(row) : INFINITY;
            dP_sum(mi) = row < params.seqlen_q - m_block * kBlockM ? gdPsum(row) : 0;
        }
        // if (cute::thread0()) { print_tensor(dP_sum); printf("\n"); }
        // We want LSE = inf if the row is OOB. In that case Q would be zero, K would be zero,
        // and scores would be zero. With LSE = 0, probs will be all 1's, and when we multiply
        // with V (which would be zero), we're fine. However, with ALiBi, we might modify these
        // scores, and probs can become NaN. Instead if we set LSE = inf for OOB rows, probs are always 0.

        clear(tdKrdK);
        clear(tdVrdV);

        shared_storage.barrier_K.wait(0);
        shared_storage.barrier_V.wait(0);
        __syncthreads();

        // #pragma unroll 2
        CUTLASS_PRAGMA_NO_UNROLL
        for (; m_block >= 0; --m_block) {
            Tensor tSrS = partition_fragment_C(tiledMmaSdP, select<0, 1>(TileShape_MNK{}));
            pipeline_q.consumer_wait(smem_pipe_read_q);
            __syncwarp();
            flash::gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiledMmaSdP, tSrQ(_, _, _, smem_pipe_read_q.index()), tSrK, tSrS);
            Tensor tdPrdP = partition_fragment_C(tiledMmaSdP, select<0, 1>(TileShape_MNK{}));
            pipeline_do.consumer_wait(smem_pipe_read_do);
            __syncwarp();
            flash::gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiledMmaSdP, tdPrdO(_, _, _, smem_pipe_read_do.index()), tdPrV, tdPrdP);

            warpgroup_wait<1>();
            // Reshape tSrS from ((2, 2, V), MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, V, MMA_N))
            Tensor scores = make_tensor(tSrS.data(), flash::convert_layout_acc_rowcol(tSrS.layout()));
            flash::scale_apply_exp2</*Scale=*/true, /*scale_max=*/false>(scores, lse, params.scale_softmax_log2);
            // if (cute::thread0()) { print_tensor(scores); printf("\n"); }
            // Convert scores from fp32 to fp16/bf16
            Tensor rP = flash::convert_type<Element>(tSrS);
            Tensor tPaP = smem_thr_copy_PdS.retile_S(rP);     // ((Atom,AtomNum), MMA_N, MMA_N)
            cute::copy(smem_tiled_copy_PdS, tPaP, tPsP);
            int const warp_group_idx = cutlass::canonical_warp_group_idx();
            cutlass::arch::NamedBarrier::arrive(kNThreads, warp_group_idx /*id*/);

            warpgroup_wait<0>();
            // Reshape tdPrdP from ((2, 2, V), MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, V, MMA_N))
            Tensor dS = make_tensor(tdPrdP.data(), scores.layout());
            // if (cute::thread0()) { print_tensor(dS); printf("\n"); }
            #pragma unroll
            for (int mi = 0; mi < size<0>(dS); ++mi) {
                #pragma unroll
                for (int ni = 0; ni < size<1>(dS); ++ni) { dS(mi, ni) = scores(mi, ni) * (dS(mi, ni) - dP_sum(mi)); }
            }
            Tensor rdS = flash::convert_type<Element>(tdPrdP);

            Tensor tdSadS = smem_thr_copy_PdS.retile_S(rdS);     // ((Atom,AtomNum), MMA_N, MMA_N)
            cute::copy(smem_tiled_copy_PdS, tdSadS, tdSsdS);
            // cutlass::arch::NamedBarrier::arrive(kNThreads, 1 /*id*/);
            cutlass::arch::NamedBarrier::arrive(kNThreads, 2 + warp_group_idx /*id*/);
            // if (cute::thread0()) { print_tensor(dS); printf("\n"); }

            if (m_block > 0) {
                gLSE.data() = gLSE.data() + (-int(kBlockM));
                gdPsum.data() = gdPsum.data() + (-int(kBlockM));
                #pragma unroll
                for (int mi = 0; mi < size(lse); ++mi) {
                    const int row = get<0>(taccScS_row(mi));
                    lse(mi) = gLSE(row);
                    dP_sum(mi) = gdPsum(row);
                }
            }

            Tensor tdQrdQ = partition_fragment_C(tiledMmadQ, select<!dQ_swapAB ? 0 : 2, !dQ_swapAB ? 2 : 0>(TileShape_MNK{}));
            if constexpr (Mma_dQ_is_RS) {
                static_assert(!dQ_swapAB);
                Tensor tdQrdS = make_tensor(rdS.data(), convert_layout_acc_Aregs<typename Ktraits::TiledMmadQ>(tdPrdP.layout()));
                Tensor tdQrK = threadMmadQ.partition_fragment_B(sKt);
                flash::gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiledMmadQ, tdQrdS, tdQrK, tdQrdQ);
                // if (cute::thread0()) { print(tdQrdS); printf("\n"); print(tdQrK); printf("\n"); print(tdQrdQ); printf("\n"); }
            }

            // warpgroup_wait<0>();
            // Tensor dQ_tmp = make_tensor(tdQrdQ.data(), flash::convert_layout_acc_rowcol(tdQrdQ.layout()));
            // if (cute::thread0()) { print_tensor(dQ_tmp); printf("\n"); }
            // if (cute::thread0()) { print_tensor(sK); printf("\n"); }
            // if (cute::thread0()) { print_tensor(sKt); printf("\n"); } __syncthreads();

            // __syncthreads();  // Without this I'm getting race condition, I thought the barrier would be enough
            // SMEM fence to make sure sP is written before it's read by WGMMA
            cutlass::arch::fence_view_async_shared();
            cutlass::arch::NamedBarrier::sync(kNThreads, 1 - warp_group_idx /*id*/);
            if constexpr (!dKV_swapAB) {
                Tensor tdVrP = threadMmadKV.partition_fragment_A(sPt);
                Tensor tdVrdO = threadMmadKV.partition_fragment_B(sdOt);
                flash::gemm</*zero_init=*/false, /*wg_wait=*/-1>(tiledMmadKV, tdVrP, tdVrdO(_, _, _, smem_pipe_read_do.index()), tdVrdV);
            } else {
                Tensor tdVrP = threadMmadKV.partition_fragment_B(sPt);
                Tensor tdVrdO = threadMmadKV.partition_fragment_A(sdOt);
                flash::gemm</*zero_init=*/false, /*wg_wait=*/-1>(tiledMmadKV, tdVrdO(_, _, _, smem_pipe_read_do.index()), tdVrP, tdVrdV);
            }
            ++smem_pipe_read_do;

            // warpgroup_wait<0>();
            // Tensor dV_tmp = make_tensor(tdVrdV.data(), flash::convert_layout_acc_rowcol(tdVrdV.layout()));
            // if (cute::thread0()) { print_tensor(dV_tmp); printf("\n"); }
            cutlass::arch::fence_view_async_shared();
            cutlass::arch::NamedBarrier::sync(kNThreads, 2 + 1 - warp_group_idx /*id*/);
            if constexpr (!Mma_dQ_is_RS) {
                if constexpr (!dQ_swapAB) {
                    Tensor tdQrdS = threadMmadQ.partition_fragment_A(sdS);
                    Tensor tdQrK = threadMmadQ.partition_fragment_B(sKt);
                    flash::gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiledMmadQ, tdQrdS, tdQrK, tdQrdQ);
                } else {
                    Tensor tdQrdS = threadMmadQ.partition_fragment_B(sdS);
                    Tensor tdQrK = threadMmadQ.partition_fragment_A(sKt);
                    flash::gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiledMmadQ, tdQrK, tdQrdS, tdQrdQ);
                }
            }
            // warpgroup_wait<0>();
            // Tensor dQ_tmp = make_tensor(tdQrdQ.data(), flash::convert_layout_acc_rowcol(tdQrdQ.layout()));
            // if (cute::thread0()) { print_tensor(dQ_tmp); printf("\n"); }
            // if (blockIdx.x == 0 && threadIdx.x == 128) { print_tensor(dQ_tmp); printf("\n"); }

            if constexpr (!dKV_swapAB) {
                Tensor tdKrdS = threadMmadKV.partition_fragment_A(sdSt);
                Tensor tdKrQ = threadMmadKV.partition_fragment_B(sQt);
                flash::gemm</*zero_init=*/false, /*wg_wait=*/-1>(tiledMmadKV, tdKrdS, tdKrQ(_, _, _, smem_pipe_read_q.index()), tdKrdK);
            } else {
                Tensor tdKrdS = threadMmadKV.partition_fragment_B(sdSt);
                Tensor tdKrQ = threadMmadKV.partition_fragment_A(sQt);
                flash::gemm</*zero_init=*/false, /*wg_wait=*/-1>(tiledMmadKV, tdKrQ(_, _, _, smem_pipe_read_q.index()), tdKrdS, tdKrdK);
            }
            ++smem_pipe_read_q;
            // Tensor dK_tmp = make_tensor(tdKrdK.data(), flash::convert_layout_acc_rowcol(tdKrdK.layout()));
            // if (cute::thread0()) { print_tensor(dK_tmp); printf("\n"); }

            warpgroup_wait<Mma_dQ_is_RS ? 2 : 1>();
            // if (cute::thread0()) { print(tdQrdQ); printf("\n"); print(tdQgdQaccum); printf("\n"); }
            Tensor tdQrdQ_atomic = recast<float4>(tdQrdQ);
            Tensor tdQgdQaccum_atomic = recast<float4>(tdQgdQaccum(_, _, _, m_block));
            #pragma unroll
            for (int i = 0; i < size(tdQrdQ_atomic); ++i) { atomicAdd(&tdQgdQaccum_atomic(i), tdQrdQ_atomic(i)); }
            // for (int i = 0; i < size(tdQrdQ_atomic); ++i) { tdQgdQaccum_atomic(i) = tdQrdQ_atomic(i); }

            warpgroup_wait<0>();

            pipeline_do.consumer_release(smem_pipe_release_do);  // release V
            ++smem_pipe_release_do;
            pipeline_q.consumer_release(smem_pipe_release_q);  // release V
            ++smem_pipe_release_q;

            int const lane_predicate = cute::elect_one_sync();
            int const warp_idx = cutlass::canonical_warp_idx_sync();
            if (warp_idx == 0 && lane_predicate && m_block >= kStages) {
                pipeline_q.producer_acquire(smem_pipe_write_q);
                copy(tma_load_Q.with(*pipeline_q.producer_get_barrier(smem_pipe_write_q), mcast_mask_qdo), tQgQ(_, _, _, m_block - kStages), tQsQ(_, _, _, smem_pipe_write_q.index()));
                ++smem_pipe_write_q;
                pipeline_do.producer_acquire(smem_pipe_write_do);
                copy(tma_load_dO.with(*pipeline_do.producer_get_barrier(smem_pipe_write_do), mcast_mask_qdo), tdOgdO(_, _, _, m_block - kStages), tdOsdO(_, _, _, smem_pipe_write_do.index()));
                ++smem_pipe_write_do;
            }
        }

    } else {  // SdP_swapAB
        Tensor tdSsdS = smem_thr_copy_PdS.partition_D(sdSt);      // ((Atom,AtomNum),PIPE_M,PIPE_N)

        // Allocate "fragments/descriptors"
        Tensor tSrQ = threadMmaSdP.partition_fragment_B(sQ);
        Tensor tSrK = threadMmaSdP.partition_fragment_A(sK);
        Tensor tdPrdO = threadMmaSdP.partition_fragment_B(sdO);
        Tensor tdPrV = threadMmaSdP.partition_fragment_A(sV);

        Tensor caccS = make_identity_tensor(select<1, 0>(TileShape_MNK{}));    // (BLK_M,BLK_N) -> (blk_m,blk_n)
        Tensor taccScS = threadMmaSdP.partition_C(caccS);                           // (MMA,MMA_N,MMA_N)
        static_assert(decltype(size<0, 0>(taccScS))::value == 2);
        static_assert(decltype(size<0, 1>(taccScS))::value == 2);
        // taccScS has shape ((2, 2, V), MMA_M, MMA_N), we only take only the row indices.
        Tensor taccScS_row = taccScS(make_coord(_, _0{}, _), _0{}, _);
        Tensor lse = make_tensor<ElementAccum>(Shape<Int<decltype(size(taccScS_row))::value>>{});
        Tensor dP_sum = make_fragment_like(lse);
        #pragma unroll
        for (int mi = 0; mi < size(lse); ++mi) {
            const int row = get<1>(taccScS_row(mi));
            lse(mi) = row < params.seqlen_q - m_block * kBlockM ? gLSE(row) : INFINITY;
            dP_sum(mi) = row < params.seqlen_q - m_block * kBlockM ? gdPsum(row) : 0;
        }
        // cute::fill(lse, 1);
        // cute::fill(dP_sum, 1);
        // if (cute::thread0()) { print_tensor(dP_sum); printf("\n"); }
        // We want LSE = inf if the row is OOB. In that case Q would be zero, K would be zero,
        // and scores would be zero. With LSE = 0, probs will be all 1's, and when we multiply
        // with V (which would be zero), we're fine. However, with ALiBi, we might modify these
        // scores, and probs can become NaN. Instead if we set LSE = inf for OOB rows, probs are always 0.

        clear(tdKrdK);
        clear(tdVrdV);

        shared_storage.barrier_K.wait(0);
        shared_storage.barrier_V.wait(0);

        // #pragma unroll 2
        CUTLASS_PRAGMA_NO_UNROLL
        for (; m_block >= 0; --m_block) {
            Tensor tSrS = partition_fragment_C(tiledMmaSdP, select<1, 0>(TileShape_MNK{}));
            pipeline_q.consumer_wait(smem_pipe_read_q);
            flash::gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiledMmaSdP, tSrK, tSrQ(_, _, _, smem_pipe_read_q.index()), tSrS);
            Tensor tdPrdP = partition_fragment_C(tiledMmaSdP, select<1, 0>(TileShape_MNK{}));
            pipeline_do.consumer_wait(smem_pipe_read_do);
            flash::gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiledMmaSdP, tdPrV, tdPrdO(_, _, _, smem_pipe_read_do.index()), tdPrdP);

            warpgroup_wait<1>();
            // Reshape tSrS from ((2, 2, V), MMA_N, MMA_M) to (nrow=(2, V, MMA_M), ncol=(2, MMA_N))
            Tensor scores = make_tensor(tSrS.data(), flash::convert_layout_acc_transposed_rowcol(tSrS.layout()));
            flash::scale_apply_exp2</*Scale=*/true, /*scale_max=*/false>(scores, lse, params.scale_softmax_log2);
            // if (cute::thread0()) { print_tensor(scores); printf("\n"); }

            // Convert scores from fp32 to fp16/bf16
            Tensor rP = flash::convert_type<Element>(tSrS);

            static_assert(!dKV_swapAB);
            Tensor tdVrP = make_tensor(rP.data(), convert_layout_acc_Aregs<typename Ktraits::TiledMmadKV>(tSrS.layout()));
            Tensor tdVrdO = threadMmadKV.partition_fragment_B(sdOt);
            flash::gemm</*zero_init=*/false, /*wg_wait=*/-1>(tiledMmadKV, tdVrP, tdVrdO(_, _, _, smem_pipe_read_do.index()), tdVrdV);
            ++smem_pipe_read_do;
            // warpgroup_wait<0>();
            // Tensor dV_tmp = make_tensor(tdVrdV.data(), flash::convert_layout_acc_rowcol(tdVrdV.layout()));
            // if (cute::thread0()) { print_tensor(dV_tmp); printf("\n"); }

            warpgroup_wait<1>();
            // Reshape tdPrdP from ((2, 2, V), MMA_N, MMA_M) to (nrow=(2, V, MMA_M), ncol=(2, MMA_N))
            Tensor dS = make_tensor(tdPrdP.data(), scores.layout());
            #pragma unroll
            for (int mi = 0; mi < size<0>(dS); ++mi) {
                #pragma unroll
                for (int ni = 0; ni < size<1>(dS); ++ni) { dS(mi, ni) = scores(mi, ni) * (dS(mi, ni) - dP_sum(mi)); }
            }
            // if (cute::thread0()) { print_tensor(dS); printf("\n"); }
            Tensor rdS = flash::convert_type<Element>(tdPrdP);

            Tensor tdSadS = smem_thr_copy_PdS.retile_S(rdS);     // ((Atom,AtomNum), MMA_N, MMA_N)
            cute::copy(smem_tiled_copy_PdS, tdSadS, tdSsdS);

            if (m_block > 0) {
                gLSE.data() = gLSE.data() + (-int(kBlockM));
                gdPsum.data() = gdPsum.data() + (-int(kBlockM));
                #pragma unroll
                for (int mi = 0; mi < size(lse); ++mi) {
                    const int row = get<1>(taccScS_row(mi));
                    lse(mi) = gLSE(row);
                    dP_sum(mi) = gdPsum(row);
                }
            }

            Tensor tdKrdS = make_tensor(rdS.data(), convert_layout_acc_Aregs<typename Ktraits::TiledMmadKV>(tdPrdP.layout()));
            Tensor tdKrQ = threadMmadKV.partition_fragment_B(sQt);
            flash::gemm</*zero_init=*/false, /*wg_wait=*/-1>(tiledMmadKV, tdKrdS, tdKrQ(_, _, _, smem_pipe_read_q.index()), tdKrdK);
            ++smem_pipe_read_q;
            // warpgroup_wait<0>();
            // Tensor dK_tmp = make_tensor(tdKrdK.data(), flash::convert_layout_acc_rowcol(tdKrdK.layout()));
            // if (cute::thread0()) { print_tensor(dK_tmp); printf("\n"); }

            // SMEM fence to make sure sP is written before it's read by WGMMA
            cutlass::arch::fence_view_async_shared();
            // cutlass::arch::NamedBarrier::sync(kNThreads, 0 /*id*/);
            __syncthreads();
            static_assert(!Mma_dQ_is_RS);
            Tensor tdQrdQ = partition_fragment_C(tiledMmadQ, select<!dQ_swapAB ? 0 : 2, !dQ_swapAB ? 2 : 0>(TileShape_MNK{}));
            if constexpr (!dQ_swapAB) {
                Tensor tdQrdS = threadMmadQ.partition_fragment_A(sdS);
                Tensor tdQrK = threadMmadQ.partition_fragment_B(sKt);
                flash::gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiledMmadQ, tdQrdS, tdQrK, tdQrdQ);
            } else {
                Tensor tdQrdS = threadMmadQ.partition_fragment_B(sdS);
                Tensor tdQrK = threadMmadQ.partition_fragment_A(sKt);
                flash::gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiledMmadQ, tdQrK, tdQrdS, tdQrdQ);
            }
            // warpgroup_wait<0>();
            // Tensor dQ_tmp = make_tensor(tdQrdQ.data(), flash::convert_layout_acc_rowcol(tdQrdQ.layout()));
            // if (cute::thread0()) { print_tensor(dQ_tmp); printf("\n"); }


            warpgroup_wait<0>();
            // if (cute::thread0()) { print(tdQrdQ); printf("\n"); print(tdQgdQaccum); printf("\n"); }
            Tensor tdQrdQ_atomic = recast<float4>(tdQrdQ);
            Tensor tdQgdQaccum_atomic = recast<float4>(tdQgdQaccum(_, _, _, m_block));
            #pragma unroll
            for (int i = 0; i < size(tdQrdQ_atomic); ++i) { atomicAdd(&tdQgdQaccum_atomic(i), tdQrdQ_atomic(i)); }
            // for (int i = 0; i < size(tdQrdQ_atomic); ++i) { tdQgdQaccum_atomic(i) = tdQrdQ_atomic(i); }

            pipeline_do.consumer_release(smem_pipe_release_do);  // release V
            ++smem_pipe_release_do;
            pipeline_q.consumer_release(smem_pipe_release_q);  // release V
            ++smem_pipe_release_q;

            int const lane_predicate = cute::elect_one_sync();
            int const warp_idx = cutlass::canonical_warp_idx_sync();
            if (warp_idx == 0 && lane_predicate && m_block >= kStages) {
                pipeline_q.producer_acquire(smem_pipe_write_q);
                copy(tma_load_Q.with(*pipeline_q.producer_get_barrier(smem_pipe_write_q), mcast_mask_qdo), tQgQ(_, _, _, m_block - kStages), tQsQ(_, _, _, smem_pipe_write_q.index()));
                ++smem_pipe_write_q;
                pipeline_do.producer_acquire(smem_pipe_write_do);
                copy(tma_load_dO.with(*pipeline_do.producer_get_barrier(smem_pipe_write_do), mcast_mask_qdo), tdOgdO(_, _, _, m_block - kStages), tdOsdO(_, _, _, smem_pipe_write_do.index()));
                ++smem_pipe_write_do;
            }
        }
    }

    // Epilogue

    #pragma unroll
    for (int i = 0; i < size(tdKrdK); ++i) { tdKrdK(i) *= params.scale_softmax; }

    Tensor tdKrdK_out = convert_type<Element>(tdKrdK);
    Tensor tdVrdV_out = convert_type<Element>(tdVrdV);

    Tensor sdK = make_tensor(make_smem_ptr(shared_storage.smem_dk.data()), typename Ktraits::SmemLayoutdK{});
    Tensor sdV = make_tensor(make_smem_ptr(shared_storage.smem_dv.data()), typename Ktraits::SmemLayoutdV{});
    Tensor sdKt = make_tensor(make_smem_ptr(shared_storage.smem_dk.data()), typename Ktraits::SmemLayoutdKt{});
    Tensor sdVt = make_tensor(make_smem_ptr(shared_storage.smem_dv.data()), typename Ktraits::SmemLayoutdVt{});

    auto smem_tiled_copy_dKV = make_tiled_copy_C(typename Ktraits::SmemCopyAtomdKV{}, tiledMmadKV);
    auto smem_thr_copy_dKV = smem_tiled_copy_dKV.get_thread_slice(threadIdx.x);
    Tensor taccdKrdK = smem_thr_copy_dKV.retile_S(tdKrdK_out);        // ((Atom,AtomNum), MMA_M, MMA_N)
    Tensor taccdVrdV = smem_thr_copy_dKV.retile_S(tdVrdV_out);        // ((Atom,AtomNum), MMA_M, MMA_N)

    __syncthreads();
    if constexpr (!dKV_swapAB) {
        Tensor taccdKsdK = smem_thr_copy_dKV.partition_D(sdK);     // ((Atom,AtomNum),PIPE_M,PIPE_N)
        Tensor taccdVsdV = smem_thr_copy_dKV.partition_D(sdV);     // ((Atom,AtomNum),PIPE_M,PIPE_N)
        cute::copy(smem_tiled_copy_dKV, taccdKrdK, taccdKsdK);
        cute::copy(smem_tiled_copy_dKV, taccdVrdV, taccdVsdV);
    } else {
        Tensor taccdKsdKt = smem_thr_copy_dKV.partition_D(sdKt);     // ((Atom,AtomNum),PIPE_M,PIPE_N)
        Tensor taccdVsdVt = smem_thr_copy_dKV.partition_D(sdVt);     // ((Atom,AtomNum),PIPE_M,PIPE_N)
        cute::copy(smem_tiled_copy_dKV, taccdKrdK, taccdKsdKt);
        cute::copy(smem_tiled_copy_dKV, taccdVrdV, taccdVsdVt);
    }
    cutlass::arch::fence_view_async_shared(); // ensure smem writes are visible to TMA

    Tensor mdK = tma_store_dK.get_tma_tensor(make_shape(params.seqlen_k, params.d, params.h, params.b));
    Tensor mdV = tma_store_dV.get_tma_tensor(make_shape(params.seqlen_k, params.d, params.h, params.b));
    Tensor gdK = local_tile(mdK(_, _, bidh, bidb), select<1, 2>(TileShape_MNK{}), make_coord(n_block, _0{}));  // (M, K)
    Tensor gdV = local_tile(mdV(_, _, bidh, bidb), select<1, 2>(TileShape_MNK{}), make_coord(n_block, _0{}));  // (M, K)
    auto block_tma_dK = tma_store_dK.get_slice(_0{});
    auto block_tma_dV = tma_store_dV.get_slice(_0{});
    Tensor tdKgdK = block_tma_dK.partition_D(gdK);  // (TMA, TMA_M, TMA_K)
    Tensor tdKsdK = block_tma_dK.partition_S(sdK); // (TMA, TMA_M, TMA_K)
    Tensor tdVgdV = block_tma_dV.partition_D(gdV);  // (TMA, TMA_M, TMA_K)
    Tensor tdVsdV = block_tma_dV.partition_S(sdV); // (TMA, TMA_M, TMA_K)

    __syncthreads(); // ensure all threads have issued their async fence

    lane_predicate = cute::elect_one_sync();
    warp_idx = cutlass::canonical_warp_idx_sync();
    if (warp_idx == 0 && lane_predicate) {
        cute::copy(tma_store_dV, tdVsdV, tdVgdV);
        cute::copy(tma_store_dK, tdKsdK, tdKgdK);
        tma_store_arrive();
    }
    tma_store_wait<0>();

    // To make sure remote SMEM doesn't get destroyed
    if constexpr (size(ClusterShape{}) > 1) {
        cute::cluster_arrive();
        cute::cluster_wait();
    }

}

template <typename Ktraits, bool Is_causal, typename TiledCopyQ, typename TiledCopydO,
          typename TiledCopyK, typename TiledCopyV, typename TiledCopydQ, typename TiledCopydK, typename TiledCopydV>
__global__ void __launch_bounds__(Ktraits::kNWarps * cutlass::NumThreadsPerWarp, 1)
    compute_dqkv_seqqpar(CUTE_GRID_CONSTANT Flash_bwd_params const params,
                         CUTE_GRID_CONSTANT TiledCopyQ const tma_load_Q,
                         CUTE_GRID_CONSTANT TiledCopydO const tma_load_dO,
                         CUTE_GRID_CONSTANT TiledCopyK const tma_load_K,
                         CUTE_GRID_CONSTANT TiledCopyV const tma_load_V,
                         CUTE_GRID_CONSTANT TiledCopydQ const tma_store_dQ,
                         CUTE_GRID_CONSTANT TiledCopydK const tma_store_dK,
                         CUTE_GRID_CONSTANT TiledCopydV const tma_store_dV) {

    using Element = typename Ktraits::Element;
    using ElementAccum = typename Ktraits::ElementAccum;
    using SoftType = ElementAccum;
    using index_t = typename Ktraits::index_t;
    using TileShape_MNK = typename Ktraits::TileShape_MNK;
    using ClusterShape = typename Ktraits::ClusterShape_MNK;

    static constexpr int kNThreads = Ktraits::kNThreads;
    static constexpr int NumMmaThreads = Ktraits::kNThreads;
    static constexpr int kBlockM = Ktraits::kBlockM;
    static constexpr int kBlockN = Ktraits::kBlockN;
    // constexpr int kHeadDim = Ktraits::kHeadDim;
    static constexpr int kStages = Ktraits::kStages;

    static constexpr bool SdP_swapAB = Ktraits::SdP_swapAB;
    static constexpr bool dKV_swapAB = Ktraits::dKV_swapAB;
    static constexpr bool dQ_swapAB = Ktraits::dQ_swapAB;

    static constexpr bool Mma_dQ_is_RS = Ktraits::Mma_dQ_is_RS;
    if constexpr (dQ_swapAB) { static_assert(!Mma_dQ_is_RS); }

    using MainloopPipeline = typename Ktraits::MainloopPipeline;
    using PipelineParams = typename MainloopPipeline::Params;
    using PipelineState = typename MainloopPipeline::PipelineState;

    extern __shared__ char shared_memory[];
    auto &shared_storage = *reinterpret_cast<typename Ktraits::SharedStorage*>(shared_memory);

    int const m_block = blockIdx.x;
    int const bidb = blockIdx.z;  // The block index for the batch.
    int const bidh = blockIdx.y;  // The block index for the head.

    int lane_predicate = cute::elect_one_sync();
    int warp_idx = cutlass::canonical_warp_idx_sync();

    // Issue Tma Descriptor Prefetch from a single thread
    if (warp_idx == 0 && lane_predicate) {
        cute::prefetch_tma_descriptor(tma_load_Q.get_tma_descriptor());
        cute::prefetch_tma_descriptor(tma_load_dO.get_tma_descriptor());
        cute::prefetch_tma_descriptor(tma_load_K.get_tma_descriptor());
        cute::prefetch_tma_descriptor(tma_load_V.get_tma_descriptor());
        cute::prefetch_tma_descriptor(tma_store_dQ.get_tma_descriptor());
    }

    Tensor mQ = tma_load_Q.get_tma_tensor(make_shape(params.seqlen_q, params.d, params.h, params.b));
    Tensor mdO = tma_load_dO.get_tma_tensor(make_shape(params.seqlen_q, params.d, params.h, params.b));
    Tensor mK = tma_load_K.get_tma_tensor(make_shape(params.seqlen_k, params.d, params.h, params.b));
    Tensor mV = tma_load_V.get_tma_tensor(make_shape(params.seqlen_k, params.d, params.h, params.b));
    Tensor mLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum*>(params.softmax_lse_ptr)),
                              make_shape(params.b, params.h, params.seqlen_q),
                              make_stride(params.h * params.seqlen_q, params.seqlen_q, _1{}));
    Tensor mdPsum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum*>(params.dsoftmax_sum)),
                                make_shape(params.b, params.h, params.seqlen_q),
                                make_stride(params.h * params.seqlen_q_rounded, params.seqlen_q_rounded, _1{}));
    Tensor mdKaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum*>(params.dk_accum_ptr)),
                                  make_shape(params.seqlen_k, params.d, params.h, params.b),
                                  make_stride(params.d * params.h, _1{}, params.d, params.d * params.h * params.seqlen_k));
    Tensor mdVaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum*>(params.dv_accum_ptr)),
                                  make_shape(params.seqlen_k, params.d, params.h, params.b),
                                  make_stride(params.d * params.h, _1{}, params.d, params.d * params.h * params.seqlen_k));


    Tensor gQ = local_tile(mQ(_, _, bidh, bidb), select<0, 2>(TileShape_MNK{}), make_coord(m_block, _0{}));  // (M, K)
    Tensor gdO = local_tile(mdO(_, _, bidh, bidb), select<0, 2>(TileShape_MNK{}), make_coord(m_block, _0{}));  // (M, K)
    Tensor gK = local_tile(mK(_, _, bidh, bidb), select<1, 2>(TileShape_MNK{}), make_coord(_, _0{}));  // (N, K, _)
    Tensor gV = local_tile(mV(_, _, bidh, bidb), select<1, 2>(TileShape_MNK{}), make_coord(_, _0{}));  // (N, K, _)
    Tensor gdKaccum = local_tile(mdKaccum(_, _, bidh, bidb), select<1, 2>(TileShape_MNK{}), make_coord(_, _0{}));  // (N, K, _)
    Tensor gdVaccum = local_tile(mdVaccum(_, _, bidh, bidb), select<1, 2>(TileShape_MNK{}), make_coord(_, _0{}));  // (N, K, _)

    typename Ktraits::GmemTiledCopydQaccum gmem_tiled_copy_dKVaccum;
    auto gmem_thr_copy_dKVaccum = gmem_tiled_copy_dKVaccum.get_thread_slice(threadIdx.x);
    Tensor tdKgdKaccum = gmem_thr_copy_dKVaccum.partition_D(gdKaccum);
    Tensor tdVgdVaccum = gmem_thr_copy_dKVaccum.partition_D(gdVaccum);

    // Construct SMEM tensors.
    Tensor sQ = make_tensor(make_smem_ptr(shared_storage.smem_q.data()), typename Ktraits::SmemLayoutQ{});
    Tensor sdO = make_tensor(make_smem_ptr(shared_storage.smem_do.data()), typename Ktraits::SmemLayoutdO{});
    Tensor sK = make_tensor(make_smem_ptr(shared_storage.smem_k.data()), typename Ktraits::SmemLayoutK{});
    Tensor sV = make_tensor(make_smem_ptr(shared_storage.smem_v.data()), typename Ktraits::SmemLayoutV{});
    Tensor sP = make_tensor(make_smem_ptr(shared_storage.smem_p.data()), typename Ktraits::SmemLayoutP{});
    Tensor sdS = make_tensor(make_smem_ptr(shared_storage.smem_ds.data()), typename Ktraits::SmemLayoutdS{});
    Tensor sQt = make_tensor(make_smem_ptr(shared_storage.smem_q.data()), typename Ktraits::SmemLayoutQt{});
    Tensor sdOt = make_tensor(make_smem_ptr(shared_storage.smem_do.data()), typename Ktraits::SmemLayoutdOt{});
    Tensor sKt = make_tensor(make_smem_ptr(shared_storage.smem_k.data()), typename Ktraits::SmemLayoutKt{});
    Tensor sPt = make_tensor(make_smem_ptr(shared_storage.smem_p.data()), typename Ktraits::SmemLayoutPt{});
    Tensor sdSt = make_tensor(make_smem_ptr(shared_storage.smem_ds.data()), typename Ktraits::SmemLayoutdSt{});

    // Prepare the TMA loads
    uint32_t block_rank_in_cluster = cute::block_rank_in_cluster();
    constexpr uint32_t cluster_shape_x = get<0>(ClusterShape());
    uint2 cluster_local_block_id = {block_rank_in_cluster % cluster_shape_x, block_rank_in_cluster / cluster_shape_x};
    auto block_tma_Q = tma_load_Q.get_slice(_0{});
    auto block_tma_dO = tma_load_dO.get_slice(_0{});
    auto block_tma_K = tma_load_K.get_slice(cluster_local_block_id.x);
    auto block_tma_V = tma_load_V.get_slice(cluster_local_block_id.x);

    Tensor tQgQ = block_tma_Q.partition_S(gQ);  // (TMA, TMA_M, TMA_K)
    Tensor tQsQ = block_tma_Q.partition_D(sQ);  // (TMA, TMA_M, TMA_K)
    Tensor tdOgdO = block_tma_dO.partition_S(gdO);  // (TMA, TMA_M, TMA_K)
    Tensor tdOsdO = block_tma_dO.partition_D(sdO);  // (TMA, TMA_M, TMA_K)
    Tensor tKgK = block_tma_K.partition_S(gK);  // (TMA, TMA_N, TMA_K, k)
    Tensor tKsK = block_tma_K.partition_D(sK);  // (TMA, TMA_N, TMA_K, PIPE)
    Tensor tVgV = block_tma_V.partition_S(gV);  // (TMA, TMA_N, TMA_K, k)
    Tensor tVsV = block_tma_V.partition_D(sV); // (TMA, TMA_N, TMA_K, PIPE)

    // Set the bytes transferred in this TMA transaction (may involve multiple issues)
    constexpr uint32_t TmaTransactionBytesQ = static_cast<uint32_t>(size<0>(sQ) * size<1>(sQ) * cutlass::sizeof_bits_v<Element> / 8);
    constexpr uint32_t TmaTransactionBytesdO = static_cast<uint32_t>(size<0>(sdO) * size<1>(sdO) * cutlass::sizeof_bits_v<Element> / 8);
    static_assert(TmaTransactionBytesQ == TmaTransactionBytesdO);
    constexpr uint32_t TmaTransactionBytesK = static_cast<uint32_t>(size<0>(sK) * size<1>(sK) * cutlass::sizeof_bits_v<Element> / 8);
    constexpr uint32_t TmaTransactionBytesV = static_cast<uint32_t>(size<0>(sV) * size<1>(sV) * cutlass::sizeof_bits_v<Element> / 8);
    static_assert(TmaTransactionBytesK == TmaTransactionBytesV);

    // Obtain warp index
    int thread_idx = int(threadIdx.x);
    int warp_group_thread_idx = thread_idx % cutlass::NumThreadsPerWarpGroup;
    // int const warp_group_thread_idx = threadIdx.x % cutlass::NumThreadsPerWarpGroup;

    PipelineParams pipeline_params;
    pipeline_params.transaction_bytes = TmaTransactionBytesK;
    pipeline_params.role = MainloopPipeline::ThreadCategory::ProducerConsumer;
    pipeline_params.is_leader = warp_group_thread_idx == 0;
    pipeline_params.num_consumers = NumMmaThreads;

    if (warp_idx == 0 && lane_predicate) {
        shared_storage.barrier_Q.init(1 /*numThreads*/);
        shared_storage.barrier_dO.init(1 /*numThreads*/);
    }
    // cutlass::arch::fence_barrier_init();
    // We're counting on pipeline_k to call fence_barrier_init();
    MainloopPipeline pipeline_k(shared_storage.pipeline_k, pipeline_params, ClusterShape{});
    MainloopPipeline pipeline_v(shared_storage.pipeline_v, pipeline_params, ClusterShape{});

    // We need this to guarantee that the Pipeline init is visible
    // To all producers and consumer blocks in the Cluster
    if constexpr (size(ClusterShape{}) > 1) {
        cute::cluster_arrive_relaxed();
        cute::cluster_wait();
    } else {
        __syncthreads();
    }

    // State variables used for iterating the circular buffer
    // smem_pipe_read / release is used by the consumer of SMEM data - i.e MMA
    // smem_pipe_write is used by the producer of SMEM data - i.e TMA
    PipelineState smem_pipe_read_k, smem_pipe_read_v;
    PipelineState smem_pipe_release_k, smem_pipe_release_v;
    PipelineState smem_pipe_write_k = cutlass::make_producer_start_state<MainloopPipeline>();
    PipelineState smem_pipe_write_v = cutlass::make_producer_start_state<MainloopPipeline>();

    // Copy K tile and V tile from GMEM to SMEM.
    if (warp_idx == 0 && lane_predicate) {
        shared_storage.barrier_Q.arrive_and_expect_tx(TmaTransactionBytesQ);
        copy(tma_load_Q.with(reinterpret_cast<cutlass::arch::ClusterTransactionBarrier::ValueType&>(shared_storage.barrier_Q), 0 /*mcast_mask*/), tQgQ, tQsQ);
        shared_storage.barrier_dO.arrive_and_expect_tx(TmaTransactionBytesdO);
        copy(tma_load_dO.with(reinterpret_cast<cutlass::arch::ClusterTransactionBarrier::ValueType&>(shared_storage.barrier_dO), 0 /*mcast_mask*/), tdOgdO, tdOsdO);
    }
    // if (cute::thread0()) { print_tensor(sQ); printf("\n"); } __syncthreads();

    int n_block = cute::ceil_div(params.seqlen_k, kBlockN) - 1;

    uint16_t mcast_mask_kv = 0;
    if constexpr (cute::is_same_v<typename Ktraits::GmemTiledCopyKV, SM90_TMA_LOAD_MULTICAST>) {
        auto block_layout = Layout<ClusterShape>{}; // (m,n) -> block_id
        for (int m = 0; m < size<0>(block_layout); ++m) {
            mcast_mask_kv |= (uint16_t(1) << block_layout(m, cluster_local_block_id.y, _0{}));
        }
    }
    // Issue TmaLoads (Prologue fetches)
    if (warp_idx == 0 && lane_predicate) {
        // Issue the prologue loads
        CUTLASS_PRAGMA_UNROLL
        for (int stage = 0; stage < kStages && stage <= n_block; ++stage) {
            pipeline_k.producer_acquire(smem_pipe_write_k);
            copy(tma_load_K.with(*pipeline_k.producer_get_barrier(smem_pipe_write_k), mcast_mask_kv), tKgK(_, _, _, n_block - stage), tKsK(_, _, _, stage));
            ++smem_pipe_write_k;
            pipeline_v.producer_acquire(smem_pipe_write_v);
            copy(tma_load_V.with(*pipeline_v.producer_get_barrier(smem_pipe_write_v), mcast_mask_kv), tVgV(_, _, _, n_block - stage), tVsV(_, _, _, stage));
            ++smem_pipe_write_v;
        }
    }

    Tensor gLSE = local_tile(mLSE(bidb, bidh, _), Shape<Int<kBlockM>>{}, make_coord(m_block));
    Tensor gdPsum = local_tile(mdPsum(bidb, bidh, _), Shape<Int<kBlockM>>{}, make_coord(m_block));

    // Initialize matmul objects.
    typename Ktraits::TiledMmaSdP tiledMmaSdP;
    auto threadMmaSdP = tiledMmaSdP.get_thread_slice(threadIdx.x);
    typename Ktraits::TiledMmadKV tiledMmadKV;
    auto threadMmadKV = tiledMmadKV.get_thread_slice(threadIdx.x);
    typename Ktraits::TiledMmadQ tiledMmadQ;
    auto threadMmadQ = tiledMmadQ.get_thread_slice(threadIdx.x);

    // Allocate accumulator
    Tensor tdQrdQ = partition_fragment_C(tiledMmadQ, select<!dQ_swapAB ? 0 : 2, !dQ_swapAB ? 2 : 0>(TileShape_MNK{}));
    clear(tdQrdQ);

    auto smem_tiled_copy_PdS = make_tiled_copy_C(typename Ktraits::SmemCopyAtomPdS{}, tiledMmaSdP);
    auto smem_thr_copy_PdS = smem_tiled_copy_PdS.get_thread_slice(threadIdx.x);

    if constexpr (!SdP_swapAB) {
        Tensor tPsP = smem_thr_copy_PdS.partition_D(sP);      // ((Atom,AtomNum),PIPE_M,PIPE_N)
        Tensor tdSsdS = smem_thr_copy_PdS.partition_D(sdS);      // ((Atom,AtomNum),PIPE_M,PIPE_N)

        // Allocate "fragments/descriptors"
        Tensor tSrQ = threadMmaSdP.partition_fragment_A(sQ);
        Tensor tSrK = threadMmaSdP.partition_fragment_B(sK);
        Tensor tdPrdO = threadMmaSdP.partition_fragment_A(sdO);
        Tensor tdPrV = threadMmaSdP.partition_fragment_B(sV);

        Tensor caccS = make_identity_tensor(select<0, 1>(TileShape_MNK{}));    // (BLK_M,BLK_N) -> (blk_m,blk_n)
        Tensor taccScS = threadMmaSdP.partition_C(caccS);                           // (MMA,MMA_N,MMA_N)
        static_assert(decltype(size<0, 0>(taccScS))::value == 2);
        static_assert(decltype(size<0, 1>(taccScS))::value == 2);
        // taccScS has shape ((2, 2, V), MMA_M, MMA_N), we only take only the row indices.
        Tensor taccScS_row = taccScS(make_coord(_0{}, _, _0{}), _, _0{});
        Tensor lse = make_tensor<ElementAccum>(Shape<Int<decltype(size(taccScS_row))::value>>{});
        Tensor dP_sum = make_fragment_like(lse);
        #pragma unroll
        for (int mi = 0; mi < size(lse); ++mi) {
            const int row = get<0>(taccScS_row(mi));
            lse(mi) = row < params.seqlen_q - m_block * kBlockM ? gLSE(row) : INFINITY;
            dP_sum(mi) = row < params.seqlen_q - m_block * kBlockM ? gdPsum(row) : 0;
        }
        // if (cute::thread0()) { print_tensor(lse); printf("\n"); }
        // if (cute::thread0()) { print_tensor(dP_sum); printf("\n"); }
        // We want LSE = inf if the row is OOB. In that case Q would be zero, K would be zero,
        // and scores would be zero. With LSE = 0, probs will be all 1's, and when we multiply
        // with V (which would be zero), we're fine. However, with ALiBi, we might modify these
        // scores, and probs can become NaN. Instead if we set LSE = inf for OOB rows, probs are always 0.

        shared_storage.barrier_Q.wait(0);
        shared_storage.barrier_dO.wait(0);

        // #pragma unroll 2
        CUTLASS_PRAGMA_NO_UNROLL
        for (; n_block >= 0; --n_block) {
            // Otherwise we might have WG0 still wating on NamedBarrier but WG1 already
            // started the next iteration and start flipping the same NamedBarrier.
            __syncthreads();
            Tensor tSrS = partition_fragment_C(tiledMmaSdP, select<0, 1>(TileShape_MNK{}));
            pipeline_k.consumer_wait(smem_pipe_read_k);
            flash::gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiledMmaSdP, tSrQ, tSrK(_, _, _, smem_pipe_read_k.index()), tSrS);
            Tensor tdPrdP = partition_fragment_C(tiledMmaSdP, select<0, 1>(TileShape_MNK{}));
            pipeline_v.consumer_wait(smem_pipe_read_v);
            flash::gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiledMmaSdP, tdPrdO, tdPrV(_, _, _, smem_pipe_read_v.index()), tdPrdP);
            ++smem_pipe_read_v;

            warpgroup_wait<1>();
            // Reshape tSrS from ((2, 2, V), MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, V, MMA_N))
            Tensor scores = make_tensor(tSrS.data(), flash::convert_layout_acc_rowcol(tSrS.layout()));
            flash::scale_apply_exp2</*Scale=*/true, /*scale_max=*/false>(scores, lse, params.scale_softmax_log2);
            // if (cute::thread0()) { print_tensor(scores); printf("\n"); }
            // Convert scores from fp32 to fp16/bf16
            Tensor rP = flash::convert_type<Element>(tSrS);
            Tensor tPaP = smem_thr_copy_PdS.retile_S(rP);     // ((Atom,AtomNum), MMA_N, MMA_N)
            cute::copy(smem_tiled_copy_PdS, tPaP, tPsP);
            int const warp_group_idx = cutlass::canonical_warp_group_idx();
            cutlass::arch::NamedBarrier::arrive(kNThreads, warp_group_idx /*id*/);

            warpgroup_wait<0>();
            // Reshape tdPrdP from ((2, 2, V), MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, V, MMA_N))
            Tensor dS = make_tensor(tdPrdP.data(), scores.layout());
            // if (cute::thread0()) { print_tensor(dS); printf("\n"); }
            #pragma unroll
            for (int mi = 0; mi < size<0>(dS); ++mi) {
                #pragma unroll
                for (int ni = 0; ni < size<1>(dS); ++ni) { dS(mi, ni) = scores(mi, ni) * (dS(mi, ni) - dP_sum(mi)); }
            }
            Tensor rdS = flash::convert_type<Element>(tdPrdP);

            Tensor tdSadS = smem_thr_copy_PdS.retile_S(rdS);     // ((Atom,AtomNum), MMA_N, MMA_N)
            cute::copy(smem_tiled_copy_PdS, tdSadS, tdSsdS);
            cutlass::arch::NamedBarrier::arrive(kNThreads, 2 + warp_group_idx /*id*/);
            // if (cute::thread0()) { print_tensor(dS); printf("\n"); }

            if constexpr (Mma_dQ_is_RS) {
                static_assert(!dQ_swapAB);
                Tensor tdQrdS = make_tensor(rdS.data(), convert_layout_acc_Aregs<typename Ktraits::TiledMmadQ>(tdPrdP.layout()));
                Tensor tdQrK = threadMmadQ.partition_fragment_B(sKt);
                flash::gemm</*zero_init=*/false, /*wg_wait=*/-1>(tiledMmadQ, tdQrdS, tdQrK(_, _, _, smem_pipe_read_k.index()), tdQrdQ);
                // if (cute::thread0()) { print(tdQrdS); printf("\n"); print(tdQrK); printf("\n"); print(tdQrdQ); printf("\n"); }
            }

            // warpgroup_wait<0>();
            // Tensor dQ_tmp = make_tensor(tdQrdQ.data(), flash::convert_layout_acc_rowcol(tdQrdQ.layout()));
            // if (cute::thread0()) { print_tensor(dQ_tmp); printf("\n"); }
            // if (cute::thread0()) { print_tensor(sK); printf("\n"); }
            // if (cute::thread0()) { print_tensor(sKt); printf("\n"); } __syncthreads();

            // if (cute::thread0()) { printf("before barrier sync 0\n"); }
            // SMEM fence to make sure sP is written before it's read by WGMMA
            cutlass::arch::fence_view_async_shared();
            cutlass::arch::NamedBarrier::sync(kNThreads, 1 - warp_group_idx /*id*/);
            // if (cute::thread0()) { printf("after barrier sync 0\n"); }
            Tensor tdVrdV = partition_fragment_C(tiledMmadKV, select<!dKV_swapAB ? 1 : 2, !dKV_swapAB? 2 : 1>(TileShape_MNK{}));

            if constexpr (!dKV_swapAB) {
                Tensor tdVrP = threadMmadKV.partition_fragment_A(sPt);
                Tensor tdVrdO = threadMmadKV.partition_fragment_B(sdOt);
                flash::gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiledMmadKV, tdVrP, tdVrdO, tdVrdV);
            } else {
                Tensor tdVrP = threadMmadKV.partition_fragment_B(sPt);
                Tensor tdVrdO = threadMmadKV.partition_fragment_A(sdOt);
                flash::gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiledMmadKV, tdVrdO, tdVrP, tdVrdV);
            }

            // warpgroup_wait<0>();
            // Tensor dV_tmp = make_tensor(tdVrdV.data(), flash::convert_layout_acc_rowcol(tdVrdV.layout()));
            // if (cute::thread0()) { print_tensor(dV_tmp); printf("\n"); }
            cutlass::arch::fence_view_async_shared();
            cutlass::arch::NamedBarrier::sync(kNThreads, 2 + 1 - warp_group_idx /*id*/);
            if constexpr (!Mma_dQ_is_RS) {
                if constexpr (!dQ_swapAB) {
                    Tensor tdQrdS = threadMmadQ.partition_fragment_A(sdS);
                    Tensor tdQrK = threadMmadQ.partition_fragment_B(sKt);
                    flash::gemm</*zero_init=*/false, /*wg_wait=*/-1>(tiledMmadQ, tdQrdS, tdQrK(_, _, _, smem_pipe_read_k.index()), tdQrdQ);
                } else {
                    Tensor tdQrdS = threadMmadQ.partition_fragment_B(sdS);
                    Tensor tdQrK = threadMmadQ.partition_fragment_A(sKt);
                    flash::gemm</*zero_init=*/false, /*wg_wait=*/-1>(tiledMmadQ, tdQrK(_, _, _, smem_pipe_read_k.index()), tdQrdS, tdQrdQ);
                }
            }
            ++smem_pipe_read_k;
            // warpgroup_wait<0>();
            // Tensor dQ_tmp = make_tensor(tdQrdQ.data(), flash::convert_layout_acc_rowcol(tdQrdQ.layout()));
            // if (cute::thread0()) { print_tensor(dQ_tmp); printf("\n"); }
            // if (blockIdx.x == 0 && threadIdx.x == 128) { print_tensor(dQ_tmp); printf("\n"); }

            Tensor tdKrdK = partition_fragment_C(tiledMmadKV, select<!dKV_swapAB ? 1 : 2, !dKV_swapAB? 2 : 1>(TileShape_MNK{}));
            if constexpr (!dKV_swapAB) {
                Tensor tdKrdS = threadMmadKV.partition_fragment_A(sdSt);
                Tensor tdKrQ = threadMmadKV.partition_fragment_B(sQt);
                flash::gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiledMmadKV, tdKrdS, tdKrQ, tdKrdK);
            } else {
                Tensor tdKrdS = threadMmadKV.partition_fragment_B(sdSt);
                Tensor tdKrQ = threadMmadKV.partition_fragment_A(sQt);
                flash::gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiledMmadKV, tdKrQ, tdKrdS, tdKrdK);
            }
            // warpgroup_wait<0>();
            // Tensor dK_tmp = make_tensor(tdKrdK.data(), flash::convert_layout_acc_rowcol(tdKrdK.layout()));
            // if (cute::thread0()) { print_tensor(dK_tmp); printf("\n"); }

            warpgroup_wait<Mma_dQ_is_RS ? 1 : 2>();
            // if (cute::thread0()) { print(tdQrdQ); printf("\n"); print(tdQgdQaccum); printf("\n"); }
            Tensor tdVrdV_atomic = recast<float4>(tdVrdV);
            Tensor tdVgdVaccum_atomic = recast<float4>(tdVgdVaccum(_, _, _, n_block));
            #pragma unroll
            for (int i = 0; i < size(tdVrdV_atomic); ++i) { atomicAdd(&tdVgdVaccum_atomic(i), tdVrdV_atomic(i)); }
            // for (int i = 0; i < size(tdVrdV_atomic); ++i) { tdVgdVaccum_atomic(i) = tdVrdV_atomic(i); }

            warpgroup_wait<0>();
            Tensor tdKrdK_atomic = recast<float4>(tdKrdK);
            Tensor tdKgdKaccum_atomic = recast<float4>(tdKgdKaccum(_, _, _, n_block));
            #pragma unroll
            for (int i = 0; i < size(tdKrdK_atomic); ++i) { atomicAdd(&tdKgdKaccum_atomic(i), tdKrdK_atomic(i)); }

            pipeline_v.consumer_release(smem_pipe_release_v);  // release V
            ++smem_pipe_release_v;
            pipeline_k.consumer_release(smem_pipe_release_k);  // release V
            ++smem_pipe_release_k;

            int const lane_predicate = cute::elect_one_sync();
            int const warp_idx = cutlass::canonical_warp_idx_sync();
            if (warp_idx == 0 && lane_predicate && n_block >= kStages) {
                pipeline_k.producer_acquire(smem_pipe_write_k);
                copy(tma_load_K.with(*pipeline_k.producer_get_barrier(smem_pipe_write_k), mcast_mask_kv), tKgK(_, _, _, n_block - kStages), tKsK(_, _, _, smem_pipe_write_k.index()));
                ++smem_pipe_write_k;
                pipeline_v.producer_acquire(smem_pipe_write_v);
                copy(tma_load_V.with(*pipeline_v.producer_get_barrier(smem_pipe_write_v), mcast_mask_kv), tVgV(_, _, _, n_block - kStages), tVsV(_, _, _, smem_pipe_write_v.index()));
                ++smem_pipe_write_v;
            }
        }

    } else {  // SdP_swapAB
        Tensor tdSsdS = smem_thr_copy_PdS.partition_D(sdSt);      // ((Atom,AtomNum),PIPE_M,PIPE_N)

        // Allocate "fragments/descriptors"
        Tensor tSrQ = threadMmaSdP.partition_fragment_B(sQ);
        Tensor tSrK = threadMmaSdP.partition_fragment_A(sK);
        Tensor tdPrdO = threadMmaSdP.partition_fragment_B(sdO);
        Tensor tdPrV = threadMmaSdP.partition_fragment_A(sV);

        Tensor caccS = make_identity_tensor(select<1, 0>(TileShape_MNK{}));    // (BLK_M,BLK_N) -> (blk_m,blk_n)
        Tensor taccScS = threadMmaSdP.partition_C(caccS);                           // (MMA,MMA_N,MMA_N)
        static_assert(decltype(size<0, 0>(taccScS))::value == 2);
        static_assert(decltype(size<0, 1>(taccScS))::value == 2);
        // taccScS has shape ((2, 2, V), MMA_M, MMA_N), we only take only the row indices.
        Tensor taccScS_row = taccScS(make_coord(_, _0{}, _), _0{}, _);
        Tensor lse = make_tensor<ElementAccum>(Shape<Int<decltype(size(taccScS_row))::value>>{});
        Tensor dP_sum = make_fragment_like(lse);
        #pragma unroll
        for (int mi = 0; mi < size(lse); ++mi) {
            const int row = get<1>(taccScS_row(mi));
            lse(mi) = row < params.seqlen_q - m_block * kBlockM ? gLSE(row) : INFINITY;
            dP_sum(mi) = row < params.seqlen_q - m_block * kBlockM ? gdPsum(row) : 0;
        }
        // if (cute::thread0()) { print_tensor(taccScS_row); printf("\n"); }
        // cute::fill(lse, 1);
        // cute::fill(dP_sum, 1);
        // if (cute::thread0()) { print_tensor(dP_sum); printf("\n"); }
        // We want LSE = inf if the row is OOB. In that case Q would be zero, K would be zero,
        // and scores would be zero. With LSE = 0, probs will be all 1's, and when we multiply
        // with V (which would be zero), we're fine. However, with ALiBi, we might modify these
        // scores, and probs can become NaN. Instead if we set LSE = inf for OOB rows, probs are always 0.

        clear(tdQrdQ);

        shared_storage.barrier_Q.wait(0);
        shared_storage.barrier_dO.wait(0);

        // #pragma unroll 2
        CUTLASS_PRAGMA_NO_UNROLL
        for (; n_block >= 0; --n_block) {
            Tensor tSrS = partition_fragment_C(tiledMmaSdP, select<1, 0>(TileShape_MNK{}));
            pipeline_k.consumer_wait(smem_pipe_read_k);
            flash::gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiledMmaSdP, tSrK(_, _, _, smem_pipe_read_k.index()), tSrQ, tSrS);
            Tensor tdPrdP = partition_fragment_C(tiledMmaSdP, select<1, 0>(TileShape_MNK{}));
            pipeline_v.consumer_wait(smem_pipe_read_v);
            flash::gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiledMmaSdP, tdPrV(_, _, _, smem_pipe_read_v.index()), tdPrdO, tdPrdP);
            ++smem_pipe_read_v;

            warpgroup_wait<1>();
            // Reshape tSrS from ((2, 2, V), MMA_N, MMA_M) to (nrow=(2, V, MMA_M), ncol=(2, MMA_N))
            Tensor scores = make_tensor(tSrS.data(), flash::convert_layout_acc_transposed_rowcol(tSrS.layout()));
            // if (cute::thread0()) { print_tensor(lse); printf("\n"); }
            flash::scale_apply_exp2</*Scale=*/true, /*scale_max=*/false>(scores, lse, params.scale_softmax_log2);
            // if (cute::thread0()) { print_tensor(scores); printf("\n"); }

            // Convert scores from fp32 to fp16/bf16
            Tensor rP = flash::convert_type<Element>(tSrS);

            static_assert(!dKV_swapAB);
            Tensor tdVrdV = partition_fragment_C(tiledMmadKV, select<1, 2>(TileShape_MNK{}));
            Tensor tdVrP = make_tensor(rP.data(), convert_layout_acc_Aregs<typename Ktraits::TiledMmadKV>(tSrS.layout()));
            Tensor tdVrdO = threadMmadKV.partition_fragment_B(sdOt);
            flash::gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiledMmadKV, tdVrP, tdVrdO, tdVrdV);
            // warpgroup_wait<0>();
            // Tensor dV_tmp = make_tensor(tdVrdV.data(), flash::convert_layout_acc_rowcol(tdVrdV.layout()));
            // if (cute::thread0()) { print_tensor(dV_tmp); printf("\n"); }

            warpgroup_wait<1>();
            // Reshape tdPrdP from ((2, 2, V), MMA_N, MMA_M) to (nrow=(2, V, MMA_M), ncol=(2, MMA_N))
            Tensor dS = make_tensor(tdPrdP.data(), scores.layout());
            #pragma unroll
            for (int mi = 0; mi < size<0>(dS); ++mi) {
                #pragma unroll
                for (int ni = 0; ni < size<1>(dS); ++ni) { dS(mi, ni) = scores(mi, ni) * (dS(mi, ni) - dP_sum(mi)); }
            }
            // if (cute::thread0()) { print_tensor(dS); printf("\n"); }
            Tensor rdS = flash::convert_type<Element>(tdPrdP);

            Tensor tdSadS = smem_thr_copy_PdS.retile_S(rdS);     // ((Atom,AtomNum), MMA_N, MMA_N)
            cute::copy(smem_tiled_copy_PdS, tdSadS, tdSsdS);

            Tensor tdKrdK = partition_fragment_C(tiledMmadKV, select<1, 2>(TileShape_MNK{}));
            Tensor tdKrdS = make_tensor(rdS.data(), convert_layout_acc_Aregs<typename Ktraits::TiledMmadKV>(tdPrdP.layout()));
            Tensor tdKrQ = threadMmadKV.partition_fragment_B(sQt);
            flash::gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiledMmadKV, tdKrdS, tdKrQ, tdKrdK);
            // warpgroup_wait<0>();
            // Tensor dK_tmp = make_tensor(tdKrdK.data(), flash::convert_layout_acc_rowcol(tdKrdK.layout()));
            // if (cute::thread0()) { print_tensor(dK_tmp); printf("\n"); }

            warpgroup_wait<1>();
            // if (cute::thread0()) { print(tdQrdQ); printf("\n"); print(tdQgdQaccum); printf("\n"); }
            Tensor tdVrdV_atomic = recast<float4>(tdVrdV);
            Tensor tdVgdVaccum_atomic = recast<float4>(tdVgdVaccum(_, _, _, n_block));
            #pragma unroll
            for (int i = 0; i < size(tdVrdV_atomic); ++i) { atomicAdd(&tdVgdVaccum_atomic(i), tdVrdV_atomic(i)); }
            // for (int i = 0; i < size(tdVrdV_atomic); ++i) { tdVgdVaccum_atomic(i) = tdVrdV_atomic(i); }

            // SMEM fence to make sure sP is written before it's read by WGMMA
            cutlass::arch::fence_view_async_shared();
            // cutlass::arch::NamedBarrier::sync(kNThreads, 0 /*id*/);
            __syncthreads();
            static_assert(!Mma_dQ_is_RS);
            if constexpr (!dQ_swapAB) {
                Tensor tdQrdS = threadMmadQ.partition_fragment_A(sdS);
                Tensor tdQrK = threadMmadQ.partition_fragment_B(sKt);
                flash::gemm</*zero_init=*/false, /*wg_wait=*/-1>(tiledMmadQ, tdQrdS, tdQrK(_, _, _, smem_pipe_read_k.index()), tdQrdQ);
            } else {
                Tensor tdQrdS = threadMmadQ.partition_fragment_B(sdS);
                Tensor tdQrK = threadMmadQ.partition_fragment_A(sKt);
                flash::gemm</*zero_init=*/false, /*wg_wait=*/-1>(tiledMmadQ, tdQrK(_, _, _, smem_pipe_read_k.index()), tdQrdS, tdQrdQ);
            }
            ++smem_pipe_read_k;
            // warpgroup_wait<0>();
            // Tensor dQ_tmp = make_tensor(tdQrdQ.data(), flash::convert_layout_acc_rowcol(tdQrdQ.layout()));
            // if (cute::thread0()) { print_tensor(dQ_tmp); printf("\n"); }

            warpgroup_wait<1>();
            // if (cute::thread0()) { print(tdQrdQ); printf("\n"); print(tdQgdQaccum); printf("\n"); }
            Tensor tdKrdK_atomic = recast<float4>(tdKrdK);
            Tensor tdKgdKaccum_atomic = recast<float4>(tdKgdKaccum(_, _, _, n_block));
            #pragma unroll
            for (int i = 0; i < size(tdKrdK_atomic); ++i) { atomicAdd(&tdKgdKaccum_atomic(i), tdKrdK_atomic(i)); }
            // for (int i = 0; i < size(tdVrdV_atomic); ++i) { tdVgdVaccum_atomic(i) = tdVrdV_atomic(i); }

            warpgroup_wait<0>();

            pipeline_v.consumer_release(smem_pipe_release_v);  // release V
            ++smem_pipe_release_v;
            pipeline_k.consumer_release(smem_pipe_release_k);  // release V
            ++smem_pipe_release_k;

            int const lane_predicate = cute::elect_one_sync();
            int const warp_idx = cutlass::canonical_warp_idx_sync();
            if (warp_idx == 0 && lane_predicate && n_block >= kStages) {
                pipeline_k.producer_acquire(smem_pipe_write_k);
                copy(tma_load_K.with(*pipeline_k.producer_get_barrier(smem_pipe_write_k), mcast_mask_kv), tKgK(_, _, _, n_block - kStages), tKsK(_, _, _, smem_pipe_write_k.index()));
                ++smem_pipe_write_k;
                pipeline_v.producer_acquire(smem_pipe_write_v);
                copy(tma_load_V.with(*pipeline_v.producer_get_barrier(smem_pipe_write_v), mcast_mask_kv), tVgV(_, _, _, n_block - kStages), tVsV(_, _, _, smem_pipe_write_v.index()));
                ++smem_pipe_write_v;
            }
        }
    }

    // Epilogue

    #pragma unroll
    for (int i = 0; i < size(tdQrdQ); ++i) { tdQrdQ(i) *= params.scale_softmax; }
    // if (cute::thread0()) { print_tensor(tdQrdQ); }

    Tensor tdQrdQ_out = convert_type<Element>(tdQrdQ);

    Tensor sdQ = make_tensor(make_smem_ptr(shared_storage.smem_dq.data()), typename Ktraits::SmemLayoutdQ{});
    Tensor sdQt = make_tensor(make_smem_ptr(shared_storage.smem_dq.data()), typename Ktraits::SmemLayoutdQt{});

    auto smem_tiled_copy_dQ = make_tiled_copy_C(typename Ktraits::SmemCopyAtomdQ{}, tiledMmadQ);
    auto smem_thr_copy_dQ = smem_tiled_copy_dQ.get_thread_slice(threadIdx.x);
    Tensor taccdQrdQ = smem_thr_copy_dQ.retile_S(tdQrdQ_out);        // ((Atom,AtomNum), MMA_M, MMA_N)

    __syncthreads();
    if constexpr (!dQ_swapAB) {
        Tensor taccdQsdQ = smem_thr_copy_dQ.partition_D(sdQ);     // ((Atom,AtomNum),PIPE_M,PIPE_N)
        cute::copy(smem_tiled_copy_dQ, taccdQrdQ, taccdQsdQ);
    } else {
        Tensor taccdQsdQt = smem_thr_copy_dQ.partition_D(sdQt);     // ((Atom,AtomNum),PIPE_M,PIPE_N)
        cute::copy(smem_tiled_copy_dQ, taccdQrdQ, taccdQsdQt);
    }
    cutlass::arch::fence_view_async_shared(); // ensure smem writes are visible to TMA

    Tensor mdQ = tma_store_dQ.get_tma_tensor(make_shape(params.seqlen_q, params.d, params.h, params.b));
    Tensor gdQ = local_tile(mdQ(_, _, bidh, bidb), select<0, 2>(TileShape_MNK{}), make_coord(m_block, _0{}));  // (M, K)
    auto block_tma_dQ = tma_store_dQ.get_slice(_0{});
    Tensor tdQgdQ = block_tma_dQ.partition_D(gdQ);  // (TMA, TMA_M, TMA_K)
    Tensor tdQsdQ = block_tma_dQ.partition_S(sdQ); // (TMA, TMA_M, TMA_K)

    __syncthreads(); // ensure all threads have issued their async fence
    // if (cute::thread0()) { print_tensor(sdQ); }

    lane_predicate = cute::elect_one_sync();
    warp_idx = cutlass::canonical_warp_idx_sync();
    if (warp_idx == 0 && lane_predicate) {
        cute::copy(tma_store_dQ, tdQsdQ, tdQgdQ);
        tma_store_arrive();
    }
    tma_store_wait<0>();

    // To make sure remote SMEM doesn't get destroyed
    if constexpr (size(ClusterShape{}) > 1) {
        cute::cluster_arrive();
        cute::cluster_wait();
    }

}

template <typename Ktraits, bool Is_causal, typename TiledCopyQ, typename TiledCopydO,
        typename TiledCopyK, typename TiledCopyV, typename TiledCopydK, typename TiledCopydV, typename TiledCopydQ, typename TiledCopyAdddQ>
__global__ void __launch_bounds__(Ktraits::kNWarps * cutlass::NumThreadsPerWarp, 1)
    compute_dqkv_ws(CUTE_GRID_CONSTANT Flash_bwd_params const params,
                    CUTE_GRID_CONSTANT TiledCopyQ const tma_load_Q,
                    CUTE_GRID_CONSTANT TiledCopydO const tma_load_dO,
                    CUTE_GRID_CONSTANT TiledCopyK const tma_load_K,
                    CUTE_GRID_CONSTANT TiledCopyV const tma_load_V,
                    CUTE_GRID_CONSTANT TiledCopydK const tma_store_dK,
                    CUTE_GRID_CONSTANT TiledCopydV const tma_store_dV,
                    CUTE_GRID_CONSTANT TiledCopydQ const tma_store_dQ,
                    CUTE_GRID_CONSTANT TiledCopyAdddQ const tma_reduce_add_dQ) {

    using Element = typename Ktraits::Element;
    using ElementAccum = typename Ktraits::ElementAccum;
    using SoftType = ElementAccum;
    using index_t = typename Ktraits::index_t;
    using TileShape_MNK = typename Ktraits::TileShape_MNK;
    using ClusterShape = typename Ktraits::ClusterShape_MNK;

    static_assert(Ktraits::Is_WS);

    // static constexpr int kNThreads = Ktraits::kNThreads;
    // static constexpr int NumMmaThreads = size(typename Ktraits::TiledMmaSdP{});
    static constexpr int NumMmaThreads = 256;
    static constexpr int NumCopyThreads = cutlass::NumThreadsPerWarpGroup;
    static constexpr int kBlockM = Ktraits::kBlockM;
    static constexpr int kNThreadsdQ = Ktraits::kNThreadsdQ;
    // static constexpr int kBlockN = Ktraits::kBlockN;
    // constexpr int kHeadDim = Ktraits::kHeadDim;
    // static constexpr int kStages = Ktraits::kStages;

    static constexpr bool SdP_swapAB = Ktraits::SdP_swapAB;
    static constexpr bool dKV_swapAB = Ktraits::dKV_swapAB;
    static constexpr bool dQ_swapAB = Ktraits::dQ_swapAB;

    if constexpr (SdP_swapAB) { static_assert(!dKV_swapAB); }

    static constexpr bool Mma_dQ_is_RS = Ktraits::Mma_dQ_is_RS;
    if constexpr (dQ_swapAB) { static_assert(!Mma_dQ_is_RS); }

    using MainloopPipeline = typename Ktraits::MainloopPipeline;
    using PipelineParams = typename MainloopPipeline::Params;
    using PipelineState = typename MainloopPipeline::PipelineState;

    extern __shared__ char shared_memory[];
    auto &shared_storage = *reinterpret_cast<typename Ktraits::SharedStorage*>(shared_memory);

    int lane_predicate = cute::elect_one_sync();
    int warp_idx = cutlass::canonical_warp_idx_sync();

    // Issue Tma Descriptor Prefetch from a single thread
    if (warp_idx == 0 && lane_predicate) {
        cute::prefetch_tma_descriptor(tma_load_Q.get_tma_descriptor());
        cute::prefetch_tma_descriptor(tma_load_dO.get_tma_descriptor());
        cute::prefetch_tma_descriptor(tma_load_K.get_tma_descriptor());
        cute::prefetch_tma_descriptor(tma_load_V.get_tma_descriptor());
        cute::prefetch_tma_descriptor(tma_store_dK.get_tma_descriptor());
        cute::prefetch_tma_descriptor(tma_store_dV.get_tma_descriptor());
        cute::prefetch_tma_descriptor(tma_store_dQ.get_tma_descriptor());
        cute::prefetch_tma_descriptor(tma_reduce_add_dQ.get_tma_descriptor());
    }

    // Construct SMEM tensors.
    Tensor sQ = make_tensor(make_smem_ptr(shared_storage.smem_q.data()), typename Ktraits::SmemLayoutQ{});
    Tensor sdO = make_tensor(make_smem_ptr(shared_storage.smem_do.data()), typename Ktraits::SmemLayoutdO{});
    Tensor sK = make_tensor(make_smem_ptr(shared_storage.smem_k.data()), typename Ktraits::SmemLayoutK{});
    Tensor sV = make_tensor(make_smem_ptr(shared_storage.smem_v.data()), typename Ktraits::SmemLayoutV{});
    Tensor sP = make_tensor(make_smem_ptr(shared_storage.smem_p.data()), typename Ktraits::SmemLayoutP{});
    Tensor sdS = make_tensor(make_smem_ptr(shared_storage.smem_ds.data()), typename Ktraits::SmemLayoutdS{});
    Tensor sQt = make_tensor(make_smem_ptr(shared_storage.smem_q.data()), typename Ktraits::SmemLayoutQt{});
    Tensor sdOt = make_tensor(make_smem_ptr(shared_storage.smem_do.data()), typename Ktraits::SmemLayoutdOt{});
    Tensor sKt = make_tensor(make_smem_ptr(shared_storage.smem_k.data()), typename Ktraits::SmemLayoutKt{});
    Tensor sPt = make_tensor(make_smem_ptr(shared_storage.smem_p.data()), typename Ktraits::SmemLayoutPt{});
    Tensor sdSt = make_tensor(make_smem_ptr(shared_storage.smem_ds.data()), typename Ktraits::SmemLayoutdSt{});
    Tensor sdQ = make_tensor(make_smem_ptr(shared_storage.smem_dqacc.data()), typename Ktraits::SmemLayoutdQacc{});
    Tensor sdQ2 = make_tensor(make_smem_ptr(shared_storage.smem_dqacc.data()), typename Ktraits::SmemLayoutdQacc2{});
    Tensor sdQt = make_tensor(make_smem_ptr(shared_storage.smem_dqacc.data()), typename Ktraits::SmemLayoutdQacct{});

    // Set the bytes transferred in this TMA transaction (may involve multiple issues)
    constexpr uint32_t TmaTransactionBytesQ = static_cast<uint32_t>(size<0>(sQ) * size<1>(sQ) * cutlass::sizeof_bits_v<Element> / 8);
    constexpr uint32_t TmaTransactionBytesdO = static_cast<uint32_t>(size<0>(sdO) * size<1>(sdO) * cutlass::sizeof_bits_v<Element> / 8);
    static_assert(TmaTransactionBytesQ == TmaTransactionBytesdO);
    constexpr uint32_t TmaTransactionBytesK = static_cast<uint32_t>(size<0>(sK) * size<1>(sK) * cutlass::sizeof_bits_v<Element> / 8);
    constexpr uint32_t TmaTransactionBytesV = static_cast<uint32_t>(size<0>(sV) * size<1>(sV) * cutlass::sizeof_bits_v<Element> / 8);
    static_assert(TmaTransactionBytesK == TmaTransactionBytesV);

    // Obtain warp index
    int thread_idx = int(threadIdx.x);
    int warp_group_thread_idx = thread_idx % cutlass::NumThreadsPerWarpGroup;
    // int const warp_group_thread_idx = threadIdx.x % cutlass::NumThreadsPerWarpGroup;

    PipelineParams pipeline_params;
    pipeline_params.transaction_bytes = TmaTransactionBytesQ;
    int warp_group_idx = cutlass::canonical_warp_group_idx();
    if (warp_group_idx == 0) {
        pipeline_params.role = MainloopPipeline::ThreadCategory::Producer;
    } else {
        pipeline_params.role = MainloopPipeline::ThreadCategory::Consumer;
    }
    pipeline_params.is_leader = warp_group_thread_idx == 0;
    pipeline_params.num_consumers = NumMmaThreads;

    if (warp_idx == 0 && lane_predicate) {
        shared_storage.barrier_K.init(1 /*numThreads*/);
        shared_storage.barrier_V.init(1 /*numThreads*/);
    }
    // cutlass::arch::fence_barrier_init();
    // We're counting on pipeline_q to call fence_barrier_init();
    MainloopPipeline pipeline_q(shared_storage.pipeline_q, pipeline_params, ClusterShape{});
    MainloopPipeline pipeline_do(shared_storage.pipeline_do, pipeline_params, ClusterShape{});

    // We need this to guarantee that the Pipeline init is visible
    // To all producers and consumer blocks in the Cluster
    if constexpr (size(ClusterShape{}) > 1) {
        cute::cluster_arrive_relaxed();
        cute::cluster_wait();
    } else {
        __syncthreads();
    }

    if (warp_group_idx == 0) {  // Producer
        // method in cutlass/arch/reg_reconfig.h
        // calls setmaxnreg.dec.sync.aligned.u32
        cutlass::arch::warpgroup_reg_dealloc<24>();

        int const n_block = blockIdx.x;
        int const bidb = blockIdx.z;  // The block index for the batch.
        int const bidh = blockIdx.y;  // The block index for the head.

        int m_block = cute::ceil_div(params.seqlen_q, kBlockM) - 1;

        int warp_idx_in_warpgroup = __shfl_sync(0xffffffff, (threadIdx.x / 32) % 4, 0);
        int lane_predicate = cute::elect_one_sync();
        // if (warp_idx_in_warpgroup == 0 && lane_predicate) {
        if (warp_idx_in_warpgroup == 0) {  // Load K, and do TMA on Q and dO
            Tensor mQ = tma_load_Q.get_tma_tensor(make_shape(params.seqlen_q, params.d, params.h, params.b));
            Tensor mdO = tma_load_dO.get_tma_tensor(make_shape(params.seqlen_q, params.d, params.h, params.b));
            Tensor mK = tma_load_K.get_tma_tensor(make_shape(params.seqlen_k, params.d, params.h, params.b));
            Tensor gQ = local_tile(mQ(_, _, bidh, bidb), select<0, 2>(TileShape_MNK{}), make_coord(_, _0{}));  // (M, K, _)
            Tensor gdO = local_tile(mdO(_, _, bidh, bidb), select<0, 2>(TileShape_MNK{}), make_coord(_, _0{}));  // (M, K, _)
            Tensor gK = local_tile(mK(_, _, bidh, bidb), select<1, 2>(TileShape_MNK{}), make_coord(n_block, _0{}));  // (N, K)
            // Prepare the TMA loads
            uint32_t block_rank_in_cluster = cute::block_rank_in_cluster();
            constexpr uint32_t cluster_shape_x = get<0>(ClusterShape());
            uint2 cluster_local_block_id = {block_rank_in_cluster % cluster_shape_x, block_rank_in_cluster / cluster_shape_x};
            auto block_tma_Q = tma_load_Q.get_slice(cluster_local_block_id.y);
            auto block_tma_dO = tma_load_dO.get_slice(cluster_local_block_id.y);
            auto block_tma_K = tma_load_K.get_slice(_0{});
            Tensor tQgQ = block_tma_Q.partition_S(gQ);  // (TMA, TMA_M, TMA_K, k)
            Tensor tQsQ = block_tma_Q.partition_D(sQ);  // (TMA, TMA_M, TMA_K, PIPE)
            Tensor tdOgdO = block_tma_dO.partition_S(gdO);  // (TMA, TMA_M, TMA_K, k)
            Tensor tdOsdO = block_tma_dO.partition_D(sdO);  // (TMA, TMA_M, TMA_K, PIPE)
            Tensor tKgK = block_tma_K.partition_S(gK);  // (TMA, TMA_N, TMA_K)
            Tensor tKsK = block_tma_K.partition_D(sK);  // (TMA, TMA_N, TMA_K)

            PipelineState smem_pipe_write_q = cutlass::make_producer_start_state<MainloopPipeline>();
            PipelineState smem_pipe_write_do = cutlass::make_producer_start_state<MainloopPipeline>();

            uint16_t mcast_mask_qdo = 0;
            if constexpr (cute::is_same_v<typename Ktraits::GmemTiledCopyQdO, SM90_TMA_LOAD_MULTICAST>) {
                auto block_layout = Layout<ClusterShape>{}; // (m,n) -> block_id
                for (int n = 0; n < size<1>(block_layout); ++n) {
                    mcast_mask_qdo |= (uint16_t(1) << block_layout(n, cluster_local_block_id.x, _0{}));
                }
            }

            if (lane_predicate) {
                // Copy K tile and V tile from GMEM to SMEM.
                shared_storage.barrier_K.arrive_and_expect_tx(TmaTransactionBytesK);
                copy(tma_load_K.with(reinterpret_cast<cutlass::arch::ClusterTransactionBarrier::ValueType&>(shared_storage.barrier_K), 0 /*mcast_mask*/), tKgK, tKsK);

                #pragma unroll 2
                for (; m_block >= 0; --m_block) {
                    pipeline_q.producer_acquire(smem_pipe_write_q);
                    copy(tma_load_Q.with(*pipeline_q.producer_get_barrier(smem_pipe_write_q), mcast_mask_qdo), tQgQ(_, _, _, m_block), tQsQ(_, _, _, smem_pipe_write_q.index()));
                    ++smem_pipe_write_q;
                    pipeline_do.producer_acquire(smem_pipe_write_do);
                    copy(tma_load_dO.with(*pipeline_do.producer_get_barrier(smem_pipe_write_do), mcast_mask_qdo), tdOgdO(_, _, _, m_block), tdOsdO(_, _, _, smem_pipe_write_do.index()));
                    ++smem_pipe_write_do;
                }

                // Tail loop
                /* This helps avoid early exit of blocks in Cluster
                * Waits for all stages to either be released (all
                * Consumer UNLOCKs), or if the stage was never used
                * then would just be acquired since the phase was
                * still inverted from make_producer_start_state
                */
                pipeline_q.producer_tail(smem_pipe_write_q);
                pipeline_do.producer_tail(smem_pipe_write_do);
            }
        } else if (warp_idx_in_warpgroup == 1) {  // Load V, and do TMA_REDUCE_ADD on dQ
            Tensor mV = tma_load_V.get_tma_tensor(make_shape(params.seqlen_k, params.d, params.h, params.b));
            Tensor gV = local_tile(mV(_, _, bidh, bidb), select<1, 2>(TileShape_MNK{}), make_coord(n_block, _0{}));  // (N, K)
            auto block_tma_V = tma_load_V.get_slice(_0{});
            Tensor tVgV = block_tma_V.partition_S(gV);  // (TMA, TMA_N, TMA_K)
            Tensor tVsV = block_tma_V.partition_D(sV); // (TMA, TMA_N, TMA_K)
            if (lane_predicate) {
                shared_storage.barrier_V.arrive_and_expect_tx(TmaTransactionBytesV);
                copy(tma_load_V.with(reinterpret_cast<cutlass::arch::ClusterTransactionBarrier::ValueType&>(shared_storage.barrier_V), 0 /*mcast_mask*/), tVgV, tVsV);
            }

            Tensor mdQaccum = tma_store_dQ.get_tma_tensor(make_shape(params.seqlen_q, params.d, params.h, params.b));
            Tensor gdQaccum = local_tile(mdQaccum(_, _, bidh, bidb), select<0, 2>(TileShape_MNK{}), make_coord(_, _0{}));  // (M, K, _)
            auto block_tma_dQ = tma_store_dQ.get_slice(_0{});
            Tensor tdQgdQ = block_tma_dQ.partition_D(gdQaccum);  // (TMA, TMA_M, TMA_K)
            Tensor tdQsdQ = block_tma_dQ.partition_S(sdQ); // (TMA, TMA_M, TMA_K)
            Tensor tdQsdQ2 = block_tma_dQ.partition_S(sdQ2); // (TMA, TMA_M, TMA_K, 2)
            int *lock_ptr = params.dq_semaphore + bidb * params.h + bidh;
            using Barrier = cutlass::GenericBarrier<cutlass::detail::SyncwarpSync>;
            // cutlass::arch::NamedBarrier::arrive(kNThreadsdQ + 32, 1 /*id*/);  // sdQ empty, ready to be written to
            cutlass::arch::NamedBarrier::arrive(kNThreadsdQ + 32, 0 /*id*/);  // sdQ empty, ready to be written to
            // cutlass::arch::NamedBarrier::arrive(kNThreadsdQ + 32, 0 + (m_block + 1) % 2 /*id*/);  // sdQ empty, ready to be written to
            // cutlass::arch::NamedBarrier::arrive(kNThreadsdQ + 32, 0 + m_block % 2 /*id*/);  // sdQ empty, ready to be written to
            // if (n_block == 0) {  // Use TMA_STORE
            if (false) {  // Use TMA_STORE
                #pragma unroll 2
                for (; m_block >= 0; --m_block) {
                    cutlass::arch::NamedBarrier::sync(kNThreadsdQ + 32, 2 /*id*/);  // sdQ full, to be written to gmem
                    // cutlass::arch::NamedBarrier::sync(kNThreadsdQ + 32, 2 + m_block % 2 /*id*/);  // sdQ full, to be written to gmem
                    if (lane_predicate) {
                        cute::copy(tma_store_dQ, tdQsdQ, tdQgdQ(_, _, _, m_block));
                        // cute::copy(tma_store_dQ, tdQsdQ2(_, _, _, m_block % 2), tdQgdQ(_, _, _, m_block));
                        tma_store_arrive();
                    }
                    tma_store_wait<0>();
                    Barrier::arrive_inc(lock_ptr, threadIdx.x % 32, m_block * params.b * params.h);
                    cutlass::arch::NamedBarrier::arrive(kNThreadsdQ + 32, 0 /*id*/);  // sdQ empty, ready to be written to
                    // cutlass::arch::NamedBarrier::arrive(kNThreadsdQ + 32, 0 + m_block % 2 /*id*/);  // sdQ empty, ready to be written to
                }
            } else {  // Use TMA_REDUCE_ADD
                #pragma unroll 2
                for (; m_block >= 0; --m_block) {
                    // Barrier::wait_eq(lock_ptr, threadIdx.x % 32, m_block * params.b * params.h, n_block);
                    // Barrier::wait_lt(lock_ptr, threadIdx.x % 32, m_block * params.b * params.h, 1);
                    cutlass::arch::NamedBarrier::sync(kNThreadsdQ + 32, 2 /*id*/);  // sdQ full, to be written to gmem
                    // cutlass::arch::NamedBarrier::sync(kNThreadsdQ + 32, 2 + m_block % 2 /*id*/);  // sdQ full, to be written to gmem
                    if (lane_predicate) {
                        cute::copy(tma_reduce_add_dQ, tdQsdQ, tdQgdQ(_, _, _, m_block));
                        // cute::copy(tma_reduce_add_dQ, tdQsdQ2(_, _, _, m_block % 2), tdQgdQ(_, _, _, m_block));
                        tma_store_arrive();
                    }
                    tma_store_wait<0>();
                    // Barrier::arrive_inc(lock_ptr, threadIdx.x % 32, m_block * params.b * params.h);
                    // cutlass::arch::NamedBarrier::arrive(kNThreadsdQ + 32, 0 + m_block % 2 /*id*/);  // sdQ empty, ready to be written to
                    cutlass::arch::NamedBarrier::arrive(kNThreadsdQ + 32, 0 /*id*/);  // sdQ empty, ready to be written to
                }
            }
        // } else if (warp_idx_in_warpgroup == 2) {  // Load LSE and dPSum
            // Tensor mLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum*>(params.softmax_lse_ptr)),
            //                           make_shape(params.b, params.h, params.seqlen_q),
            //                           make_stride(params.h * params.seqlen_q, params.seqlen_q, _1{}));
            // Tensor mdPsum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum*>(params.dsoftmax_sum)),
            //                             make_shape(params.b, params.h, params.seqlen_q),
            //                             make_stride(params.h * params.seqlen_q, params.seqlen_q, _1{}));
            // Tensor gLSE = local_tile(mLSE(bidb, bidh, _), Shape<Int<kBlockM>>{}, make_coord(_));  // (M, _)
            // Tensor gdPsum = local_tile(mdPsum(bidb, bidh, _), Shape<Int<kBlockM>>{}, make_coord(_));  // (M, _)
            // Tensor sLSE = make_tensor(make_smem_ptr(shared_storage.smem_lse.data()), Shape<Int<kBlockM>>{});
            // Tensor sdPsum = make_tensor(make_smem_ptr(shared_storage.smem_dpsum.data()), Shape<Int<kBlockM>>{});
            // #pragma unroll 2
            // for (; m_block >= 0; --m_block) {
            //     cutlass::arch::NamedBarrier::sync(NumMmaThreads + 32, 3 /*id*/);  // sLSE and sdPsum are empty
            //     #pragma unroll
            //     for (int i = 0; i < cute::ceil_div(kBlockM, 32); ++i) {
            //         int idx = threadIdx.x % 32 + i * 32;
            //         sLSE(idx) = idx < params.seqlen_q - m_block * kBlockM ? gLSE(idx, m_block) : INFINITY;
            //         sdPsum(idx) = idx < params.seqlen_q - m_block * kBlockM ? gdPsum(idx, m_block) : 0;
            //     }
            //     // sLSE and sdPsum are ready for WG 1
            //     cutlass::arch::NamedBarrier::arrive(128 + 32, 3 + 1 /*id*/);
            //     // sLSE and sdPsum are ready for WG 2
            //     cutlass::arch::NamedBarrier::arrive(128 + 32, 3 + 2 /*id*/);
            // }
        }


    } else {  // Consumers
        // method in cutlass/arch/reg_reconfig.h
        // calls setmaxnreg.inc.sync.aligned.u32
        cutlass::arch::warpgroup_reg_alloc<240>();

        // State variables used for iterating the circular buffer
        // smem_pipe_read / release is used by the consumer of SMEM data - i.e MMA
        // smem_pipe_write is used by the producer of SMEM data - i.e TMA
        PipelineState smem_pipe_read_q, smem_pipe_read_do;
        PipelineState smem_pipe_release_q, smem_pipe_release_do;

        int m_block = cute::ceil_div(params.seqlen_q, kBlockM) - 1;
        const int m_block_max = m_block;

        int bidb = blockIdx.z;  // The block index for the batch.
        int bidh = blockIdx.y;  // The block index for the head.

        Tensor mLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum*>(params.softmax_lse_ptr)),
                                  make_shape(params.b, params.h, params.seqlen_q),
                                  make_stride(params.h * params.seqlen_q, params.seqlen_q, _1{}));
        Tensor mdPsum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum*>(params.dsoftmax_sum)),
                                    make_shape(params.b, params.h, params.seqlen_q),
                                    make_stride(params.h * params.seqlen_q_rounded, params.seqlen_q_rounded, _1{}));
        Tensor gLSE = local_tile(mLSE(bidb, bidh, _), Shape<Int<kBlockM>>{}, make_coord(m_block));
        Tensor gdPsum = local_tile(mdPsum(bidb, bidh, _), Shape<Int<kBlockM>>{}, make_coord(m_block));

        Tensor sLSE = make_tensor(make_smem_ptr(shared_storage.smem_lse.data()), Shape<Int<kBlockM>>{});
        Tensor sdPsum = make_tensor(make_smem_ptr(shared_storage.smem_dpsum.data()), Shape<Int<kBlockM>>{});

        typename Ktraits::RmemTiledCopydQacc rmem_tiled_copy_dQaccum;
        // auto rmem_thr_copy_dQaccum = rmem_tiled_copy_dQaccum.get_thread_slice((threadIdx.x - NumCopyThreads) % kNThreadsdQ);
        auto rmem_thr_copy_dQaccum = rmem_tiled_copy_dQaccum.get_thread_slice(threadIdx.x - NumCopyThreads);
        Tensor tdQsdQaccum = rmem_thr_copy_dQaccum.partition_D(sdQ);
        Tensor tdQsdQaccum2 = rmem_thr_copy_dQaccum.partition_D(sdQ2);

        // Initialize matmul objects.
        typename Ktraits::TiledMmaSdP tiledMmaSdP;
        auto threadMmaSdP = tiledMmaSdP.get_thread_slice(threadIdx.x - NumCopyThreads);
        typename Ktraits::TiledMmadKV tiledMmadKV;
        auto threadMmadKV = tiledMmadKV.get_thread_slice(threadIdx.x - NumCopyThreads);
        typename Ktraits::TiledMmadQ tiledMmadQ;
        // auto threadMmadQ = tiledMmadQ.get_thread_slice((threadIdx.x - NumCopyThreads) % kNThreadsdQ);
        auto threadMmadQ = tiledMmadQ.get_thread_slice(threadIdx.x - NumCopyThreads);

        // Allocate accumulator
        Tensor tdKrdK = partition_fragment_C(tiledMmadKV, select<!dKV_swapAB ? 1 : 2, !dKV_swapAB? 2 : 1>(TileShape_MNK{}));
        Tensor tdVrdV = partition_fragment_C(tiledMmadKV, select<!dKV_swapAB ? 1 : 2, !dKV_swapAB? 2 : 1>(TileShape_MNK{}));

        auto smem_tiled_copy_PdS = make_tiled_copy_C(typename Ktraits::SmemCopyAtomPdS{}, tiledMmaSdP);
        auto smem_thr_copy_PdS = smem_tiled_copy_PdS.get_thread_slice(threadIdx.x - NumCopyThreads);
        // auto smem_tiled_copy_dQ = make_tiled_copy_C(typename Ktraits::SmemCopyAtomdQ{}, tiledMmadQ);
        // auto smem_tiled_copy_dQ = make_tiled_copy_C(Copy_Atom<cute::SM90_U32x4_STSM_N, ElementAccum>{}, tiledMmadQ);
        // auto smem_tiled_copy_dQ = make_tiled_copy_C(Copy_Atom<DefaultCopy, ElementAccum>{}, tiledMmadQ);
        // auto smem_thr_copy_dQ = smem_tiled_copy_dQ.get_thread_slice(threadIdx.x - NumCopyThreads);

        Tensor tdSsdS = smem_thr_copy_PdS.partition_D(sdSt);      // ((Atom,AtomNum),PIPE_M,PIPE_N)

        if constexpr (SdP_swapAB) {

            // Allocate "fragments/descriptors"
            Tensor tSrQ = threadMmaSdP.partition_fragment_B(sQ);
            Tensor tSrK = threadMmaSdP.partition_fragment_A(sK);
            Tensor tdPrdO = threadMmaSdP.partition_fragment_B(sdO);
            Tensor tdPrV = threadMmaSdP.partition_fragment_A(sV);

            Tensor caccS = make_identity_tensor(select<1, 0>(TileShape_MNK{}));    // (BLK_M,BLK_N) -> (blk_m,blk_n)
            Tensor taccScS = threadMmaSdP.partition_C(caccS);                           // (MMA,MMA_N,MMA_N)
            static_assert(decltype(size<0, 0>(taccScS))::value == 2);
            static_assert(decltype(size<0, 1>(taccScS))::value == 2);
            // taccScS has shape ((2, 2, V), MMA_M, MMA_N), we only take only the row indices.
            Tensor taccScS_row = taccScS(make_coord(_, _0{}, _), _0{}, _);
            static constexpr int kStatsPerThread = cute::ceil_div(decltype(size(taccScS_row))::value, 8);
            static constexpr bool kStatsDivisibleBy8 = decltype(size(taccScS_row))::value % 8 == 0;
            Tensor lse = make_tensor<ElementAccum>(Shape<Int<decltype(size(taccScS_row))::value>>{});
            // Tensor lse = make_tensor<ElementAccum>(Shape<Int<kStatsPerThread>>{});
            Tensor dP_sum = make_fragment_like(lse);
            #pragma unroll
            for (int mi = 0; mi < size(lse); ++mi) {
                const int row = get<1>(taccScS_row(mi));
                lse(mi) = row < params.seqlen_q - m_block * kBlockM ? gLSE(row) : INFINITY;
                dP_sum(mi) = row < params.seqlen_q - m_block * kBlockM ? gdPsum(row) : 0;
            }
            // #pragma unroll
            // for (int mi = 0; mi < size(lse); ++mi) {
                // const int row_idx = mi * 8 + (threadIdx.x % 32) / 4;
                // const int row = kStatsDivisibleBy8 || row_idx < size(taccScS_row) ? get<1>(taccScS_row(row_idx)) : 0;
                // lse(mi) = row < params.seqlen_q - m_block * kBlockM ? gLSE(row) : INFINITY;
                // dP_sum(mi) = row < params.seqlen_q - m_block * kBlockM ? gdPsum(row) : 0;
            // }
            // if (blockIdx.x == 0 && blockIdx.z == 1 && threadIdx.x == 128) { print_tensor(dP_sum); printf("\n"); }
            // Trying to spread LSE and dPSum across threads in a warp but it's slower
            // const int row_idx = mi * 8 + (threadIdx.x % 32) / 4;
            // const int row = get<1>(taccScS_row(row_idx));  // TODO: what if row_idx is outside the range?
            // cute::fill(lse, 1);
            // cute::fill(dP_sum, 1);
            // if (cute::thread0()) { print_tensor(dP_sum); printf("\n"); }
            // We want LSE = inf if the row is OOB. In that case Q would be zero, K would be zero,
            // and scores would be zero. With LSE = 0, probs will be all 1's, and when we multiply
            // with V (which would be zero), we're fine. However, with ALiBi, we might modify these
            // scores, and probs can become NaN. Instead if we set LSE = inf for OOB rows, probs are always 0.

            // cutlass::arch::NamedBarrier::arrive(NumMmaThreads + 32, 3 /*id*/);  // sLSE and sdPsum are empty

            clear(tdKrdK);
            clear(tdVrdV);

            shared_storage.barrier_K.wait(0);
            shared_storage.barrier_V.wait(0);

            // #pragma unroll 2
            CUTLASS_PRAGMA_NO_UNROLL
            for (; m_block >= 0; --m_block) {

                // Putting this dQ block at the beginning of the loop gives an extra 10 TFLOPs
                // It does make the code uglier, idk if it's worth it.
                if (m_block < m_block_max) {
                    // SMEM fence to make sure sP is written before it's read by WGMMA
                    cutlass::arch::fence_view_async_shared();
                    // dS is already written to smem, and the smem for dQ is empty (from warp 1 doing TMA_REDUCE_ADD)
                    // int warp_group_idx = cutlass::canonical_warp_group_idx();
                    // if (warp_group_idx == 1 + (m_block + 1) % 2) {
                    //     // cutlass::arch::NamedBarrier::arrive(NumMmaThreads + 32, 0 + (m_block + 1) % 2 /*id*/);
                    //     cutlass::arch::NamedBarrier::arrive(NumMmaThreads, 4);
                    // } else {
                    //     // cutlass::arch::NamedBarrier::sync(NumMmaThreads + 32, 0 + (m_block + 1) % 2 /*id*/);
                    //     cutlass::arch::NamedBarrier::sync(NumMmaThreads, 4);
                    //     static_assert(!Mma_dQ_is_RS);
                    //     Tensor tdQrdQ = partition_fragment_C(tiledMmadQ, select<!dQ_swapAB ? 0 : 2, !dQ_swapAB ? 2 : 0>(TileShape_MNK{}));
                    //     if constexpr (!dQ_swapAB) {
                    //         Tensor tdQrdS = threadMmadQ.partition_fragment_A(sdS);
                    //         Tensor tdQrK = threadMmadQ.partition_fragment_B(sKt);
                    //         flash::gemm</*zero_init=*/true, /*wg_wait=*/0>(tiledMmadQ, tdQrdS, tdQrK, tdQrdQ);
                    //     } else {
                    //         Tensor tdQrdS = threadMmadQ.partition_fragment_B(sdS);
                    //         Tensor tdQrK = threadMmadQ.partition_fragment_A(sKt);
                    //         flash::gemm</*zero_init=*/true, /*wg_wait=*/0>(tiledMmadQ, tdQrK, tdQrdS, tdQrdQ);
                    //     }
                    //     Tensor taccdQrdQ = rmem_thr_copy_dQaccum.retile_S(tdQrdQ);        // ((Atom,AtomNum), MMA_M, MMA_N)
                    //     cutlass::arch::NamedBarrier::sync(NumMmaThreads / 2 + 32, 0 + (m_block + 1) % 2 /*id*/);
                    //     cute::copy(rmem_tiled_copy_dQaccum, taccdQrdQ, tdQsdQaccum2(_, _, _, (m_block + 1) % 2));
                    //     cutlass::arch::fence_view_async_shared();
                    //     cutlass::arch::NamedBarrier::arrive(NumMmaThreads / 2 + 32, 2 + (m_block + 1) % 2 /*id*/);  // sdQ ready to be written to gmem
                    // }
                    // cutlass::arch::NamedBarrier::sync(NumMmaThreads + 32, 0 + (m_block + 1) % 2 /*id*/);
                    cutlass::arch::NamedBarrier::sync(NumMmaThreads + 32, 0 /*id*/);
                    static_assert(!Mma_dQ_is_RS);
                    Tensor tdQrdQ = partition_fragment_C(tiledMmadQ, select<!dQ_swapAB ? 0 : 2, !dQ_swapAB ? 2 : 0>(TileShape_MNK{}));
                    // Tensor taccdQrdQ = smem_thr_copy_dQ.retile_S(tdQrdQ);        // ((Atom,AtomNum), MMA_M, MMA_N)
                    if constexpr (!dQ_swapAB) {
                        Tensor tdQrdS = threadMmadQ.partition_fragment_A(sdS);
                        Tensor tdQrK = threadMmadQ.partition_fragment_B(sKt);
                        flash::gemm</*zero_init=*/true, /*wg_wait=*/0>(tiledMmadQ, tdQrdS, tdQrK, tdQrdQ);
                    } else {
                        Tensor tdQrdS = threadMmadQ.partition_fragment_B(sdS);
                        Tensor tdQrK = threadMmadQ.partition_fragment_A(sKt);
                        flash::gemm</*zero_init=*/true, /*wg_wait=*/0>(tiledMmadQ, tdQrK, tdQrdS, tdQrdQ);
                    }
                    // Tensor taccdQsdQt = smem_thr_copy_dQ.partition_D(sdQt);     // ((Atom,AtomNum),PIPE_M,PIPE_N)
                    // cute::copy(smem_tiled_copy_dQ, taccdQrdQ, taccdQsdQt);
                    // Tensor taccdQsdQ = smem_thr_copy_dQ.partition_D(sdQ);     // ((Atom,AtomNum),PIPE_M,PIPE_N)
                    // cute::copy(smem_tiled_copy_dQ, taccdQrdQ, taccdQsdQ);
                    Tensor taccdQrdQ = rmem_thr_copy_dQaccum.retile_S(tdQrdQ);        // ((Atom,AtomNum), MMA_M, MMA_N)
                    // cutlass::arch::NamedBarrier::sync(NumMmaThreads + 32, 1 /*id*/);  // sdQ empty, ready to be written to
                    cute::copy(rmem_tiled_copy_dQaccum, taccdQrdQ, tdQsdQaccum);
                    // cute::copy(rmem_tiled_copy_dQaccum, taccdQrdQ, tdQsdQaccum2(_, _, _, (m_block + 1) % 2));
                    cutlass::arch::fence_view_async_shared();
                    cutlass::arch::NamedBarrier::arrive(NumMmaThreads + 32, 2 /*id*/);  // sdQ ready to be written to gmem
                    // cutlass::arch::NamedBarrier::arrive(NumMmaThreads + 32, 2 + (m_block + 1) % 2 /*id*/);  // sdQ ready to be written to gmem
                }

                Tensor tSrS = partition_fragment_C(tiledMmaSdP, select<1, 0>(TileShape_MNK{}));
                pipeline_q.consumer_wait(smem_pipe_read_q);
                flash::gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiledMmaSdP, tSrK, tSrQ(_, _, _, smem_pipe_read_q.index()), tSrS);
                Tensor tdPrdP = partition_fragment_C(tiledMmaSdP, select<1, 0>(TileShape_MNK{}));
                pipeline_do.consumer_wait(smem_pipe_read_do);
                flash::gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiledMmaSdP, tdPrV, tdPrdO(_, _, _, smem_pipe_read_do.index()), tdPrdP);

                // sLSE and sdPsum are done loading for WG 1 or 2
                // cutlass::arch::NamedBarrier::sync(128 + 32, 3 + cutlass::canonical_warp_group_idx() /*id*/);
                // Tensor lse = make_tensor<ElementAccum>(Shape<Int<decltype(size(taccScS_row))::value>>{});
                // #pragma unroll
                // for (int mi = 0; mi < size(lse); ++mi) { lse(mi) = sLSE(get<1>(taccScS_row(mi))); }
                warpgroup_wait<1>();
                // Reshape tSrS from ((2, 2, V), MMA_N, MMA_M) to (nrow=(2, V, MMA_M), ncol=(2, MMA_N))
                Tensor scores = make_tensor(tSrS.data(), flash::convert_layout_acc_transposed_rowcol(tSrS.layout()));
                flash::scale_apply_exp2</*Scale=*/true, /*scale_max=*/false>(scores, lse, params.scale_softmax_log2);
                // #pragma unroll
                // for (int mi = 0; mi < size<0>(lse); ++mi) { lse(mi) *= float(M_LOG2E); }
                // #pragma unroll
                // for (int mi = 0; mi < size<0>(scores); ++mi) {
                //     // const float lse_scaled = lse(mi) * float(M_LOG2E);
                //     const float lse_scaled = __shfl_sync(0xffffffff, lse(mi / 8), (mi % 8) * 4 + (threadIdx.x % 4));
                //     // const float lse_scaled = __shfl_xor_sync(0xffffffff, lse(mi / 8), 1 << (mi % 4)) * float(M_LOG2E);
                //     // const float lse_scaled = lse(mi);
                //     #pragma unroll
                //     for (int ni = 0; ni < size<1>(scores); ++ni) {
                //         scores(mi, ni) = exp2f(scores(mi, ni) * params.scale_softmax_log2 - lse_scaled);
                //     }
                // }
                // if (blockIdx.x == 0 && blockIdx.z == 1 && threadIdx.x == 128) { print_tensor(scores); printf("\n"); }
                // Tensor dP_sum = make_fragment_like(lse);
                // sLSE and sdPsum are done loading for WG 1 or 2
                // cutlass::arch::NamedBarrier::sync(128 + 32, 3 + cutlass::canonical_warp_group_idx() /*id*/);
                // #pragma unroll
                // for (int mi = 0; mi < size(dP_sum); ++mi) { dP_sum(mi) = sdPsum(get<1>(taccScS_row(mi))); }


                // Convert scores from fp32 to fp16/bf16
                Tensor rP = flash::convert_type<Element>(tSrS);

                warpgroup_wait<0>();
                // Reshape tdPrdP from ((2, 2, V), MMA_N, MMA_M) to (nrow=(2, V, MMA_M), ncol=(2, MMA_N))
                Tensor dS = make_tensor(tdPrdP.data(), scores.layout());
                // if (blockIdx.x == 0 && blockIdx.z == 1 && threadIdx.x == 128) { print_tensor(dS); printf("\n"); }
                // if (blockIdx.x == 0 && blockIdx.z == 1 && threadIdx.x == 128) { print_tensor(dP_sum); printf("\n"); }
                #pragma unroll
                for (int mi = 0; mi < size<0>(dS); ++mi) {
                    // const float dP_sum_cur = __shfl_sync(0xffffffff, dP_sum(mi / 8), (mi % 8) * 4 + (threadIdx.x % 4));
                    // const float dP_sum_cur = __shfl_xor_sync(0xffffffff, dP_sum(mi / 8), 1 << (mi % 4));
                    #pragma unroll
                    for (int ni = 0; ni < size<1>(dS); ++ni) { dS(mi, ni) = scores(mi, ni) * (dS(mi, ni) - dP_sum(mi)); }
                    // for (int ni = 0; ni < size<1>(dS); ++ni) { dS(mi, ni) = scores(mi, ni) * (dS(mi, ni) - dP_sum_cur); }
                }
                // sLSE and sdPsum are done processing, can load for the next iteration
                // cutlass::arch::NamedBarrier::arrive(NumMmaThreads + 32, 3 /*id*/);
                // if (blockIdx.x == 0 && blockIdx.z == 1 && threadIdx.x == 128) { print_tensor(dS); printf("\n"); }
                Tensor rdS = flash::convert_type<Element>(tdPrdP);

                Tensor tdSadS = smem_thr_copy_PdS.retile_S(rdS);     // ((Atom,AtomNum), MMA_N, MMA_N)
                cute::copy(smem_tiled_copy_PdS, tdSadS, tdSsdS);

                if (m_block > 0) {
                    gLSE.data() = gLSE.data() + (-int(kBlockM));
                    gdPsum.data() = gdPsum.data() + (-int(kBlockM));
                }
                // #pragma unroll
                // for (int mi = 0; mi < size(lse); ++mi) {
                //     // const int row = get<1>(taccScS_row(mi));
                //     const int row_idx = mi * 8 + (threadIdx.x % 32) / 4;
                //     const int row = kStatsDivisibleBy8 || row_idx < size(taccScS_row) ? get<1>(taccScS_row(row_idx)) : 0;
                //     lse(mi) = gLSE(row);
                //     dP_sum(mi) = gdPsum(row);
                // }
                Tensor lse_float2 = recast<float2>(lse);
                Tensor dP_sum_float2 = recast<float2>(dP_sum);
                #pragma unroll
                for (int mi = 0; mi < size(lse) / 2; ++mi) {
                    const int row = get<1>(taccScS_row(mi * 2));
                    lse_float2(mi) = *reinterpret_cast<float2*>(&(gLSE(row)));
                    dP_sum_float2(mi) = *reinterpret_cast<float2*>(&(gdPsum(row)));
                }

                static_assert(!dKV_swapAB);
                Tensor tdVrP = make_tensor(rP.data(), convert_layout_acc_Aregs<typename Ktraits::TiledMmadKV>(tSrS.layout()));
                Tensor tdVrdO = threadMmadKV.partition_fragment_B(sdOt);
                flash::gemm</*zero_init=*/false, /*wg_wait=*/-1>(tiledMmadKV, tdVrP, tdVrdO(_, _, _, smem_pipe_read_do.index()), tdVrdV);
                ++smem_pipe_read_do;
                // warpgroup_wait<0>();
                // Tensor dV_tmp = make_tensor(tdVrdV.data(), flash::convert_layout_acc_rowcol(tdVrdV.layout()));
                // if (blockIdx.x == 0 && threadIdx.x == 128) { print_tensor(dV_tmp); printf("\n"); }

                Tensor tdKrdS = make_tensor(rdS.data(), convert_layout_acc_Aregs<typename Ktraits::TiledMmadKV>(tdPrdP.layout()));
                Tensor tdKrQ = threadMmadKV.partition_fragment_B(sQt);
                flash::gemm</*zero_init=*/false, /*wg_wait=*/0>(tiledMmadKV, tdKrdS, tdKrQ(_, _, _, smem_pipe_read_q.index()), tdKrdK);
                ++smem_pipe_read_q;
                // warpgroup_wait<0>();
                // Tensor dK_tmp = make_tensor(tdKrdK.data(), flash::convert_layout_acc_rowcol(tdKrdK.layout()));
                // if (blockIdx.x == 0 && threadIdx.x == 128) { print_tensor(dK_tmp); printf("\n"); }

                pipeline_do.consumer_release(smem_pipe_release_do);  // release V
                ++smem_pipe_release_do;
                pipeline_q.consumer_release(smem_pipe_release_q);  // release V
                ++smem_pipe_release_q;

                // warpgroup_wait<0>();
                // Tensor dQ_tmp = make_tensor(tdQrdQ.data(), flash::convert_layout_acc_rowcol(tdQrdQ.layout()));
                // if (cute::thread0()) { print_tensor(dQ_tmp); printf("\n"); }

            }

            {
                // SMEM fence to make sure sP is written before it's read by WGMMA
                cutlass::arch::fence_view_async_shared();
                // dS is already written to smem, and the smem for dQ is empty (from warp 1 doing TMA_REDUCE_ADD)
                // int warp_group_idx = cutlass::canonical_warp_group_idx();
                // if (warp_group_idx == 1 + (m_block + 1) % 2) {
                //     // cutlass::arch::NamedBarrier::arrive(NumMmaThreads + 32, 0 + (m_block + 1) % 2 /*id*/);
                //     cutlass::arch::NamedBarrier::arrive(NumMmaThreads, 4);
                // } else {
                //     // cutlass::arch::NamedBarrier::sync(NumMmaThreads + 32, 0 + (m_block + 1) % 2 /*id*/);
                //     cutlass::arch::NamedBarrier::sync(NumMmaThreads, 4);
                //     static_assert(!Mma_dQ_is_RS);
                //     Tensor tdQrdQ = partition_fragment_C(tiledMmadQ, select<!dQ_swapAB ? 0 : 2, !dQ_swapAB ? 2 : 0>(TileShape_MNK{}));
                //     if constexpr (!dQ_swapAB) {
                //         Tensor tdQrdS = threadMmadQ.partition_fragment_A(sdS);
                //         Tensor tdQrK = threadMmadQ.partition_fragment_B(sKt);
                //         flash::gemm</*zero_init=*/true, /*wg_wait=*/0>(tiledMmadQ, tdQrdS, tdQrK, tdQrdQ);
                //     } else {
                //         Tensor tdQrdS = threadMmadQ.partition_fragment_B(sdS);
                //         Tensor tdQrK = threadMmadQ.partition_fragment_A(sKt);
                //         flash::gemm</*zero_init=*/true, /*wg_wait=*/0>(tiledMmadQ, tdQrK, tdQrdS, tdQrdQ);
                //     }
                //     Tensor taccdQrdQ = rmem_thr_copy_dQaccum.retile_S(tdQrdQ);        // ((Atom,AtomNum), MMA_M, MMA_N)
                //     cutlass::arch::NamedBarrier::sync(NumMmaThreads / 2 + 32, 0 + (m_block + 1) % 2 /*id*/);
                //     cute::copy(rmem_tiled_copy_dQaccum, taccdQrdQ, tdQsdQaccum2(_, _, _, (m_block + 1) % 2));
                //     cutlass::arch::fence_view_async_shared();
                //     cutlass::arch::NamedBarrier::arrive(NumMmaThreads / 2 + 32, 2 + (m_block + 1) % 2 /*id*/);  // sdQ ready to be written to gmem
                //     Tensor dQ_tmp = make_tensor(tdQrdQ.data(), flash::convert_layout_acc_rowcol(tdQrdQ.layout()));
                //     // if (blockIdx.x == 0 && threadIdx.x == 128) { print_tensor(dQ_tmp); printf("\n"); }
                //     // if (blockIdx.x == 0 && threadIdx.x == 128) { print(taccdQrdQ); printf("\n"); print(tdQsdQaccum2); printf("\n"); }
                // }
                cutlass::arch::NamedBarrier::sync(NumMmaThreads + 32, 0 /*id*/);
                // cutlass::arch::NamedBarrier::sync(NumMmaThreads + 32, 0 + 0 % 2 /*id*/);
                // cutlass::arch::NamedBarrier::sync(NumMmaThreads, 0 /*id*/);
                static_assert(!Mma_dQ_is_RS);
                Tensor tdQrdQ = partition_fragment_C(tiledMmadQ, select<!dQ_swapAB ? 0 : 2, !dQ_swapAB ? 2 : 0>(TileShape_MNK{}));
                if constexpr (!dQ_swapAB) {
                    Tensor tdQrdS = threadMmadQ.partition_fragment_A(sdS);
                    Tensor tdQrK = threadMmadQ.partition_fragment_B(sKt);
                    flash::gemm</*zero_init=*/true, /*wg_wait=*/0>(tiledMmadQ, tdQrdS, tdQrK, tdQrdQ);
                } else {
                    Tensor tdQrdS = threadMmadQ.partition_fragment_B(sdS);
                    Tensor tdQrK = threadMmadQ.partition_fragment_A(sKt);
                    flash::gemm</*zero_init=*/true, /*wg_wait=*/0>(tiledMmadQ, tdQrK, tdQrdS, tdQrdQ);
                }
                // Tensor dQ_tmp = make_tensor(tdQrdQ.data(), flash::convert_layout_acc_rowcol(tdQrdQ.layout()));
                // if (blockIdx.x == 0 && threadIdx.x == 128) { print_tensor(dQ_tmp); printf("\n"); }
                Tensor taccdQrdQ = rmem_thr_copy_dQaccum.retile_S(tdQrdQ);        // ((Atom,AtomNum), MMA_M, MMA_N)
                // cutlass::arch::NamedBarrier::sync(NumMmaThreads + 32, 1 /*id*/);  // sdQ empty, ready to be written to
                cute::copy(rmem_tiled_copy_dQaccum, taccdQrdQ, tdQsdQaccum);
                // cute::copy(rmem_tiled_copy_dQaccum, taccdQrdQ, tdQsdQaccum2(_, _, _, 0 % 2));
                cutlass::arch::fence_view_async_shared();
                cutlass::arch::NamedBarrier::arrive(NumMmaThreads + 32, 2 /*id*/);  // sdQ ready to be written to gmem
                // cutlass::arch::NamedBarrier::arrive(NumMmaThreads + 32, 2 + 0 % 2 /*id*/);  // sdQ ready to be written to gmem
                // if (blockIdx.x == 0 && threadIdx.x == 128) { print_tensor(sdQ); printf("\n"); }
            }

        } else {  // !SdP_swapAB
            Tensor tPsP = smem_thr_copy_PdS.partition_D(sP);      // ((Atom,AtomNum),PIPE_M,PIPE_N)
            Tensor tdSsdS = smem_thr_copy_PdS.partition_D(sdS);      // ((Atom,AtomNum),PIPE_M,PIPE_N)

            // Allocate "fragments/descriptors"
            Tensor tSrQ = threadMmaSdP.partition_fragment_A(sQ);
            Tensor tSrK = threadMmaSdP.partition_fragment_B(sK);
            Tensor tdPrdO = threadMmaSdP.partition_fragment_A(sdO);
            Tensor tdPrV = threadMmaSdP.partition_fragment_B(sV);

            Tensor caccS = make_identity_tensor(select<0, 1>(TileShape_MNK{}));    // (BLK_M,BLK_N) -> (blk_m,blk_n)
            Tensor taccScS = threadMmaSdP.partition_C(caccS);                           // (MMA,MMA_N,MMA_N)
            static_assert(decltype(size<0, 0>(taccScS))::value == 2);
            static_assert(decltype(size<0, 1>(taccScS))::value == 2);
            // taccScS has shape ((2, 2, V), MMA_M, MMA_N), we only take only the row indices.
            Tensor taccScS_row = taccScS(make_coord(_0{}, _, _0{}), _, _0{});
            Tensor lse = make_tensor<ElementAccum>(Shape<Int<decltype(size(taccScS_row))::value>>{});
            Tensor dP_sum = make_fragment_like(lse);
            #pragma unroll
            for (int mi = 0; mi < size(lse); ++mi) {
                const int row = get<0>(taccScS_row(mi));
                lse(mi) = row < params.seqlen_q - m_block * kBlockM ? gLSE(row) : INFINITY;
                dP_sum(mi) = row < params.seqlen_q - m_block * kBlockM ? gdPsum(row) : 0;
            }
            // if (cute::thread0()) { print_tensor(dP_sum); printf("\n"); }
            // We want LSE = inf if the row is OOB. In that case Q would be zero, K would be zero,
            // and scores would be zero. With LSE = 0, probs will be all 1's, and when we multiply
            // with V (which would be zero), we're fine. However, with ALiBi, we might modify these
            // scores, and probs can become NaN. Instead if we set LSE = inf for OOB rows, probs are always 0.

            clear(tdKrdK);
            clear(tdVrdV);

            shared_storage.barrier_K.wait(0);
            shared_storage.barrier_V.wait(0);

            CUTLASS_PRAGMA_NO_UNROLL
            for (; m_block >= 0; --m_block) {
                Tensor tSrS = partition_fragment_C(tiledMmaSdP, select<0, 1>(TileShape_MNK{}));
                pipeline_q.consumer_wait(smem_pipe_read_q);
                flash::gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiledMmaSdP, tSrQ(_, _, _, smem_pipe_read_q.index()), tSrK, tSrS);
                Tensor tdPrdP = partition_fragment_C(tiledMmaSdP, select<0, 1>(TileShape_MNK{}));
                pipeline_do.consumer_wait(smem_pipe_read_do);
                // if (blockIdx.x == 0 && blockIdx.z == 0 && threadIdx.x == 128) { printf("After dO wait\n"); }
                flash::gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiledMmaSdP, tdPrdO(_, _, _, smem_pipe_read_do.index()), tdPrV, tdPrdP);

                warpgroup_wait<1>();
                // Reshape tSrS from ((2, 2, V), MMA_N, MMA_M) to (nrow=(2, V, MMA_M), ncol=(2, MMA_N))
                Tensor scores = make_tensor(tSrS.data(), flash::convert_layout_acc_rowcol(tSrS.layout()));
                flash::scale_apply_exp2</*Scale=*/true, /*scale_max=*/false>(scores, lse, params.scale_softmax_log2);
                // if (blockIdx.x == 0 && blockIdx.z == 0 && threadIdx.x == 128) { print_tensor(scores); printf("\n"); }

                // Convert scores from fp32 to fp16/bf16
                Tensor rP = flash::convert_type<Element>(tSrS);
                Tensor tPaP = smem_thr_copy_PdS.retile_S(rP);     // ((Atom,AtomNum), MMA_N, MMA_N)
                cutlass::arch::NamedBarrier::sync(NumMmaThreads, 8 /*id*/);
                cute::copy(smem_tiled_copy_PdS, tPaP, tPsP);
                int const warp_group_idx = cutlass::canonical_warp_group_idx() - 1;
                cutlass::arch::NamedBarrier::arrive(NumMmaThreads, 4 + warp_group_idx /*id*/);
                // if (blockIdx.x == 0 && blockIdx.z == 0 && (threadIdx.x == 128 || threadIdx.x == 256)) { printf("After barrier arrive 4, tidx = %d\n", threadIdx.x); }

                warpgroup_wait<0>();
                // Reshape tdPrdP from ((2, 2, V), MMA_N, MMA_M) to (nrow=(2, V, MMA_M), ncol=(2, MMA_N))
                Tensor dS = make_tensor(tdPrdP.data(), scores.layout());
                // if (blockIdx.x == 0 && blockIdx.z == 1 && threadIdx.x == 128) { print_tensor(dS); printf("\n"); }
                // if (blockIdx.x == 0 && blockIdx.z == 1 && threadIdx.x == 128) { print_tensor(dP_sum); printf("\n"); }
                #pragma unroll
                for (int mi = 0; mi < size<0>(dS); ++mi) {
                    #pragma unroll
                    for (int ni = 0; ni < size<1>(dS); ++ni) { dS(mi, ni) = scores(mi, ni) * (dS(mi, ni) - dP_sum(mi)); }
                }
                // if (blockIdx.x == 0 && blockIdx.z == 0 && threadIdx.x == 128) { print_tensor(dS); printf("\n"); }
                Tensor rdS = flash::convert_type<Element>(tdPrdP);

                Tensor tdSadS = smem_thr_copy_PdS.retile_S(rdS);     // ((Atom,AtomNum), MMA_N, MMA_N)
                cute::copy(smem_tiled_copy_PdS, tdSadS, tdSsdS);
                cutlass::arch::NamedBarrier::arrive(NumMmaThreads, 6 + warp_group_idx /*id*/);
                // if (blockIdx.x == 0 && blockIdx.z == 0 && (threadIdx.x == 128 || threadIdx.x == 256)) { printf("After barrier arrive 6, tidx = %d\n", threadIdx.x); }

                if (m_block > 0) {
                    gLSE.data() = gLSE.data() + (-int(kBlockM));
                    gdPsum.data() = gdPsum.data() + (-int(kBlockM));
                }
                #pragma unroll
                for (int mi = 0; mi < size(lse); ++mi) {
                    const int row = get<1>(taccScS_row(mi));
                    lse(mi) = gLSE(row);
                    dP_sum(mi) = gdPsum(row);
                }

                Tensor tdQrdQ = partition_fragment_C(tiledMmadQ, select<!dQ_swapAB ? 0 : 2, !dQ_swapAB ? 2 : 0>(TileShape_MNK{}));
                if constexpr (Mma_dQ_is_RS) {
                    static_assert(!dQ_swapAB);
                    Tensor tdQrdS = make_tensor(rdS.data(), convert_layout_acc_Aregs<typename Ktraits::TiledMmadQ>(tdPrdP.layout()));
                    Tensor tdQrK = threadMmadQ.partition_fragment_B(sKt);
                    flash::gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiledMmadQ, tdQrdS, tdQrK, tdQrdQ);
                    // if (cute::thread0()) { print(tdQrdS); printf("\n"); print(tdQrK); printf("\n"); print(tdQrdQ); printf("\n"); }
                }

                cutlass::arch::fence_view_async_shared();
                // if (blockIdx.x == 0 && blockIdx.z == 0 && (threadIdx.x == 128 || threadIdx.x == 256)) { printf("Before barrier sync 4, tidx = %d\n", threadIdx.x); }
                cutlass::arch::NamedBarrier::sync(NumMmaThreads, 4 + 1 - warp_group_idx /*id*/);
                // if (blockIdx.x == 0 && blockIdx.z == 0 && (threadIdx.x == 128 || threadIdx.x == 256)) { printf("After barrier sync 4, tidx = %d\n", threadIdx.x); }
                // if (blockIdx.x == 0 && blockIdx.z == 0 && (threadIdx.x == 128)) { print_tensor(sPt); printf("\n"); }
                // if (blockIdx.x == 0 && blockIdx.z == 0 && (threadIdx.x == 128)) { print_tensor(sdOt); printf("\n"); }
                if constexpr (!dKV_swapAB) {
                    Tensor tdVrP = threadMmadKV.partition_fragment_A(sPt);
                    Tensor tdVrdO = threadMmadKV.partition_fragment_B(sdOt);
                    flash::gemm</*zero_init=*/false, /*wg_wait=*/-1>(tiledMmadKV, tdVrP, tdVrdO(_, _, _, smem_pipe_read_do.index()), tdVrdV);
                } else {
                    Tensor tdVrP = threadMmadKV.partition_fragment_B(sPt);
                    Tensor tdVrdO = threadMmadKV.partition_fragment_A(sdOt);
                    flash::gemm</*zero_init=*/false, /*wg_wait=*/-1>(tiledMmadKV, tdVrdO(_, _, _, smem_pipe_read_do.index()), tdVrP, tdVrdV);
                }
                ++smem_pipe_read_do;
                // warpgroup_wait<0>();
                // Tensor dV_tmp = make_tensor(tdVrdV.data(), flash::convert_layout_acc_rowcol(tdVrdV.layout()));
                // if (blockIdx.x == 0 && threadIdx.x == 128) { print_tensor(dV_tmp); printf("\n"); }

                cutlass::arch::fence_view_async_shared();
                // if (blockIdx.x == 0 && blockIdx.z == 0 && (threadIdx.x == 128 || threadIdx.x == 256)) { printf("Before barrier sync 6, tidx = %d\n", threadIdx.x); }
                cutlass::arch::NamedBarrier::sync(NumMmaThreads, 6 + 1 - warp_group_idx /*id*/);
                // if (blockIdx.x == 0 && blockIdx.z == 0 && (threadIdx.x == 128 || threadIdx.x == 256)) { printf("After barrier sync 6, tidx = %d\n", threadIdx.x); }
                if constexpr (!dKV_swapAB) {
                    Tensor tdKrdS = threadMmadKV.partition_fragment_A(sdSt);
                    Tensor tdKrQ = threadMmadKV.partition_fragment_B(sQt);
                    flash::gemm</*zero_init=*/false, /*wg_wait=*/-1>(tiledMmadKV, tdKrdS, tdKrQ(_, _, _, smem_pipe_read_q.index()), tdKrdK);
                } else {
                    Tensor tdKrdS = threadMmadKV.partition_fragment_B(sdSt);
                    Tensor tdKrQ = threadMmadKV.partition_fragment_A(sQt);
                    flash::gemm</*zero_init=*/false, /*wg_wait=*/-1>(tiledMmadKV, tdKrQ(_, _, _, smem_pipe_read_q.index()), tdKrdS, tdKrdK);
                }
                ++smem_pipe_read_q;
                warpgroup_wait<0>();
                // Tensor dK_tmp = make_tensor(tdKrdK.data(), flash::convert_layout_acc_rowcol(tdKrdK.layout()));
                // if (blockIdx.x == 0 && threadIdx.x == 128) { print_tensor(dK_tmp); printf("\n"); }

                pipeline_do.consumer_release(smem_pipe_release_do);  // release V
                ++smem_pipe_release_do;
                pipeline_q.consumer_release(smem_pipe_release_q);  // release V
                ++smem_pipe_release_q;

                // warpgroup_wait<0>();
                // Tensor dQ_tmp = make_tensor(tdQrdQ.data(), flash::convert_layout_acc_rowcol(tdQrdQ.layout()));
                // if (cute::thread0()) { print_tensor(dQ_tmp); printf("\n"); }

                cutlass::arch::NamedBarrier::sync(NumMmaThreads, 8 /*id*/);
            }

        }

        // Epilogue

        Tensor sdK = make_tensor(make_smem_ptr(shared_storage.smem_dk.data()), typename Ktraits::SmemLayoutdK{});
        Tensor sdV = make_tensor(make_smem_ptr(shared_storage.smem_dv.data()), typename Ktraits::SmemLayoutdV{});
        Tensor sdKt = make_tensor(make_smem_ptr(shared_storage.smem_dk.data()), typename Ktraits::SmemLayoutdKt{});
        Tensor sdVt = make_tensor(make_smem_ptr(shared_storage.smem_dv.data()), typename Ktraits::SmemLayoutdVt{});

        auto smem_tiled_copy_dKV = make_tiled_copy_C(typename Ktraits::SmemCopyAtomdKV{}, tiledMmadKV);
        auto smem_thr_copy_dKV = smem_tiled_copy_dKV.get_thread_slice(threadIdx.x - NumCopyThreads);

        int n_block = blockIdx.x;
        bidb = blockIdx.z;  // The block index for the batch.
        bidh = blockIdx.y;  // The block index for the head.
        Tensor mdK = tma_store_dK.get_tma_tensor(make_shape(params.seqlen_k, params.d, params.h, params.b));
        Tensor mdV = tma_store_dV.get_tma_tensor(make_shape(params.seqlen_k, params.d, params.h, params.b));
        Tensor gdK = local_tile(mdK(_, _, bidh, bidb), select<1, 2>(TileShape_MNK{}), make_coord(n_block, _0{}));  // (M, K)
        Tensor gdV = local_tile(mdV(_, _, bidh, bidb), select<1, 2>(TileShape_MNK{}), make_coord(n_block, _0{}));  // (M, K)
        auto block_tma_dK = tma_store_dK.get_slice(_0{});
        auto block_tma_dV = tma_store_dV.get_slice(_0{});
        Tensor tdKgdK = block_tma_dK.partition_D(gdK);  // (TMA, TMA_M, TMA_K)
        Tensor tdKsdK = block_tma_dK.partition_S(sdK); // (TMA, TMA_M, TMA_K)
        Tensor tdVgdV = block_tma_dV.partition_D(gdV);  // (TMA, TMA_M, TMA_K)
        Tensor tdVsdV = block_tma_dV.partition_S(sdV); // (TMA, TMA_M, TMA_K)


        // Very slightly faster to do the smem write and TMA write for dV first, then do the same for dK,
        // Instead of doing both at the same time.
        Tensor tdVrdV_out = convert_type<Element>(tdVrdV);
        #pragma unroll
        for (int i = 0; i < size(tdKrdK); ++i) { tdKrdK(i) *= params.scale_softmax; }
        Tensor tdKrdK_out = convert_type<Element>(tdKrdK);

        Tensor taccdVrdV = smem_thr_copy_dKV.retile_S(tdVrdV_out);        // ((Atom,AtomNum), MMA_M, MMA_N)
        Tensor taccdKrdK = smem_thr_copy_dKV.retile_S(tdKrdK_out);        // ((Atom,AtomNum), MMA_M, MMA_N)

        //  Can't use __syncthreads() in WS code
        auto synchronize = [&] () { cutlass::arch::NamedBarrier::sync(NumMmaThreads, cutlass::arch::ReservedNamedBarriers::EpilogueBarrier); };
        synchronize();
        if constexpr (!dKV_swapAB) {
            Tensor taccdVsdV = smem_thr_copy_dKV.partition_D(sdV);     // ((Atom,AtomNum),PIPE_M,PIPE_N)
            cute::copy(smem_tiled_copy_dKV, taccdVrdV, taccdVsdV);
        } else {
            Tensor taccdVsdVt = smem_thr_copy_dKV.partition_D(sdVt);     // ((Atom,AtomNum),PIPE_M,PIPE_N)
            cute::copy(smem_tiled_copy_dKV, taccdVrdV, taccdVsdVt);
        }
        cutlass::arch::fence_view_async_shared(); // ensure smem writes are visible to TMA
        synchronize();

        lane_predicate = cute::elect_one_sync();
        warp_idx = cutlass::canonical_warp_idx_sync();
        if (warp_idx == NumCopyThreads / cutlass::NumThreadsPerWarp && lane_predicate) {
            cute::copy(tma_store_dV, tdVsdV, tdVgdV);
            tma_store_arrive();
        }

        if constexpr (!dKV_swapAB) {
            Tensor taccdKsdK = smem_thr_copy_dKV.partition_D(sdK);     // ((Atom,AtomNum),PIPE_M,PIPE_N)
            cute::copy(smem_tiled_copy_dKV, taccdKrdK, taccdKsdK);
        } else {
            Tensor taccdKsdKt = smem_thr_copy_dKV.partition_D(sdKt);     // ((Atom,AtomNum),PIPE_M,PIPE_N)
            cute::copy(smem_tiled_copy_dKV, taccdKrdK, taccdKsdKt);
        }
        cutlass::arch::fence_view_async_shared(); // ensure smem writes are visible to TMA
        synchronize();
        if (warp_idx == NumCopyThreads / cutlass::NumThreadsPerWarp && lane_predicate) {
            cute::copy(tma_store_dK, tdKsdK, tdKgdK);
            tma_store_arrive();
        }
        tma_store_wait<0>();
    }

}

} // namespace flash