test_opt.py 3.58 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
import re

import pytest
Tri Dao's avatar
Tri Dao committed
4
import torch
Tri Dao's avatar
Tri Dao committed
5
from flash_attn.models.gpt import GPTLMHeadModel
Tri Dao's avatar
Tri Dao committed
6
from flash_attn.models.opt import opt_config_to_gpt2_config, remap_state_dict_hf_opt
Tri Dao's avatar
Tri Dao committed
7
from flash_attn.utils.pretrained import state_dict_from_pretrained
Tri Dao's avatar
Tri Dao committed
8
9
from transformers import OPTConfig
from transformers.models.opt.modeling_opt import OPTForCausalLM
Tri Dao's avatar
Tri Dao committed
10
11


Tri Dao's avatar
Tri Dao committed
12
13
14
@pytest.mark.parametrize(
    "model_name", ["facebook/opt-125m", "facebook/opt-350m", "facebook/opt-1.3b"]
)
Tri Dao's avatar
Tri Dao committed
15
16
17
# @pytest.mark.parametrize('model_name', ["facebook/opt-350m"])
def test_opt_state_dict(model_name):
    config = opt_config_to_gpt2_config(OPTConfig.from_pretrained(model_name))
Tri Dao's avatar
Tri Dao committed
18
    pretrained_state_dict = remap_state_dict_hf_opt(state_dict_from_pretrained(model_name), config)
Tri Dao's avatar
Tri Dao committed
19
20
21
22
23
24
25
    model = GPTLMHeadModel(config)
    state_dict = model.state_dict()
    assert state_dict.keys() == pretrained_state_dict.keys()
    for k in state_dict.keys():
        assert state_dict[k].shape == pretrained_state_dict[k].shape


Tri Dao's avatar
Tri Dao committed
26
27
28
@pytest.mark.parametrize(
    "model_name", ["facebook/opt-125m", "facebook/opt-350m", "facebook/opt-1.3b"]
)
Tri Dao's avatar
Tri Dao committed
29
30
# @pytest.mark.parametrize('model_name', ["facebook/opt-350m"])
def test_opt_optimized(model_name):
31
    """Check that our implementation of OPT (without all optimizations enabled) matches the
Tri Dao's avatar
Tri Dao committed
32
33
34
35
    HF implementation: the output of our forward pass in fp16 should be around the same as the HF
    forward pass in fp16, when compared to the HF forward pass in fp32.
    """
    dtype = torch.float16
Tri Dao's avatar
Tri Dao committed
36
    device = "cuda"
Tri Dao's avatar
Tri Dao committed
37
38
39
    config = opt_config_to_gpt2_config(OPTConfig.from_pretrained(model_name))
    config.use_flash_attn = True
    config.fused_bias_fc = True
Tri Dao's avatar
Tri Dao committed
40
    config.fused_mlp = True
Tri Dao's avatar
Tri Dao committed
41
42
    config.fused_dropout_add_ln = True
    # Only prenorm supports residual_in_fp32
Tri Dao's avatar
Tri Dao committed
43
    config.residual_in_fp32 = getattr(config, "prenorm", True)
Tri Dao's avatar
Tri Dao committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
    config.pad_vocab_size_multiple = 8

    model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype)

    model_ref = OPTForCausalLM.from_pretrained(model_name).to(device=device)
    model_hf = OPTForCausalLM.from_pretrained(model_name, torch_dtype=dtype).to(device=device)

    model.eval()
    model_ref.eval()
    model_hf.eval()

    torch.manual_seed(0)
    batch_size = 2
    max_seqlen = 256
Tri Dao's avatar
Tri Dao committed
58
59
60
61
62
    seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device="cuda")
    input_ids = torch.randint(
        0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device="cuda"
    )
    if model_name != "facebook/opt-350m":  # The OPT-350m projects the embeddings to dimension 512
Tri Dao's avatar
Tri Dao committed
63
64
65
66
        out = model.transformer(input_ids)
        out_hf = model_hf.model(input_ids).last_hidden_state
        out_ref = model_ref.model(input_ids).last_hidden_state

Tri Dao's avatar
Tri Dao committed
67
68
69
70
        print(f"Output max diff: {(out - out_ref).abs().max().item()}")
        print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
        print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}")
        print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
71
72
73
74
75
76
        assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item()

    logits = model(input_ids).logits
    logits_hf = model_hf(input_ids).logits
    logits_ref = model_ref(input_ids).logits

Tri Dao's avatar
Tri Dao committed
77
78
79
80
81
82
83
    print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
    print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}")
    print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}")
    print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}")
    assert (logits - logits_ref).abs().max().item() < 3 * (
        logits_hf - logits_ref
    ).abs().max().item()