setup.py 7.38 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
# Adapted from https://github.com/NVIDIA/apex/blob/master/setup.py
import sys
import warnings
import os
Tri Dao's avatar
Tri Dao committed
5
from pathlib import Path
Tri Dao's avatar
Tri Dao committed
6
from packaging.version import parse, Version
Tri Dao's avatar
Tri Dao committed
7
8
9
10
11
12
13
14
15
16
17

from setuptools import setup, find_packages
import subprocess

import torch
from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME


with open("README.md", "r", encoding="utf-8") as fh:
    long_description = fh.read()

Tri Dao's avatar
Tri Dao committed
18
19
20
21
22
23
24
25
26

# ninja build does not work unless include_dirs are abs path
this_dir = os.path.dirname(os.path.abspath(__file__))


def get_cuda_bare_metal_version(cuda_dir):
    raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True)
    output = raw_output.split()
    release_idx = output.index("release") + 1
Tri Dao's avatar
Tri Dao committed
27
    bare_metal_version = parse(output[release_idx].split(",")[0])
Tri Dao's avatar
Tri Dao committed
28

Tri Dao's avatar
Tri Dao committed
29
    return raw_output, bare_metal_version
Tri Dao's avatar
Tri Dao committed
30
31
32


def check_cuda_torch_binary_vs_bare_metal(cuda_dir):
Tri Dao's avatar
Tri Dao committed
33
34
    raw_output, bare_metal_version = get_cuda_bare_metal_version(cuda_dir)
    torch_binary_version = parse(torch.version.cuda)
Tri Dao's avatar
Tri Dao committed
35
36
37
38

    print("\nCompiling cuda extensions with")
    print(raw_output + "from " + cuda_dir + "/bin\n")

Tri Dao's avatar
Tri Dao committed
39
    if (bare_metal_version != torch_binary_version):
Tri Dao's avatar
Tri Dao committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
        raise RuntimeError(
            "Cuda extensions are being compiled with a version of Cuda that does "
            "not match the version used to compile Pytorch binaries.  "
            "Pytorch binaries were compiled with Cuda {}.\n".format(torch.version.cuda)
            + "In some cases, a minor-version mismatch will not cause later errors:  "
            "https://github.com/NVIDIA/apex/pull/323#discussion_r287021798.  "
            "You can try commenting out this check (at your own risk)."
        )


def raise_if_cuda_home_none(global_option: str) -> None:
    if CUDA_HOME is not None:
        return
    raise RuntimeError(
        f"{global_option} was requested, but nvcc was not found.  Are you sure your environment has nvcc available?  "
        "If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, "
        "only images whose names contain 'devel' will provide nvcc."
    )


def append_nvcc_threads(nvcc_extra_args):
Tri Dao's avatar
Tri Dao committed
61
62
    _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
    if bare_metal_version >= Version("11.2"):
Tri Dao's avatar
Tri Dao committed
63
64
65
66
67
68
69
70
71
72
73
        return nvcc_extra_args + ["--threads", "4"]
    return nvcc_extra_args


if not torch.cuda.is_available():
    # https://github.com/NVIDIA/apex/issues/486
    # Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query torch.cuda.get_device_capability(),
    # which will fail if you are compiling in an environment without visible GPUs (e.g. during an nvidia-docker build command).
    print(
        "\nWarning: Torch did not find available GPUs on this system.\n",
        "If your intention is to cross-compile, this is not an error.\n"
Tri Dao's avatar
Tri Dao committed
74
75
        "By default, Apex will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n"
        "Volta (compute capability 7.0), Turing (compute capability 7.5),\n"
Tri Dao's avatar
Tri Dao committed
76
77
78
79
        "and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n"
        "If you wish to cross-compile for a single specific architecture,\n"
        'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n',
    )
Tri Dao's avatar
Tri Dao committed
80
81
82
83
84
85
86
87
    if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None and CUDA_HOME is not None:
        _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
        if bare_metal_version >= Version("11.8"):
            os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6;9.0"
        elif bare_metal_version >= Version("11.1"):
            os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6"
        elif bare_metal_version == Version("11.0"):
            os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0"
Tri Dao's avatar
Tri Dao committed
88
        else:
Tri Dao's avatar
Tri Dao committed
89
90
            os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5"

Tri Dao's avatar
Tri Dao committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

print("\n\ntorch.__version__  = {}\n\n".format(torch.__version__))
TORCH_MAJOR = int(torch.__version__.split(".")[0])
TORCH_MINOR = int(torch.__version__.split(".")[1])

cmdclass = {}
ext_modules = []

# Check, if ATen/CUDAGeneratorImpl.h is found, otherwise use ATen/cuda/CUDAGeneratorImpl.h
# See https://github.com/pytorch/pytorch/pull/70650
generator_flag = []
torch_dir = torch.__path__[0]
if os.path.exists(os.path.join(torch_dir, "include", "ATen", "CUDAGeneratorImpl.h")):
    generator_flag = ["-DOLD_GENERATOR_PATH"]

Tri Dao's avatar
Tri Dao committed
106
raise_if_cuda_home_none("flash_attn")
Tri Dao's avatar
Tri Dao committed
107
108
# Check, if CUDA11 is installed for compute capability 8.0
cc_flag = []
Tri Dao's avatar
Tri Dao committed
109
110
_, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
if bare_metal_version < Version("11.0"):
111
    raise RuntimeError("FlashAttention is only supported on CUDA 11 and above")
Tri Dao's avatar
Tri Dao committed
112
113
cc_flag.append("-gencode")
cc_flag.append("arch=compute_75,code=sm_75")
Tri Dao's avatar
Tri Dao committed
114
115
cc_flag.append("-gencode")
cc_flag.append("arch=compute_80,code=sm_80")
Tri Dao's avatar
Tri Dao committed
116
117
118
if bare_metal_version >= Version("11.8"):
    cc_flag.append("-gencode")
    cc_flag.append("arch=compute_90,code=sm_90")
Tri Dao's avatar
Tri Dao committed
119

Tri Dao's avatar
Tri Dao committed
120
subprocess.run(["git", "submodule", "update", "--init", "csrc/flash_attn/cutlass"])
Tri Dao's avatar
Tri Dao committed
121
122
ext_modules.append(
    CUDAExtension(
Tri Dao's avatar
Tri Dao committed
123
        name="flash_attn_cuda",
Tri Dao's avatar
Tri Dao committed
124
        sources=[
Tri Dao's avatar
Tri Dao committed
125
            "csrc/flash_attn/fmha_api.cpp",
126
127
128
129
130
131
            "csrc/flash_attn/src/fmha_fwd_hdim32.cu",
            "csrc/flash_attn/src/fmha_fwd_hdim64.cu",
            "csrc/flash_attn/src/fmha_fwd_hdim128.cu",
            "csrc/flash_attn/src/fmha_bwd_hdim32.cu",
            "csrc/flash_attn/src/fmha_bwd_hdim64.cu",
            "csrc/flash_attn/src/fmha_bwd_hdim128.cu",
Tri Dao's avatar
Tri Dao committed
132
133
            "csrc/flash_attn/src/fmha_block_fprop_fp16_kernel.sm80.cu",
            "csrc/flash_attn/src/fmha_block_dgrad_fp16_kernel_loop.sm80.cu",
Tri Dao's avatar
Tri Dao committed
134
135
        ],
        extra_compile_args={
136
            "cxx": ["-O3", "-std=c++17"] + generator_flag,
Tri Dao's avatar
Tri Dao committed
137
138
139
            "nvcc": append_nvcc_threads(
                [
                    "-O3",
140
                    "-std=c++17",
Tri Dao's avatar
Tri Dao committed
141
142
                    "-U__CUDA_NO_HALF_OPERATORS__",
                    "-U__CUDA_NO_HALF_CONVERSIONS__",
143
144
                    "-U__CUDA_NO_HALF2_OPERATORS__",
                    "-U__CUDA_NO_BFLOAT16_CONVERSIONS__",
Tri Dao's avatar
Tri Dao committed
145
146
147
148
149
150
151
152
153
154
155
                    "--expt-relaxed-constexpr",
                    "--expt-extended-lambda",
                    "--use_fast_math",
                    "--ptxas-options=-v",
                    "-lineinfo"
                ]
                + generator_flag
                + cc_flag
            ),
        },
        include_dirs=[
Tri Dao's avatar
Tri Dao committed
156
157
            Path(this_dir) / 'csrc' / 'flash_attn',
            Path(this_dir) / 'csrc' / 'flash_attn' / 'src',
Tri Dao's avatar
Tri Dao committed
158
            Path(this_dir) / 'csrc' / 'flash_attn' / 'cutlass' / 'include',
Tri Dao's avatar
Tri Dao committed
159
160
161
162
163
        ],
    )
)

setup(
Tri Dao's avatar
Tri Dao committed
164
    name="flash_attn",
165
    version="1.0.1",
Tri Dao's avatar
Tri Dao committed
166
167
168
169
170
171
172
173
174
175
176
    packages=find_packages(
        exclude=("build", "csrc", "include", "tests", "dist", "docs", "benchmarks", "flash_attn.egg-info",)
    ),
    author="Tri Dao",
    author_email="trid@stanford.edu",
    description="Flash Attention: Fast and Memory-Efficient Exact Attention",
    long_description=long_description,
    long_description_content_type="text/markdown",
    url="https://github.com/HazyResearch/flash-attention",
    classifiers=[
        "Programming Language :: Python :: 3",
177
        "License :: OSI Approved :: BSD License",
Phil Wang's avatar
Phil Wang committed
178
        "Operating System :: Unix",
Tri Dao's avatar
Tri Dao committed
179
    ],
Tri Dao's avatar
Tri Dao committed
180
181
    ext_modules=ext_modules,
    cmdclass={"build_ext": BuildExtension} if ext_modules else {},
Gustaf's avatar
Gustaf committed
182
183
184
185
    python_requires=">=3.7",
    install_requires=[
        "torch",
        "einops",
Pavel Shvets's avatar
Pavel Shvets committed
186
        "packaging",
Gustaf's avatar
Gustaf committed
187
    ],
Tri Dao's avatar
Tri Dao committed
188
)