"vscode:/vscode.git/clone" did not exist on "e377c47fa16367e902ce559a1c50c81c33956163"
fused_dense.py 19.9 KB
Newer Older
1
2
# Copyright (c) 2022, Tri Dao.
# Inspired by https://github.com/NVIDIA/apex/blob/master/apex/fused_dense/fused_dense.py
3
# We make it work with pytorch amp and with bfloat16.
4
# The TensorParallel linear modules are inspired by https://github.com/NVIDIA/apex/blob/master/apex/transformer/tensor_parallel/layers.py
Tri Dao's avatar
Tri Dao committed
5
from typing import Optional
6
7
8
9

import torch
import torch.nn as nn
import torch.nn.functional as F
Tri Dao's avatar
Tri Dao committed
10
from torch import Tensor
11
from torch.distributed import ProcessGroup
12
13
14
15
from torch.cuda.amp import custom_bwd, custom_fwd

# import fused_dense_cuda  # from apex
import fused_dense_lib as fused_dense_cuda
16

17
from flash_attn.ops.gelu_activation import gelu_bwd
18
from flash_attn.utils.distributed import all_gather_raw, reduce_scatter_raw, reduce_scatter
19
20


Tri Dao's avatar
Tri Dao committed
21
class FusedDenseFunc(torch.autograd.Function):
22
23
24

    @staticmethod
    @custom_fwd
25
26
27
28
29
    def forward(ctx, x, weight, bias, return_residual=False, process_group=None):
        """
        If process_group is not None, we're doing Tensor Parallel with sequence parallelism:
        we do an all_gather_raw of x before doing the matmul.
        """
30
31
32
33
        ctx.compute_weight_gradient = weight.requires_grad
        ctx.return_residual = return_residual
        ctx.process_group = process_group

34
35
        if torch.is_autocast_enabled():
            dtype = torch.get_autocast_gpu_dtype()
Tri Dao's avatar
Tri Dao committed
36
37
            x, weight = [a.to(dtype=dtype) for a in [x, weight]]
            bias = bias.to(dtype=dtype) if bias is not None else None
38

39
40
        x = x.contiguous()
        weight = weight.contiguous()
41
42
43
44
        if ctx.compute_weight_gradient:
            ctx.save_for_backward(x, weight)
        else:
            ctx.save_for_backward(weight)
45
46
47
        batch_shape, n = x.shape[:-1], x.shape[-1]
        batch_dim = batch_shape.numel()
        assert batch_dim <= 64 * 1024, 'fused_dense only supports dimension at most 64k'
48
49
50
51
52
        if process_group is not None:
            total_x, _ = all_gather_raw(x, process_group)
        else:
            total_x = x
        output = F.linear(total_x, weight, bias)
Tri Dao's avatar
Tri Dao committed
53
        return output if not return_residual else (output, x)
54
55
56

    @staticmethod
    @custom_bwd
Tri Dao's avatar
Tri Dao committed
57
    def backward(ctx, grad_output, *args):
58
        grad_output = grad_output.contiguous()
Tri Dao's avatar
Tri Dao committed
59
60
61
        if ctx.return_residual:
            grad_input, = args
            grad_input = grad_input.contiguous()
62
63
64
65
66
67
68
69
70
71
72
        process_group = ctx.process_group
        if ctx.compute_weight_gradient:
            x, weight = ctx.saved_tensors
            if process_group is not None:
                total_x, handle_x = all_gather_raw(x, process_group, async_op=True)
            else:
                total_x = x
        else:
            weight, = ctx.saved_tensors
            total_x = None
        batch_shape = grad_output.shape[:-1]
73
        batch_dim = batch_shape.numel()
Tri Dao's avatar
Tri Dao committed
74
75
76
77
78
        grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1])
        if ctx.needs_input_grad[0]:
            if not ctx.return_residual:
                grad_input = F.linear(grad_output, weight.t())
            else:
79
80
81
82
83
84
                grad_input = torch.addmm(grad_input.reshape(batch_dim, grad_input.shape[-1]),
                                         grad_output, weight)
            grad_input = grad_input.reshape(*batch_shape, grad_input.shape[-1])
            if process_group is not None:
                grad_input, handle_grad_input = reduce_scatter_raw(grad_input, process_group,
                                                                   async_op=True)
85
86
        else:
            grad_input = None
87
88
89
90
91
92
93
94
95
96
97
98
99
        if ctx.needs_input_grad[1]:
            assert ctx.compute_weight_gradient
            if process_group is not None:
                handle_x.wait()
            grad_weight, grad_bias = fused_dense_cuda.linear_bias_wgrad(
                total_x.reshape(batch_dim, total_x.shape[-1]), grad_output, ctx.needs_input_grad[2]
            )
        else:
            grad_weight = None
            grad_bias = grad_output if ctx.needs_input_grad[2] else None
        if process_group is not None and ctx.needs_input_grad[0]:
            handle_grad_input.wait()
        return grad_input, grad_weight, grad_bias, None, None
100
101


Tri Dao's avatar
Tri Dao committed
102
def fused_dense_func(x: Tensor, weight: Tensor, bias: Optional[Tensor] = None,
103
                     return_residual: bool = False, process_group: Optional[ProcessGroup] = None):
Tri Dao's avatar
Tri Dao committed
104
105
106
107
108
    batch_dim = x.shape[:-1].numel()
    dtype_eligible = (x.dtype in [torch.float16, torch.bfloat16]
                      or (x.dtype == torch.float32 and torch.is_autocast_enabled()))
    if (x.is_cuda and weight.is_cuda and (bias is None or bias.is_cuda) and batch_dim <= 64 * 1024
        and dtype_eligible):
109
        return FusedDenseFunc.apply(x, weight, bias, return_residual, process_group)
Tri Dao's avatar
Tri Dao committed
110
    else:
111
        assert process_group is None
Tri Dao's avatar
Tri Dao committed
112
113
        out = F.linear(x, weight, bias)
        return out if not return_residual else (out, x)
114
115


Tri Dao's avatar
Tri Dao committed
116
class FusedDense(nn.Linear):
117
118

    def __init__(self, in_features: int, out_features: int, bias: bool = True,
Tri Dao's avatar
Tri Dao committed
119
                 return_residual: bool = False, device=None, dtype=None) -> None:
120
        super().__init__(in_features, out_features, bias=bias, device=device, dtype=dtype)
Tri Dao's avatar
Tri Dao committed
121
        self.return_residual = return_residual
122

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
    def forward(self, x, process_group=None):
        """
        If process_group is not None, we're doing Tensor Parallel with sequence parallelism:
        we do an all_gather of x before doing the matmul.
        """
        return fused_dense_func(x, self.weight, self.bias, return_residual=self.return_residual,
                                process_group=process_group)


class ColumnParallelLinear(nn.Linear):

    def __init__(self, in_features: int, out_features: int, process_group: ProcessGroup,
                 bias: bool = True, device=None, dtype=None) -> None:
        world_size = torch.distributed.get_world_size(process_group)
        if out_features % world_size != 0:
            raise ValueError(f'out_features ({out_features}) must be divisible by '
                             f'world_size ({world_size})')
        super().__init__(in_features, out_features // world_size, bias=bias,
                         device=device, dtype=dtype)
        self.process_group = process_group

144
    def forward(self, x):
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
        """
        We're doing Tensor Parallel with sequence parallelism: we do an all_gather of
        x before doing the matmul.
        """
        return fused_dense_func(x, self.weight, self.bias, process_group=self.process_group)


class RowParallelLinear(nn.Linear):

    def __init__(self, in_features: int, out_features: int, process_group: ProcessGroup,
                 bias: bool = True, device=None, dtype=None) -> None:
        world_size = torch.distributed.get_world_size(process_group)
        rank = torch.distributed.get_rank(process_group)
        if in_features % world_size != 0:
            raise ValueError(f'in_features ({in_features}) must be divisible by '
                             f'world_size ({world_size})')
        # Only rank 0 will have bias
        super().__init__(in_features // world_size, out_features, bias=bias and rank == 0,
                         device=device, dtype=dtype)
        self.process_group = process_group

    def forward(self, x):
        """
        We're doing Tensor Parallel with sequence parallelism: we do the matmul and then
        a reduce_scatter of the result.
        """
        out = fused_dense_func(x, self.weight, self.bias)
        return reduce_scatter(out, self.process_group)
173
174


Tri Dao's avatar
Tri Dao committed
175
class FusedDenseGeluDenseFunc(torch.autograd.Function):
176
177
178

    @staticmethod
    @custom_fwd
179
180
181
182
183
184
185
    def forward(ctx, x, weight1, bias1, weight2, bias2, save_pre_act=True, return_residual=False,
                checkpoint_lvl=0, heuristic=0, process_group=None):
        """
        If process_group is not None, we're doing Tensor Parallel with sequence parallelism:
        we do an all_gather of x before doing the matmul.

        checkpoint_lvl:
186
187
188
189
190
191
192
        0: no recomputation in the bwd
        1: recompute gelu_out in the bwd
        2: recompute gelu_in and gelu_out in the bwd
        """
        assert -1 <= heuristic <= 4
        if torch.is_autocast_enabled():
            dtype = torch.get_autocast_gpu_dtype()
Tri Dao's avatar
Tri Dao committed
193
194
195
            x, weight1, weight2 = [a.to(dtype=dtype) for a in [x, weight1, weight2]]
            bias1 = bias1.to(dtype=dtype) if bias1 is not None else None
            bias2 = bias2.to(dtype=dtype) if bias2 is not None else None
196
        if not save_pre_act:
Tri Dao's avatar
Tri Dao committed
197
            checkpoint_lvl = 2
198
        assert checkpoint_lvl in [0, 1, 2]
Tri Dao's avatar
Tri Dao committed
199
        ctx.return_residual = return_residual
200
        ctx.process_group = process_group
201
202
        x = x.contiguous()
        weight1 = weight1.contiguous()
Tri Dao's avatar
Tri Dao committed
203
        bias1 = bias1.contiguous() if bias1 is not None else None
204
        weight2 = weight2.contiguous()
Tri Dao's avatar
Tri Dao committed
205
        bias2 = bias2.contiguous() if bias2 is not None else None
206
207
208
209
210
        if process_group is not None:
            total_x, _ = all_gather_raw(x, process_group)
        else:
            total_x = x
        batch_shape, n = total_x.shape[:-1], total_x.shape[-1]
211
212
213
        batch_dim = batch_shape.numel()
        assert batch_dim <= 64 * 1024, 'fused_dense only supports dimension at most 64k'
        if heuristic == -1:
214
            gelu_in = F.linear(total_x, weight1, bias1)
215
            output1 = F.gelu(gelu_in, approximate='tanh')
216
            # gelu_in = F.linear(total_x.reshape(batch_dim, n), weight1)  # This is before adding bias1
217
218
219
            # with torch.jit.fuser('fuser2'):
            #     output1 = bias_gelu(gelu_in, bias1)
        else:
220
221
222
223
            output1, *rest = fused_dense_cuda.linear_gelu_forward(
                total_x.reshape(batch_dim, n), weight1, bias1, save_pre_act, heuristic
            )
            if save_pre_act:
224
                gelu_in = rest[0]
Tri Dao's avatar
Tri Dao committed
225
        output2 = F.linear(output1, weight2, bias2)
226
227
228
        ctx.checkpoint_lvl = checkpoint_lvl
        ctx.heuristic = heuristic
        if checkpoint_lvl == 0:
Tri Dao's avatar
Tri Dao committed
229
            ctx.save_for_backward(x, weight1, weight2, gelu_in, output1)
230
        elif checkpoint_lvl == 1:
Tri Dao's avatar
Tri Dao committed
231
            ctx.save_for_backward(x, weight1, weight2, gelu_in)
232
        elif checkpoint_lvl == 2:
Tri Dao's avatar
Tri Dao committed
233
234
235
            ctx.save_for_backward(x, weight1, weight2, bias1)
        output2 = output2.reshape(*batch_shape, output2.shape[-1])
        return output2 if not return_residual else (output2, x)
236
237
238

    @staticmethod
    @custom_bwd
Tri Dao's avatar
Tri Dao committed
239
    def backward(ctx, grad_output, *args):
240
241
        grad_output = grad_output.contiguous()
        checkpoint_lvl = ctx.checkpoint_lvl
Tri Dao's avatar
Tri Dao committed
242
243
244
        if ctx.return_residual:
            grad_input, = args
            grad_input = grad_input.contiguous()
245
        process_group = ctx.process_group
Tri Dao's avatar
Tri Dao committed
246
        x, weight1, weight2, *rest = ctx.saved_tensors
247
248
249
        if process_group is None:
            total_x = x
        batch_shape = grad_output.shape[:-1]
250
        batch_dim = batch_shape.numel()
251
252
253
254
255
256
257
258
        if checkpoint_lvl in [0, 1]:
            if process_group is not None:
                total_x, handle_x = all_gather_raw(x, process_group, async_op=True)
            if checkpoint_lvl == 0:
                gelu_in, output1 = rest
            elif checkpoint_lvl == 1:
                gelu_in, = rest
                output1 = F.gelu(gelu_in, approximate='tanh')
259
        elif checkpoint_lvl == 2:
Tri Dao's avatar
Tri Dao committed
260
            bias1, = rest
261
262
            if process_group is not None:
                total_x, _ = all_gather_raw(x, process_group)
263
            if ctx.heuristic == -1:
264
                gelu_in = F.linear(total_x, weight1, bias1)
265
266
                output1 = F.gelu(gelu_in, approximate='tanh')
            else:
Tri Dao's avatar
Tri Dao committed
267
                output1, gelu_in = fused_dense_cuda.linear_gelu_forward(
268
269
                    total_x.reshape(batch_dim, total_x.shape[-1]), weight1, bias1, True,
                    ctx.heuristic
Tri Dao's avatar
Tri Dao committed
270
271
272
273
274
275
276
277
278
279
280
281
                )

        grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1])
        output1 = output1.reshape(batch_dim, output1.shape[-1])
        gelu_in = gelu_in.reshape(batch_dim, gelu_in.shape[-1])
        if ctx.needs_input_grad[3]:
            grad_weight2, grad_bias2 = fused_dense_cuda.linear_bias_wgrad(
                output1, grad_output, ctx.needs_input_grad[4]
            )
        else:
            grad_weight2 = None
            grad_bias2 = grad_output if ctx.needs_input_grad[4] else None
282
283
        if ctx.heuristic == -1:
            # grad_gelu = matmul_dgelu(grad_output, weight2, gelu_in)
Tri Dao's avatar
Tri Dao committed
284
            grad_output1 = F.linear(grad_output, weight2.t())
285
286
287
            with torch.jit.fuser('fuser2'):
                grad_gelu = gelu_bwd(grad_output1, gelu_in)
        else:
Tri Dao's avatar
Tri Dao committed
288
289
290
291
            # The cublasLt epilogue has to compute both gelu grad and bias grad, we can't
            # just compute gelu grad
            grad_gelu, grad_bias1 = fused_dense_cuda.bias_gelu_linear_dgrad_bgrad(
                weight2, grad_output, gelu_in, ctx.heuristic
292
            )
Tri Dao's avatar
Tri Dao committed
293
294
295
296
297
298
            if not ctx.needs_input_grad[2]:
                grad_bias1 = None
        if ctx.needs_input_grad[0]:
            if not ctx.return_residual:
                grad_input = F.linear(grad_gelu, weight1.t())
            else:
299
300
301
302
303
304
                grad_input = torch.addmm(grad_input.reshape(batch_dim, grad_input.shape[-1]),
                                         grad_gelu, weight1)
            grad_input = grad_input.reshape(*batch_shape, grad_input.shape[-1])
            if process_group is not None:
                grad_input, handle_grad_input = reduce_scatter_raw(grad_input, process_group,
                                                                   async_op=True)
Tri Dao's avatar
Tri Dao committed
305
306
        else:
            grad_input = None
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
        if ctx.heuristic == -1:
            if ctx.needs_input_grad[1]:
                if process_group is not None:
                    handle_x.wait()
                grad_weight1, grad_bias1 = fused_dense_cuda.linear_bias_wgrad(
                    total_x.reshape(batch_dim, total_x.shape[-1]), grad_gelu,
                    ctx.needs_input_grad[2]
                )
            else:
                grad_weight1 = None
                grad_bias1 = grad_gelu if ctx.needs_input_grad[2] else None
        else:
            if ctx.needs_input_grad[1]:
                if process_group is not None:
                    handle_x.wait()
                grad_weight1 = F.linear(grad_gelu.t(),
                                        total_x.reshape(batch_dim, total_x.shape[-1]).t())
            else:
                grad_weight1 = None
        if process_group is not None and ctx.needs_input_grad[0]:
            handle_grad_input.wait()
        return (grad_input, grad_weight1, grad_bias1, grad_weight2, grad_bias2,
                None, None, None, None, None)
Tri Dao's avatar
Tri Dao committed
330
331
332
333
334


def fused_dense_gelu_dense_func(
    x: Tensor, weight1: Tensor, weight2: Tensor, bias1: Optional[Tensor] = None,
    bias2: Optional[Tensor] = None,
335
336
337
    save_pre_act: bool = True, return_residual: bool = False,
    checkpoint_lvl: int = 0, heuristic: int = 0,
    process_group: Optional[ProcessGroup] = None
Tri Dao's avatar
Tri Dao committed
338
339
340
341
342
343
344
345
346
):
    batch_dim = x.shape[:-1].numel()
    dtype_eligible = (x.dtype in [torch.float16, torch.bfloat16]
                      or (x.dtype == torch.float32 and torch.is_autocast_enabled()))
    if (x.is_cuda and weight1.is_cuda and weight2.is_cuda and (bias1 is None or bias1.is_cuda)
        and (bias2 is None or bias2.is_cuda) and batch_dim <= 64 * 1024
        and dtype_eligible):
        return FusedDenseGeluDenseFunc.apply(
            x, weight1, bias1, weight2, bias2,
347
            save_pre_act, return_residual, checkpoint_lvl, heuristic, process_group
Tri Dao's avatar
Tri Dao committed
348
349
        )
    else:
350
        assert process_group is None
Tri Dao's avatar
Tri Dao committed
351
352
353
354
        gelu_in = F.linear(x, weight1, bias1)
        output1 = F.gelu(gelu_in, approximate='tanh')
        output2 = F.linear(output1, weight2, bias2)
        return output2 if not return_residual else (output2, x)
355
356


Tri Dao's avatar
Tri Dao committed
357
class FusedDenseGeluDense(nn.Module):
358

Tri Dao's avatar
Tri Dao committed
359
360
361
    def __init__(self, in_features, hidden_features, out_features=None, bias1=True,
                 bias2=True, return_residual=False, checkpoint_lvl=0, heuristic=0,
                 device=None, dtype=None):
362
        """
363
364
365
366
        If process_group is not None, we're doing Tensor Parallel with sequence parallelism:
        we do an all_gather of x before doing the matmul, gelu, then matmul.
        Finally we do a reduce_scatter of the output.

367
368
369
370
371
372
373
        checkpoint_lvl (increasing lvl means slower but more memory saving):
            0: no recomputation in the bwd
            1: recompute gelu_out in the bwd
            2: recompute gelu_in and gelu_out in the bwd
        heuristic:
            -1: don't fuse gemm + gelu (separate kernel)
            0..4: use this heuristic for the algo section in the fused gemm + gelu
Tri Dao's avatar
Tri Dao committed
374
375
376
377
378
            For CUDA >= 11.8, you'd want heuristic=0 for both fp16 and bf16 for best perf.
            For CUDA <= 11.7, you'd want heuristic=1 for fp16 and heuristic=-1 for bf16.
        return_residual: whether to return the input x along with the output. This is for
            performance reason: for post-norm architecture, returning the input allows us
            to fuse the backward of nn.Linear with the residual connection.
379
380
381
382
383
384
        """
        assert checkpoint_lvl in [0, 1, 2]
        factory_kwargs = {'device': device, 'dtype': dtype}
        super().__init__()
        if out_features is None:
            out_features = in_features
Tri Dao's avatar
Tri Dao committed
385
        self.return_residual = return_residual
386
387
        self.checkpoint_lvl = checkpoint_lvl
        self.heuristic = heuristic
Tri Dao's avatar
Tri Dao committed
388
389
        self.fc1 = nn.Linear(in_features, hidden_features, bias=bias1, **factory_kwargs)
        self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2, **factory_kwargs)
390

391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
    def forward(self, x, process_group=None):
        out = fused_dense_gelu_dense_func(
            x, self.fc1.weight, self.fc2.weight, self.fc1.bias, self.fc2.bias,
            save_pre_act=self.training, return_residual=self.return_residual,
            checkpoint_lvl=self.checkpoint_lvl, heuristic=self.heuristic,
            process_group=process_group
        )
        if self.return_residual:
            out, x = out
        if process_group is not None:
            out = reduce_scatter(out, process_group)
        return out if not self.return_residual else (out, x)


class ParallelFusedDenseGeluDense(nn.Module):

    def __init__(self, in_features, hidden_features, out_features=None,
                 process_group: ProcessGroup = None, bias1=True, bias2=True,
                 checkpoint_lvl=0, heuristic=0, device=None, dtype=None):
        """
        process_group is required. We're doing Tensor Parallel with sequence parallelism:
        we do an all_gather of x before doing the matmul, gelu, then matmul.
        Finally we do a reduce_scatter of the output.

        checkpoint_lvl (increasing lvl means slower but more memory saving):
            0: no recomputation in the bwd
            1: recompute gelu_out in the bwd
            2: recompute gelu_in and gelu_out in the bwd
        heuristic:
            -1: don't fuse gemm + gelu (separate kernel)
            0..4: use this heuristic for the algo section in the fused gemm + gelu
            For CUDA >= 11.8, you'd want heuristic=0 for both fp16 and bf16 for best perf.
            For CUDA <= 11.7, you'd want heuristic=1 for fp16 and heuristic=-1 for bf16.
        """
        assert checkpoint_lvl in [0, 1, 2]
        assert process_group is not None
        factory_kwargs = {'device': device, 'dtype': dtype}
        super().__init__()
        if out_features is None:
            out_features = in_features
        self.process_group = process_group
        self.checkpoint_lvl = checkpoint_lvl
        self.heuristic = heuristic
        self.fc1 = ColumnParallelLinear(in_features, hidden_features, process_group,
                                        bias=bias1, **factory_kwargs)
        self.fc2 = RowParallelLinear(hidden_features, out_features, process_group,
                                     bias=bias2, **factory_kwargs)

439
    def forward(self, x):
440
        out = fused_dense_gelu_dense_func(
Tri Dao's avatar
Tri Dao committed
441
            x, self.fc1.weight, self.fc2.weight, self.fc1.bias, self.fc2.bias,
442
443
            save_pre_act=self.training, checkpoint_lvl=self.checkpoint_lvl,
            heuristic=self.heuristic, process_group=self.process_group
444
        )
445
        return reduce_scatter(out, self.process_group)