baichuan.py 5.65 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# Copyright (c) 2023, GGGGGGXY.

import math
import json
import re
from pathlib import Path

from collections import OrderedDict

import torch
import torch.nn.functional as F

from einops import rearrange
from transformers import GPT2Config, AutoConfig, PretrainedConfig


# only support Baichuan-7B now
def remap_state_dict_hf_baichuan(state_dict, config):
    def key_mapping_layers(key):
        return re.sub(r"^model.", "transformer.", key)

    state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())

    # Word embedding
    def key_mapping_emb(key):
        return re.sub(
            r"^transformer.embed_tokens.",
            "transformer.embeddings.word_embeddings.",
            key,
        )

    state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items())
    word_embeddings = state_dict.pop("transformer.embeddings.word_embeddings.weight")
    # It's possible that vocab_size is padded to be a multiple of 8, for example.
    pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
    vocab_size = (
        math.ceil(word_embeddings.shape[0] / pad_vocab_size_multiple)
        * pad_vocab_size_multiple
    )
    state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad(
        word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
    )
    if getattr(config, "tie_word_embeddings"):
        state_dict["lm_head.weight"] = state_dict[
            "transformer.embeddings.word_embeddings.weight"
        ]
    else:
        output_embeddings = state_dict.pop("lm_head.weight")
        # Need to recompute vocab_size since Baichuan shards the word embeddings and output embeddings
        # differently.
        vocab_size = (
            math.ceil(output_embeddings.shape[0] / pad_vocab_size_multiple)
            * pad_vocab_size_multiple
        )
        # It's possible that vocab_size is padded to be a multiple of 8, for example.
        state_dict["lm_head.weight"] = F.pad(
            output_embeddings, (0, 0, 0, vocab_size - output_embeddings.shape[0])
        )

    # LayerNorm
    def key_mapping_ln(key):
        key = re.sub(r"^transformer.norm.", r"transformer.ln_f.", key)
        key = re.sub(
            r"^transformer.layers.(\d+).input_layernorm.",
            r"transformer.layers.\1.norm1.",
            key,
        )
        key = re.sub(
            r"^transformer.layers.(\d+).post_attention_layernorm.",
            r"transformer.layers.\1.norm2.",
            key,
        )
        return key

    state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())

    # MLP
    for l in range(config.n_layer):
        w1 = state_dict.pop(f"transformer.layers.{l}.mlp.gate_proj.weight")
        w3 = state_dict.pop(f"transformer.layers.{l}.mlp.up_proj.weight")
        # Our ordering is different
        state_dict[f"transformer.layers.{l}.mlp.fc1.weight"] = torch.cat(
            [w3, w1], dim=0
        )

    def key_mapping_mlp(key):
        return re.sub(
            r"^transformer.layers.(\d+).mlp.down_proj.",
            r"transformer.layers.\1.mlp.fc2.",
            key,
        )

    state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())

    # Attention
    def key_mapping_attn(key):
        key = re.sub(
            r"^transformer.layers.(\d+).self_attn.W_pack.",
            r"transformer.layers.\1.mixer.Wqkv.",
            key,
        )
        key = re.sub(
            r"^transformer.layers.(\d+).self_attn.o_proj.",
            r"transformer.layers.\1.mixer.out_proj.",
            key,
        )
        return key

    state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
    for l in range(config.n_layer):
        # pop rotary_emb.inv_freq from state dict
        state_dict.pop(f"transformer.layers.{l}.self_attn.rotary_emb.inv_freq")
    return state_dict


def config_from_checkpoint(checkpoint_path: str, model_name: str) -> PretrainedConfig:
    """Load a BaiChuanConfig from a checkpoint path."""
    config = AutoConfig.from_pretrained(
        Path(checkpoint_path) / model_name, trust_remote_code=True
    )
    return config


def state_dicts_from_checkpoint(checkpoint_path: str, model_name: str) -> dict:
    # Need to sort, otherwise we mess up the ordering and the weights are wrong
    return [
        torch.load(path, map_location="cpu")
        for path in sorted(
            (Path(checkpoint_path) / model_name).glob("pytorch_model*.bin")
        )
    ]


def baichuan_config_to_gpt2_config(baichuan_config: PretrainedConfig) -> GPT2Config:
    return GPT2Config(
        vocab_size=baichuan_config.vocab_size,
        n_positions=0,  # No absolute position embedding
        n_embd=baichuan_config.hidden_size,
        n_layer=baichuan_config.num_hidden_layers,
        n_head=baichuan_config.num_attention_heads,
        n_inner=baichuan_config.intermediate_size,
        activation_function="swiglu",  # Hardcode since HF calls it 'silu'
        # baichuan doesn't have dropout, idk if it's because they only release the inference code
        resid_pdrop=0.0,
        embd_pdrop=0.0,
        attn_pdrop=0.0,
        layer_norm_epsilon=baichuan_config.rms_norm_eps,
        initializer_range=baichuan_config.initializer_range,
        bos_token_id=baichuan_config.bos_token_id,
        eos_token_id=baichuan_config.eos_token_id,
        # These are new arguments not in the original GPT2Config
        pad_token_id=baichuan_config.pad_token_id,  # Idk if this does anything
        rms_norm=True,
        rotary_emb_fraction=1.0,
        rotary_emb_interleaved=False,
        tie_word_embeddings=False,
        qkv_proj_bias=False,
        out_proj_bias=False,
        mlp_fc1_bias=False,
        mlp_fc2_bias=False,
    )