"test/gtest-1.11.0/googletest/samples/sample2.cc" did not exist on "b2f89386d8f88655e47c4be0c719073dd6308a21"
bert_padding.py 5.78 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
# Adapted from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/padding.py

3
4
import numpy as np

Tri Dao's avatar
Tri Dao committed
5
6
7
8
9
10
11
12
13
14
15
import torch
import torch.nn.functional as F

from einops import rearrange, repeat


class IndexFirstAxis(torch.autograd.Function):

    @staticmethod
    def forward(ctx, input, indices):
        ctx.save_for_backward(indices)
16
17
18
        assert input.ndim >= 2
        ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:]
        second_dim = np.prod(other_shape)
Tri Dao's avatar
Tri Dao committed
19
20
        # TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
        # return input[indices]
21
22
        return torch.gather(rearrange(input, 'b ... -> b (...)'), 0,
                            repeat(indices, 'z -> z d', d=second_dim)).reshape(-1, *other_shape)
Tri Dao's avatar
Tri Dao committed
23
24
25
26

    @staticmethod
    def backward(ctx, grad_output):
        indices, = ctx.saved_tensors
27
28
29
30
31
        assert grad_output.ndim >= 2
        other_shape = grad_output.shape[1:]
        grad_output = rearrange(grad_output, 'b ... -> b (...)')
        grad_input = torch.zeros([ctx.first_axis_dim, grad_output.shape[1]],
                                  device=grad_output.device, dtype=grad_output.dtype)
Tri Dao's avatar
Tri Dao committed
32
33
34
        # TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing.
        # grad_input[indices] = grad_output
        grad_input.scatter_(0, repeat(indices, 'z -> z d', d=grad_output.shape[1]), grad_output)
35
        return grad_input.reshape(ctx.first_axis_dim, *other_shape), None
Tri Dao's avatar
Tri Dao committed
36
37
38
39
40
41
42
43
44
45
46


index_first_axis = IndexFirstAxis.apply


class IndexPutFirstAxis(torch.autograd.Function):

    @staticmethod
    def forward(ctx, values, indices, first_axis_dim):
        ctx.save_for_backward(indices)
        assert indices.ndim == 1
47
48
        assert values.ndim >= 2
        output = torch.zeros(first_axis_dim, *values.shape[1:], device=values.device,
Tri Dao's avatar
Tri Dao committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
                             dtype=values.dtype)
        # TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing.
        output[indices] = values
        # output.scatter_(0, repeat(indices, 'z -> z d', d=values.shape[1]), values)
        return output

    @staticmethod
    def backward(ctx, grad_output):
        indices, = ctx.saved_tensors
        # TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
        grad_values = grad_output[indices]
        # grad_values = torch.gather(grad_output, 0, repeat(indices, 'z -> z d', d=grad_output.shape[1]))
        return grad_values, None, None


index_put_first_axis = IndexPutFirstAxis.apply


67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
class IndexFirstAxisResidual(torch.autograd.Function):

    @staticmethod
    def forward(ctx, input, indices):
        ctx.save_for_backward(indices)
        assert input.ndim >= 2
        ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:]
        second_dim = np.prod(other_shape)
        # TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
        output = input[indices]
        # We don't want to reshape input (b ... -> b (...)) since it could change the channel_last
        # memory format to channel_first. In other words, input might not be contiguous.
        # If we don't detach, Pytorch complains about output being a view and is being modified inplace
        return output, input.detach()

    @staticmethod
    def backward(ctx, grad_output, grad_residual):
        indices, = ctx.saved_tensors
        assert grad_output.ndim >= 2
        other_shape = grad_output.shape[1:]
        assert grad_residual.shape[1:] == other_shape
        grad_input = grad_residual
        # grad_input[indices] += grad_output
        indices = indices.reshape(indices.shape[0], *((1,) * (grad_output.ndim - 1)))
        indices = indices.expand_as(grad_output)
        grad_input.scatter_add_(0, indices, grad_output)
        return grad_input.reshape(ctx.first_axis_dim, *other_shape), None


index_first_axis_residual = IndexFirstAxisResidual.apply


Tri Dao's avatar
Tri Dao committed
99
100
101
def unpad_input(hidden_states, attention_mask):
    """
    Arguments:
102
        hidden_states: (batch, seqlen, ...)
Tri Dao's avatar
Tri Dao committed
103
104
        attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
    Return:
105
        hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
Tri Dao's avatar
Tri Dao committed
106
107
108
109
110
111
112
113
114
115
116
117
        cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states.
        max_seqlen_in_batch: int
    """
    seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
    indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
    max_seqlen_in_batch = seqlens_in_batch.max().item()
    cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
    # TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the
    # bool mask, then call nonzero to get the indices, then index with those. The indices is @dim
    # times larger than it needs to be, wasting memory. It's faster and more memory-efficient to
    # index with integer indices. Moreover, torch's index is a bit slower than it needs to be,
    # so we write custom forward and backward to make it a bit faster.
118
    return (index_first_axis(rearrange(hidden_states, 'b s ... -> (b s) ...'), indices), indices,
Tri Dao's avatar
Tri Dao committed
119
120
121
122
123
124
            cu_seqlens, max_seqlen_in_batch)


def pad_input(hidden_states, indices, batch, seqlen):
    """
    Arguments:
125
        hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
Tri Dao's avatar
Tri Dao committed
126
127
        indices: (total_nnz)
    Return:
128
        hidden_states: (batch, seqlen, ...)
Tri Dao's avatar
Tri Dao committed
129
130
131
132
133
    """
    dim = hidden_states.shape[-1]
    # output = torch.zeros((batch * seqlen), dim, device=hidden_states.device, dtype=hidden_states.dtype)
    # output[indices] = hidden_states
    output = index_put_first_axis(hidden_states, indices, batch * seqlen)
134
    return rearrange(output, '(b s) ... -> b s ...', b=batch)