test_gpt_parallel.py 11.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# Run test with:
# torchrun --no_python --nproc_per_node=8 pytest -q -s tests/models/test_gpt_parallel.py

import torch
import torch.nn as nn
import torch.nn.functional as F
import pytest

from einops import rearrange

from transformers import GPT2Config

from apex.transformer import parallel_state

from flash_attn.models.gpt import GPTLMHeadModel
from flash_attn.losses.cross_entropy import CrossEntropyLoss
from flash_attn.utils.distributed import allreduce_sequence_parallel_grad

is_sm8x = torch.cuda.get_device_capability('cuda')[0] >= 8


@pytest.mark.parametrize('dtype', [torch.float16] + ([torch.bfloat16] if is_sm8x else []))
# @pytest.mark.parametrize('dtype', [torch.bfloat16])
@pytest.mark.parametrize('world_size', [1, 2, 4, 8])
# @pytest.mark.parametrize('world_size', [1])
@pytest.mark.parametrize('has_pos_emb', [True, False])
# @pytest.mark.parametrize('has_pos_emb', [True])
@pytest.mark.parametrize('dim', [1024])
def test_block_parallel(dim, has_pos_emb, world_size, dtype):
    head_dim = 64
    assert dim % head_dim == 0
    num_heads = dim // head_dim
    assert num_heads % world_size == 0
    vocab_size = 50264
    assert vocab_size % world_size == 0
    num_layers = 2
    rtol, atol = (3e-3, 1e-1) if dtype == torch.bfloat16 else (3e-3, 1e-2)
    if not torch.distributed.is_initialized():
        torch.distributed.init_process_group(backend='nccl', init_method='env://')
    device = f'cuda:{torch.distributed.get_rank()}'
    assert world_size <= torch.distributed.get_world_size()
    parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
    rank = parallel_state.get_tensor_model_parallel_rank()
    process_group = parallel_state.get_tensor_model_parallel_group()
    # set seed
    torch.random.manual_seed(0)
    batch_size = 8
    seqlen = 1024
    assert (batch_size * seqlen) % world_size == 0
    input_ids = torch.randint(0, vocab_size, (batch_size, seqlen + 1), device=device)

    # We need to generate g here so that all processes get the same gradient,
    # as rank 0 will have an extra bias that changes the RNG.
    g = torch.randn(batch_size * seqlen, device=device)

    config = GPT2Config(n_embd=dim, n_head=num_heads, n_layer=num_layers,
                        n_positions=seqlen if has_pos_emb else 0,
                        vocab_size=50257, resid_pdrop=0.0, embd_pdrop=0.0, attn_pdrop=0.0,
                        scale_attn_by_inverse_layer_idx=True, use_flash_attn=True,
                        fused_dense_gelu_dense=True, fused_bias_fc=True, fused_dropout_add_ln=True,
                        rotary_emb_fraction=0.0 if has_pos_emb else 0.5,
                        pad_vocab_size_multiple=8 * world_size)
    model_pt = GPTLMHeadModel(config, device=device)

    def init_layer_norm(module):
        if isinstance(module, nn.LayerNorm):
            nn.init.normal_(module.weight)
            nn.init.normal_(module.bias)
    model_pt.apply(init_layer_norm)

    model = GPTLMHeadModel(config, process_group=process_group, device=device)
    total_nparams = sum(p.numel() for p in model_pt.parameters())
    sharded_nparams = sum(p.numel() for p in model.parameters())
    sharded_nparams_all = torch.empty(world_size, dtype=torch.long, device=device)
    torch.distributed.all_gather_into_tensor(
        sharded_nparams_all, torch.tensor([sharded_nparams], device=device), group=process_group
    )
    sequence_parallel_nparams = sum(p.numel() for p in model.parameters()
                                    if getattr(p, '_sequence_parallel', False))
    sequence_parallel_nparams_all = torch.empty(world_size, dtype=torch.long, device=device)
    torch.distributed.all_gather_into_tensor(
        sequence_parallel_nparams_all, torch.tensor([sequence_parallel_nparams], device=device),
        group=process_group
    )
    assert torch.all(sequence_parallel_nparams_all == sequence_parallel_nparams)
    assert total_nparams == ((sharded_nparams_all - sequence_parallel_nparams_all).sum().item()
                             + sequence_parallel_nparams)

    # vocab_size has been rounded up here
    partition_vocab_size = config.vocab_size // world_size
    partition_dim = dim // world_size
    partition_hidden_dim = 4 * dim // world_size
    with torch.no_grad():
        model.transformer.embeddings.word_embeddings.weight.copy_(
            model_pt.transformer.embeddings.word_embeddings.weight[rank * partition_vocab_size:(rank + 1) * partition_vocab_size]
        )
        if has_pos_emb:
            model.transformer.embeddings.position_embeddings.weight.copy_(
                model_pt.transformer.embeddings.position_embeddings.weight[:, rank * partition_dim:(rank + 1) * partition_dim]
            )
        model.transformer.ln_0.weight.copy_(model_pt.transformer.ln_0.weight)
        model.transformer.ln_0.bias.copy_(model_pt.transformer.ln_0.bias)
        for i in range(num_layers):
            model.transformer.layers[i].mixer.Wqkv.weight.copy_(
                rearrange(rearrange(model_pt.transformer.layers[i].mixer.Wqkv.weight, '(three o) i -> three o i', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim],
                        'three o i -> (three o) i')
            )
            model.transformer.layers[i].mixer.Wqkv.bias.copy_(
                rearrange(rearrange(model_pt.transformer.layers[i].mixer.Wqkv.bias, '(three o) -> three o', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim],
                        'three o -> (three o)')
            )
            model.transformer.layers[i].mixer.out_proj.weight.copy_(
                model_pt.transformer.layers[i].mixer.out_proj.weight[:, rank * partition_dim:(rank + 1) * partition_dim]
            )
            if rank == 0:
                model.transformer.layers[i].mixer.out_proj.bias.copy_(model_pt.transformer.layers[i].mixer.out_proj.bias)
            model.transformer.layers[i].mlp.fc1.weight.copy_(
                model_pt.transformer.layers[i].mlp.fc1.weight[rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim]
            )
            model.transformer.layers[i].mlp.fc1.bias.copy_(
                model_pt.transformer.layers[i].mlp.fc1.bias[rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim]
            )
            model.transformer.layers[i].mlp.fc2.weight.copy_(
                model_pt.transformer.layers[i].mlp.fc2.weight[:, rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim]
            )
            if rank == 0:
                model.transformer.layers[i].mlp.fc2.bias.copy_(model_pt.transformer.layers[i].mlp.fc2.bias)
            model.transformer.layers[i].norm1.weight.copy_(model_pt.transformer.layers[i].norm1.weight)
            model.transformer.layers[i].norm1.bias.copy_(model_pt.transformer.layers[i].norm1.bias)
            model.transformer.layers[i].norm2.weight.copy_(model_pt.transformer.layers[i].norm2.weight)
            model.transformer.layers[i].norm2.bias.copy_(model_pt.transformer.layers[i].norm2.bias)
        # Don't need to copy the lm_head weight since it's tied to the word embedding weight

    with torch.autocast(device_type='cuda', dtype=dtype):
        out = model(input_ids[:, :-1]).logits
        out_pt = rearrange(model_pt(input_ids[:, :-1]).logits, 'b s d -> (b s) d')
    partition_batch_dim = batch_size * seqlen // world_size
    assert torch.allclose(
        out, out_pt[:, rank * partition_vocab_size:(rank + 1) * partition_vocab_size],
        rtol=rtol, atol=atol
    )
    loss_fn = CrossEntropyLoss(inplace_backward=True, reduction='none', process_group=process_group)
    loss_fn_pt = CrossEntropyLoss(inplace_backward=True, reduction='none')
    loss = loss_fn(out, input_ids[:, 1:].flatten())
    loss_pt = loss_fn_pt(out_pt, input_ids[:, 1:].flatten())
    assert torch.allclose(loss, loss_pt, rtol=rtol, atol=atol)

    loss_pt.backward(g)
    loss.backward(g)
    allreduce_sequence_parallel_grad(model, process_group)
    parallel_state.destroy_model_parallel()

    assert torch.allclose(
        model.transformer.embeddings.word_embeddings.weight.grad,
        model_pt.transformer.embeddings.word_embeddings.weight.grad[rank * partition_vocab_size:(rank + 1) * partition_vocab_size],
        rtol=rtol, atol=atol * 5
    )
    if has_pos_emb:
        assert torch.allclose(
            model.transformer.embeddings.position_embeddings.weight.grad,
            model_pt.transformer.embeddings.position_embeddings.weight.grad[:, rank * partition_dim:(rank + 1) * partition_dim],
            rtol=rtol, atol=atol
        )
    assert torch.allclose(model.transformer.ln_0.weight.grad, model_pt.transformer.ln_0.weight.grad,
                          rtol=rtol, atol=atol)
    assert torch.allclose(model.transformer.ln_0.bias.grad, model_pt.transformer.ln_0.bias.grad,
                          rtol=rtol, atol=atol)
    for i in range(num_layers):
        # if rank == 0: breakpoint()
        # torch.distributed.barrier()
        assert torch.allclose(
            model.transformer.layers[i].mixer.Wqkv.weight.grad,
            rearrange(rearrange(model_pt.transformer.layers[i].mixer.Wqkv.weight.grad, '(three o) i -> three o i', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim], 'three o i -> (three o) i'),
            rtol=rtol, atol=atol * 10
        )
        assert torch.allclose(
            model.transformer.layers[i].mixer.Wqkv.bias.grad,
            rearrange(rearrange(model_pt.transformer.layers[i].mixer.Wqkv.bias.grad, '(three o) -> three o', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim],
                    'three o -> (three o)'),
            rtol=rtol, atol=atol * 10
        )
        assert torch.allclose(
            model.transformer.layers[i].mixer.out_proj.weight.grad,
            model_pt.transformer.layers[i].mixer.out_proj.weight.grad[:, rank * partition_dim:(rank + 1) * partition_dim],
            rtol=rtol, atol=atol * 10
        )
        if rank == 0:
            assert torch.allclose(model.transformer.layers[i].mixer.out_proj.bias.grad, model_pt.transformer.layers[i].mixer.out_proj.bias.grad, rtol=rtol, atol=atol * 5)
        assert torch.allclose(
            model.transformer.layers[i].mlp.fc1.weight.grad,
            model_pt.transformer.layers[i].mlp.fc1.weight.grad[rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim],
            rtol=rtol, atol=atol * 10
        )
        assert torch.allclose(
            model.transformer.layers[i].mlp.fc1.bias.grad,
            model_pt.transformer.layers[i].mlp.fc1.bias.grad[rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim],
            rtol=rtol, atol=atol * 10
        )
        assert torch.allclose(
            model.transformer.layers[i].mlp.fc2.weight.grad,
            model_pt.transformer.layers[i].mlp.fc2.weight.grad[:, rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim],
            rtol=rtol, atol=atol * 10
        )
        if rank == 0:
            assert torch.allclose(model.transformer.layers[i].mlp.fc2.bias.grad, model_pt.transformer.layers[i].mlp.fc2.bias.grad,
                                rtol=rtol, atol=atol * 5)

        assert torch.allclose(model.transformer.layers[i].norm1.weight.grad, model_pt.transformer.layers[i].norm1.weight.grad, rtol=rtol, atol=atol)
        assert torch.allclose(model.transformer.layers[i].norm1.bias.grad, model_pt.transformer.layers[i].norm1.bias.grad, rtol=rtol, atol=atol)
        assert torch.allclose(model.transformer.layers[i].norm2.weight.grad, model_pt.transformer.layers[i].norm2.weight.grad, rtol=rtol, atol=atol)
        assert torch.allclose(model.transformer.layers[i].norm2.bias.grad, model_pt.transformer.layers[i].norm2.bias.grad, rtol=rtol, atol=atol)