flash_attn_interface.py 19.9 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
import torch
import torch.nn as nn
3
import torch.nn.functional as F
Tri Dao's avatar
Tri Dao committed
4

Tri Dao's avatar
Tri Dao committed
5
import flash_attn_cuda
Tri Dao's avatar
Tri Dao committed
6
7


Tri Dao's avatar
Tri Dao committed
8
def _get_block_size(device, head_dim, is_dropout):
9
10
    assert head_dim % 8 == 0 and head_dim <= 128
    return 256 if head_dim <= 64 else 128
Tri Dao's avatar
Tri Dao committed
11
12


13
def _flash_attn_forward(q, k, v, out, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
Tri Dao's avatar
Tri Dao committed
14
15
16
17
18
19
20
                        dropout_p, softmax_scale, causal, return_softmax, num_splits=0,
                        generator=None):
    """
    num_splits: how much to parallelize over the seqlen_q dimension. num_splits=0 means
    it will be set by an internal heuristic. We're exposing num_splits mostly for benchmarking.
    Don't change it unless you know what you're doing.
    """
21
22
    softmax_lse, *rest = flash_attn_cuda.fwd(
        q, k, v, out, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p,
Tri Dao's avatar
Tri Dao committed
23
        softmax_scale, False, causal, return_softmax, num_splits, generator
Tri Dao's avatar
Tri Dao committed
24
25
    )
    # if out.isnan().any() or softmax_lse.isnan().any():
Tri Dao's avatar
Tri Dao committed
26
27
    #     breakpoint()
    S_dmask = rest[0] if return_softmax else None
Tri Dao's avatar
Tri Dao committed
28
    return out, softmax_lse, S_dmask
Tri Dao's avatar
Tri Dao committed
29
30


Tri Dao's avatar
Tri Dao committed
31
def _flash_attn_backward(dout, q, k, v, out, softmax_lse, dq, dk, dv, cu_seqlens_q, cu_seqlens_k,
Tri Dao's avatar
Tri Dao committed
32
                         max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, causal, num_splits=0,
33
                         generator=None):
Tri Dao's avatar
Tri Dao committed
34
    """
35
36
37
38
    num_splits: whether to parallelize over the seqlen_k dimension (num_splits > 1) or
    not (num_splits = 1). num_splits=0 means it will be set by an internal heuristic.
    Any value above 1 will call the same kernel (i.e. num_splits=2 would call the same kernel
    as num_splits=3), so effectively the choices are 0, 1, and 2.
Tri Dao's avatar
Tri Dao committed
39
40
    This hyperparameter can be tuned for performance, but default value (heuristic) should work fine.
    """
41
    _, _, _, softmax_d = flash_attn_cuda.bwd(
Tri Dao's avatar
Tri Dao committed
42
        dout, q, k, v, out, softmax_lse, dq, dk, dv, cu_seqlens_q, cu_seqlens_k,
Tri Dao's avatar
Tri Dao committed
43
        max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, False, causal, num_splits, generator)
Tri Dao's avatar
Tri Dao committed
44
    # if dk.isnan().any() or dk.isnan().any() or dv.isnan().any() or softmax_d.isnan().any():
Tri Dao's avatar
Tri Dao committed
45
    #     breakpoint()
Tri Dao's avatar
Tri Dao committed
46
    return dq, dk, dv, softmax_d
Tri Dao's avatar
Tri Dao committed
47
48


Tri Dao's avatar
Tri Dao committed
49
class FlashAttnQKVPackedFunc(torch.autograd.Function):
Tri Dao's avatar
Tri Dao committed
50
51

    @staticmethod
Tri Dao's avatar
Tri Dao committed
52
    def forward(ctx, qkv, cu_seqlens, max_seqlen, dropout_p, softmax_scale, causal, return_softmax):
Tri Dao's avatar
Tri Dao committed
53
54
55
56
        # Save rng_state because the backward pass will regenerate the dropout mask
        rng_state = torch.cuda.get_rng_state() if dropout_p > 0 else None
        if softmax_scale is None:
            softmax_scale = qkv.shape[-1] ** (-0.5)
Tri Dao's avatar
Tri Dao committed
57
        out, softmax_lse, S_dmask = _flash_attn_forward(
58
59
60
            qkv[:, 0], qkv[:, 1], qkv[:, 2], torch.empty_like(qkv[:, 0]), cu_seqlens, cu_seqlens,
            max_seqlen, max_seqlen, dropout_p, softmax_scale, causal=causal,
            return_softmax=return_softmax
Tri Dao's avatar
Tri Dao committed
61
        )
Tri Dao's avatar
Tri Dao committed
62
        ctx.save_for_backward(qkv, out, softmax_lse, cu_seqlens, rng_state)
Tri Dao's avatar
Tri Dao committed
63
        ctx.dropout_p = dropout_p
Tri Dao's avatar
Tri Dao committed
64
        ctx.max_seqlen = max_seqlen
Tri Dao's avatar
Tri Dao committed
65
66
        ctx.softmax_scale = softmax_scale
        ctx.causal = causal
Tri Dao's avatar
Tri Dao committed
67
        return out if not return_softmax else (out, softmax_lse, S_dmask)
Tri Dao's avatar
Tri Dao committed
68
69

    @staticmethod
Tri Dao's avatar
Tri Dao committed
70
71
    def backward(ctx, dout, *args):
        qkv, out, softmax_lse, cu_seqlens, rng_state = ctx.saved_tensors
Tri Dao's avatar
Tri Dao committed
72
73
74
        if rng_state is not None:
            cur_rng_state = torch.cuda.get_rng_state()
            torch.cuda.set_rng_state(rng_state)
Tri Dao's avatar
Tri Dao committed
75
76
77
78
79
        dqkv = torch.empty_like(qkv)
        _flash_attn_backward(
            dout, qkv[:, 0], qkv[:, 1], qkv[:, 2], out, softmax_lse,
            dqkv[:, 0], dqkv[:, 1], dqkv[:, 2], cu_seqlens, cu_seqlens,
            ctx.max_seqlen, ctx.max_seqlen, ctx.dropout_p, ctx.softmax_scale, ctx.causal
Tri Dao's avatar
Tri Dao committed
80
81
82
83
84
85
        )
        if rng_state is not None:
            torch.cuda.set_rng_state(cur_rng_state)
        return dqkv, None, None, None, None, None, None


Tri Dao's avatar
Tri Dao committed
86
class FlashAttnKVPackedFunc(torch.autograd.Function):
Tri Dao's avatar
Tri Dao committed
87
88

    @staticmethod
Tri Dao's avatar
Tri Dao committed
89
90
91
    def forward(ctx, q, kv, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p,
                softmax_scale, causal, return_softmax):
        # Save rng_state because the backward pass will regenerate the dropout mask
Tri Dao's avatar
Tri Dao committed
92
93
        rng_state = torch.cuda.get_rng_state() if dropout_p > 0 else None
        if softmax_scale is None:
Tri Dao's avatar
Tri Dao committed
94
95
            softmax_scale = q.shape[-1] ** (-0.5)
        out, softmax_lse, S_dmask = _flash_attn_forward(
96
97
            q, kv[:, 0], kv[:, 1], torch.empty_like(q), cu_seqlens_q, cu_seqlens_k, max_seqlen_q,
            max_seqlen_k, dropout_p, softmax_scale, causal=causal, return_softmax=return_softmax
Tri Dao's avatar
Tri Dao committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
        )
        ctx.save_for_backward(q, kv, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state)
        ctx.dropout_p = dropout_p
        ctx.max_seqlen_q = max_seqlen_q
        ctx.max_seqlen_k = max_seqlen_k
        ctx.softmax_scale = softmax_scale
        ctx.causal = causal
        return out if not return_softmax else (out, softmax_lse, S_dmask)

    @staticmethod
    def backward(ctx, dout, *args):
        q, kv, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state = ctx.saved_tensors
        if rng_state is not None:
            cur_rng_state = torch.cuda.get_rng_state()
            torch.cuda.set_rng_state(rng_state)
        dq = torch.empty_like(q)
        dkv = torch.empty_like(kv)
        _flash_attn_backward(
            dout, q, kv[:, 0], kv[:, 1], out, softmax_lse,
            dq, dkv[:, 0], dkv[:, 1], cu_seqlens_q, cu_seqlens_k,
            ctx.max_seqlen_q, ctx.max_seqlen_k, ctx.dropout_p, ctx.softmax_scale, ctx.causal
        )
        if rng_state is not None:
            torch.cuda.set_rng_state(cur_rng_state)
        return dq, dkv, None, None, None, None, None, None, None, None


class FlashAttnFunc(torch.autograd.Function):

    @staticmethod
    def forward(ctx, q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p,
                softmax_scale, causal, return_softmax):
        # Save rng_state because the backward pass will regenerate the dropout mask
        rng_state = torch.cuda.get_rng_state() if dropout_p > 0 else None
        if softmax_scale is None:
            softmax_scale = q.shape[-1] ** (-0.5)
        out, softmax_lse, S_dmask = _flash_attn_forward(
135
            q, k, v, torch.empty_like(q), cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
Tri Dao's avatar
Tri Dao committed
136
            dropout_p, softmax_scale, causal=causal, return_softmax=return_softmax
Tri Dao's avatar
Tri Dao committed
137
        )
Tri Dao's avatar
Tri Dao committed
138
        ctx.save_for_backward(q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state)
Tri Dao's avatar
Tri Dao committed
139
        ctx.dropout_p = dropout_p
Tri Dao's avatar
Tri Dao committed
140
141
        ctx.max_seqlen_q = max_seqlen_q
        ctx.max_seqlen_k = max_seqlen_k
Tri Dao's avatar
Tri Dao committed
142
143
        ctx.softmax_scale = softmax_scale
        ctx.causal = causal
Tri Dao's avatar
Tri Dao committed
144
        return out if not return_softmax else (out, softmax_lse, S_dmask)
Tri Dao's avatar
Tri Dao committed
145
146

    @staticmethod
Tri Dao's avatar
Tri Dao committed
147
148
    def backward(ctx, dout, *args):
        q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state = ctx.saved_tensors
Tri Dao's avatar
Tri Dao committed
149
150
151
        if rng_state is not None:
            cur_rng_state = torch.cuda.get_rng_state()
            torch.cuda.set_rng_state(rng_state)
Tri Dao's avatar
Tri Dao committed
152
153
154
155
        dq, dk, dv = torch.empty_like(q), torch.empty_like(k), torch.empty_like(v)
        _flash_attn_backward(
            dout, q, k, v, out, softmax_lse, dq, dk, dv, cu_seqlens_q, cu_seqlens_k,
            ctx.max_seqlen_q, ctx.max_seqlen_k, ctx.dropout_p, ctx.softmax_scale, ctx.causal
Tri Dao's avatar
Tri Dao committed
156
157
158
        )
        if rng_state is not None:
            torch.cuda.set_rng_state(cur_rng_state)
Tri Dao's avatar
Tri Dao committed
159
160
161
        return dq, dk, dv, None, None, None, None, None, None, None, None


162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
class FlashAttnQKVPackedSplitFunc(torch.autograd.Function):

    @staticmethod
    def forward(ctx, qkv, cu_seqlens, max_seqlen0, max_seqlen1, batch_size0, dropout_p,
                softmax_scale, causal, return_softmax):
        # Save rng_state because the backward pass will regenerate the dropout mask
        if dropout_p > 0:
            rng_state0 = torch.cuda.get_rng_state()
            generator1 = torch.Generator(device='cuda')
            rng_state1 = generator1.get_state()
        else:
            rng_state0, generator1, rng_state1 = None, None, None
        if softmax_scale is None:
            softmax_scale = qkv.shape[-1] ** (-0.5)
        out = torch.empty_like(qkv[:, 0])
        _, softmax_lse0, S_dmask0 = _flash_attn_forward(
            qkv[:, 0], qkv[:, 1], qkv[:, 2], out, cu_seqlens[:batch_size0 + 1],
            cu_seqlens[:batch_size0 + 1], max_seqlen0, max_seqlen0, dropout_p, softmax_scale,
            causal=causal, return_softmax=return_softmax
        )
        s = torch.cuda.Stream()
        with torch.cuda.stream(s):
            _, softmax_lse1, S_dmask1 = _flash_attn_forward(
                qkv[:, 0], qkv[:, 1], qkv[:, 2], out, cu_seqlens[batch_size0:],
                cu_seqlens[batch_size0:], max_seqlen1, max_seqlen1, dropout_p, softmax_scale,
                causal=causal, return_softmax=return_softmax, generator=generator1
            )
        torch.cuda.current_stream().wait_stream(s)
        ctx.save_for_backward(qkv, out, softmax_lse0, softmax_lse1, cu_seqlens,
                              rng_state0, rng_state1)
        ctx.dropout_p = dropout_p
        ctx.max_seqlen0 = max_seqlen0
        ctx.max_seqlen1 = max_seqlen1
        ctx.batch_size0 = batch_size0
        ctx.softmax_scale = softmax_scale
        ctx.causal = causal
        if not return_softmax:
            return out
        else:
            max_seqlen_q = max(softmax_lse0.shape[2], softmax_lse1.shape[2])
            max_seqlen_k = max(S_dmask0.shape[3], S_dmask1.shape[3])
            softmax_lse = torch.cat([F.pad(softmax_lse0, (0, max_seqlen_q - softmax_lse0.shape[2])),
                                     F.pad(softmax_lse1, (0, max_seqlen_q - softmax_lse1.shape[2]))],
                                    dim=0)
            return out, softmax_lse, S_dmask0, S_dmask1

    @staticmethod
    def backward(ctx, dout, *args):
        qkv, out, softmax_lse0, softmax_lse1, cu_seqlens, rng_state0, rng_state1 = ctx.saved_tensors
        batch_size0 = ctx.batch_size0
        if rng_state0 is not None:
            cur_rng_state = torch.cuda.get_rng_state()
            torch.cuda.set_rng_state(rng_state0)
        if rng_state1 is not None:
            generator1 = torch.Generator(device='cuda')
            generator1.set_state(rng_state1)
        else:
            generator1 = None
        dqkv = torch.empty_like(qkv)
        _flash_attn_backward(
            dout, qkv[:, 0], qkv[:, 1], qkv[:, 2], out, softmax_lse0,
            dqkv[:, 0], dqkv[:, 1], dqkv[:, 2], cu_seqlens[:batch_size0 + 1],
            cu_seqlens[:batch_size0 + 1], ctx.max_seqlen0, ctx.max_seqlen0, ctx.dropout_p,
            ctx.softmax_scale, ctx.causal
        )
        s = torch.cuda.Stream()
        with torch.cuda.stream(s):
            _flash_attn_backward(
                dout, qkv[:, 0], qkv[:, 1], qkv[:, 2], out, softmax_lse1,
                dqkv[:, 0], dqkv[:, 1], dqkv[:, 2], cu_seqlens[batch_size0:],
                cu_seqlens[batch_size0:], ctx.max_seqlen1, ctx.max_seqlen1, ctx.dropout_p,
                ctx.softmax_scale, ctx.causal, generator=generator1
            )
        torch.cuda.current_stream().wait_stream(s)
        if rng_state0 is not None:
            torch.cuda.set_rng_state(cur_rng_state)
        return dqkv, None, None, None, None, None, None, None, None


Tri Dao's avatar
Tri Dao committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
def flash_attn_unpadded_qkvpacked_func(qkv, cu_seqlens, max_seqlen, dropout_p, softmax_scale=None,
                                       causal=False, return_attn_probs=False):
    """dropout_p should be set to 0.0 during evaluation
    Arguments:
        qkv: (total, 3, nheads, headdim), where total = total number of tokens in the batch.
        cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
           of the sequences in the batch, used to index into qkv.
        max_seqlen: int. Maximum sequence length in the batch.
        dropout_p: float. Dropout probability.
        softmax_scale: float. The scaling of QK^T before applying softmax.
            Default to 1 / sqrt(headdim).
        causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
        return_attn_probs: bool. Whether to return the attention probabilities. This option is for
           testing only. The returned probabilities are not guaranteed to be correct
           (they might not have the right scaling).
    Return:
        out: (total, nheads, headdim).
        softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
            logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
            normalization factor).
        S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
            The output of softmax (possibly with different scaling). It also encodes the dropout
            pattern (negative means that location was dropped, nonnegative means it was kept).
    """
    return FlashAttnQKVPackedFunc.apply(qkv, cu_seqlens, max_seqlen, dropout_p, softmax_scale,
                                        causal, return_attn_probs)


def flash_attn_unpadded_kvpacked_func(q, kv, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
                                      dropout_p, softmax_scale=None, causal=False,
                                      return_attn_probs=False):
    """dropout_p should be set to 0.0 during evaluation
    Arguments:
        q: (total_q, nheads, headdim), where total_q = total number of query tokens in the batch.
        kv: (total_k, 2, nheads, headdim), where total_k = total number of key tokens in the batch.
        cu_seqlens_q: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
           of the sequences in the batch, used to index into q.
        cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
           of the sequences in the batch, used to index into kv.
        max_seqlen_q: int. Maximum query sequence length in the batch.
        max_seqlen_k: int. Maximum key sequence length in the batch.
        dropout_p: float. Dropout probability.
        softmax_scale: float. The scaling of QK^T before applying softmax.
            Default to 1 / sqrt(headdim).
        causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
        return_attn_probs: bool. Whether to return the attention probabilities. This option is for
           testing only. The returned probabilities are not guaranteed to be correct
           (they might not have the right scaling).
    Return:
        out: (total, nheads, headdim).
        softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
            logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
            normalization factor).
        S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
            The output of softmax (possibly with different scaling). It also encodes the dropout
            pattern (negative means that location was dropped, nonnegative means it was kept).
    """
    return FlashAttnKVPackedFunc.apply(q, kv, cu_seqlens_q, cu_seqlens_k,
                                       max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, causal,
                                       return_attn_probs)


def flash_attn_unpadded_func(q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
                             dropout_p, softmax_scale=None, causal=False, return_attn_probs=False):
    """dropout_p should be set to 0.0 during evaluation
    Arguments:
        q: (total_q, nheads, headdim), where total_q = total number of query tokens in the batch.
308
309
        k: (total_k, nheads, headdim), where total_k = total number of key tokens in the batch.
        v: (total_k, nheads, headdim), where total_k = total number of key tokens in the batch.
Tri Dao's avatar
Tri Dao committed
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
        cu_seqlens_q: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
           of the sequences in the batch, used to index into q.
        cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
           of the sequences in the batch, used to index into kv.
        max_seqlen_q: int. Maximum query sequence length in the batch.
        max_seqlen_k: int. Maximum key sequence length in the batch.
        dropout_p: float. Dropout probability.
        softmax_scale: float. The scaling of QK^T before applying softmax.
            Default to 1 / sqrt(headdim).
        causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
        return_attn_probs: bool. Whether to return the attention probabilities. This option is for
           testing only. The returned probabilities are not guaranteed to be correct
           (they might not have the right scaling).
    Return:
        out: (total, nheads, headdim).
        softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
            logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
            normalization factor).
        S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
            The output of softmax (possibly with different scaling). It also encodes the dropout
            pattern (negative means that location was dropped, nonnegative means it was kept).
    """
    return FlashAttnFunc.apply(q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
                               dropout_p, softmax_scale, causal, return_attn_probs)
Tri Dao's avatar
Tri Dao committed
334
335


336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
def flash_attn_unpadded_qkvpacked_split_func(
        qkv, cu_seqlens, max_seqlen0, max_seqlen1, batch_size0, dropout_p, softmax_scale=None,
        causal=False, return_attn_probs=False):
    """
    Split attention into 2 kernels running on 2 separate streams for performance reason:
    e.g., if the batch has some sequences of length <= 128 and some > 128, it might be faster to
    have one kernel dealing with seqlen <= 128 and one kernel for seqlen > 128.

    dropout_p should be set to 0.0 during evaluation.

    Arguments:
        qkv: (total, 3, nheads, headdim), where total = total number of tokens in the batch.
        cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
           of the sequences in the batch, used to index into qkv.
        max_seqlen0: int. Maximum sequence length in 1st part of the batch.
        max_seqlen1: int. Maximum sequence length in 2nd part of the batch.
        batch_size0: int. Number of sequences in the 1st part of the batch.
        dropout_p: float. Dropout probability.
        softmax_scale: float. The scaling of QK^T before applying softmax.
            Default to 1 / sqrt(headdim).
        causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
        return_attn_probs: bool. Whether to return the attention probabilities. This option is for
           testing only. The returned probabilities are not guaranteed to be correct
           (they might not have the right scaling).
    Return:
        out: (total, nheads, headdim).
        softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
            logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
            normalization factor).
        S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
            The output of softmax (possibly with different scaling). It also encodes the dropout
            pattern (negative means that location was dropped, nonnegative means it was kept).
    """
    return FlashAttnQKVPackedSplitFunc.apply(qkv, cu_seqlens, max_seqlen0, max_seqlen1, batch_size0,
                                             dropout_p, softmax_scale, causal, return_attn_probs)


Tri Dao's avatar
Tri Dao committed
373
def flash_attn_func(qkv, cu_seqlens, dropout_p, max_s, softmax_scale=None, causal=False,
Tri Dao's avatar
Tri Dao committed
374
                     return_attn_probs=False):
Tri Dao's avatar
Tri Dao committed
375
376
    """For backward-compatibility only, will remove soon.
    dropout_p should be set to 0.0 during evaluation
Tri Dao's avatar
Tri Dao committed
377
    """
Tri Dao's avatar
Tri Dao committed
378
379
    return flash_attn_unpadded_qkvpacked_func(qkv, cu_seqlens, max_s, dropout_p, softmax_scale,
                                              causal, return_attn_probs)