softmax.h 11.6 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
/******************************************************************************
 * Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
 ******************************************************************************/

#pragma once

#include <cmath>

#include <cute/tensor.hpp>

#include <cutlass/numeric_types.h>

#include "utils.h"

15
16
#include "cutlass/fast_math.h"

Tri Dao's avatar
Tri Dao committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
namespace flash {

using namespace cute;

////////////////////////////////////////////////////////////////////////////////////////////////////

template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator>
__device__ __forceinline__ void thread_reduce_(Tensor<Engine0, Layout0> const &tensor, Tensor<Engine1, Layout1> &summary, Operator &op) {
    static_assert(Layout0::rank == 2, "Only support 2D Tensor");
    static_assert(Layout1::rank == 1, "Only support 1D Tensor");
    CUTE_STATIC_ASSERT_V(size<0>(summary) == size<0>(tensor));
    #pragma unroll
    for (int mi = 0; mi < size<0>(tensor); mi++) {
        summary(mi) = zero_init ? tensor(mi, 0) : op(summary(mi), tensor(mi, 0));
        #pragma unroll
        for (int ni = 1; ni < size<1>(tensor); ni++) {
            summary(mi) = op(summary(mi), tensor(mi, ni));
        }
    }
}

template<typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator>
__device__ __forceinline__ void quad_allreduce_(Tensor<Engine0, Layout0> &dst, Tensor<Engine1, Layout1> &src, Operator &op) {
    CUTE_STATIC_ASSERT_V(size(dst) == size(src));
    #pragma unroll
    for (int i = 0; i < size(dst); i++){
        dst(i) = Allreduce<4>::run(src(i), op);
    }
}

template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator>
__device__ __forceinline__ void reduce_(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &summary, Operator &op) {
    thread_reduce_<zero_init>(tensor, summary, op);
    quad_allreduce_(summary, summary, op);
}

template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
__device__ __forceinline__ void reduce_max(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &max){
    MaxOp<float> max_op;
    reduce_<zero_init>(tensor, max, max_op);
}

template<bool zero_init=true, bool warp_reduce=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
__device__ __forceinline__ void reduce_sum(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &sum){
    SumOp<float> sum_op;
    thread_reduce_<zero_init>(tensor, sum, sum_op);
    if constexpr (warp_reduce) { quad_allreduce_(sum, sum, sum_op); }
}

__forceinline__ __device__ __half2 half_exp(__half2 x) {
    uint32_t tmp_out, tmp_in;
    tmp_in = reinterpret_cast<uint32_t&>(x);
    asm ("ex2.approx.f16x2 %0, %1;\n"
      : "=r"(tmp_out)
      : "r"(tmp_in));
    __half2 out = reinterpret_cast<__half2&>(tmp_out);
    return out;
}

// Apply the exp to all the elements.
template <bool zero_init=false, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
__forceinline__ __device__ void max_scale_exp2_sum(Tensor<Engine0, Layout0> &tensor, Tensor<Engine1, Layout1> &max, Tensor<Engine1, Layout1> &sum, const float scale) {
    static_assert(Layout0::rank == 2, "Only support 2D Tensor"); static_assert(Layout1::rank == 1, "Only support 1D Tensor"); CUTE_STATIC_ASSERT_V(size<0>(max) == size<0>(tensor));
    #pragma unroll
    for (int mi = 0; mi < size<0>(tensor); ++mi) {
        MaxOp<float> max_op;
        max(mi) = zero_init ? tensor(mi, 0) : max_op(max(mi), tensor(mi, 0));
        #pragma unroll
        for (int ni = 1; ni < size<1>(tensor); ni++) {
            max(mi) = max_op(max(mi), tensor(mi, ni));
        }
        max(mi) = Allreduce<4>::run(max(mi), max_op);
        // If max is -inf, then all elements must have been -inf (possibly due to masking).
        // We don't want (-inf - (-inf)) since that would give NaN.
        const float max_scaled = max(mi) == -INFINITY ? 0.f : max(mi) * scale;
        sum(mi) = 0;
        #pragma unroll
        for (int ni = 0; ni < size<1>(tensor); ++ni)  {
            // Instead of computing exp(x - max), we compute exp2(x * log_2(e) -
            // max * log_2(e)) This allows the compiler to use the ffma
            // instruction instead of fadd and fmul separately.
            tensor(mi, ni) = exp2f(tensor(mi, ni) * scale - max_scaled);
            sum(mi) += tensor(mi, ni);
        }
    }
}

// Apply the exp to all the elements.
105
106
template <bool Scale_max=true, bool Check_inf=true, bool Use_max_offset=false,
          typename Engine0, typename Layout0, typename Engine1, typename Layout1>
Tri Dao's avatar
Tri Dao committed
107
__forceinline__ __device__ void scale_apply_exp2(Tensor<Engine0, Layout0> &tensor, Tensor<Engine1, Layout1> const &max, const float scale) {
108
    constexpr static float max_offset = Use_max_offset ? 8.0f : 0.0f;
Tri Dao's avatar
Tri Dao committed
109
110
111
112
113
114
115
116
117
    static_assert(Layout0::rank == 2, "Only support 2D Tensor");
    static_assert(Layout1::rank == 1, "Only support 1D Tensor");
    CUTE_STATIC_ASSERT_V(size<0>(max) == size<0>(tensor));
    #pragma unroll
    for (int mi = 0; mi < size<0>(tensor); ++mi) {
        // If max is -inf, then all elements must have been -inf (possibly due to masking).
        // We don't want (-inf - (-inf)) since that would give NaN.
        // If we don't have float around M_LOG2E the multiplication is done in fp64.
        const float max_scaled = Check_inf
118
119
            ? (max(mi) == -INFINITY ? 0.f : (max(mi) * (Scale_max ? scale : float(M_LOG2E))) - max_offset)
            : (max(mi) * (Scale_max ? scale : float(M_LOG2E)) - max_offset);
Tri Dao's avatar
Tri Dao committed
120
121
122
123
124
125
126
127
128
129
130
131
        #pragma unroll
        for (int ni = 0; ni < size<1>(tensor); ++ni)  {
            // Instead of computing exp(x - max), we compute exp2(x * log_2(e) -
            // max * log_2(e)) This allows the compiler to use the ffma
            // instruction instead of fadd and fmul separately.
            tensor(mi, ni) = exp2f(tensor(mi, ni) * scale - max_scaled);
        }
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

132
133
134
135
136
template <int kNRows, bool Use_max_offset_ = false>
struct Softmax { 
    constexpr static bool Use_max_offset = Use_max_offset_; 
    // constexpr static float max_offset = Use_max_offset ? 8.0f : 0.0f;
    // constexpr static float max_offset_E = max_offset * float(M_LN2);
Tri Dao's avatar
Tri Dao committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

    using TensorT = decltype(make_tensor<float>(Shape<Int<kNRows>>{}));
    TensorT row_max, row_sum;

    CUTLASS_DEVICE Softmax() {};

    template<bool Is_first, bool Check_inf=false, typename Tensor0>
    __forceinline__ __device__ TensorT max(Tensor0 &acc_s, float softmax_scale_log2) {
        // Reshape acc_s from ((2, 2, V), MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, V, MMA_N))
        Tensor scores = make_tensor(acc_s.data(), flash::convert_layout_acc_rowcol(acc_s.layout()));
        static_assert(decltype(size<0>(scores))::value == kNRows);
        TensorT scores_scale;
        if constexpr (Is_first) {
            flash::template reduce_max</*zero_init=*/true>(scores, row_max);
            cute::fill(scores_scale, 1.f);
        } else {
            Tensor scores_max_prev = make_fragment_like(row_max);
            cute::copy(row_max, scores_max_prev);
            flash::template reduce_max</*zero_init=*/false>(scores, row_max);
            #pragma unroll
            for (int mi = 0; mi < size(row_max); ++mi) {
                float scores_max_cur = !Check_inf
                    ? row_max(mi)
                    : (row_max(mi) == -INFINITY ? 0.0f : row_max(mi));
                scores_scale(mi) = exp2f((scores_max_prev(mi) - scores_max_cur) * softmax_scale_log2);
                row_sum(mi) *= scores_scale(mi);
            }
        }
        return scores_scale;
    };

    template<bool Is_first, bool Check_inf=false, typename Tensor0>
    __forceinline__ __device__ TensorT online_softmax(Tensor0 &acc_s, float softmax_scale_log2) {
        // Reshape acc_s from ((2, 2, V), MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, V, MMA_N))
        Tensor scores = make_tensor(acc_s.data(), flash::convert_layout_acc_rowcol(acc_s.layout()));
        static_assert(decltype(size<0>(scores))::value == kNRows);
        TensorT scores_scale;
        if constexpr (Is_first) {
            flash::template reduce_max</*zero_init=*/true>(scores, row_max);
176
            flash::template scale_apply_exp2</*Scale_max=*/true, /*Check_inf=*/true, Use_max_offset>(scores, row_max, softmax_scale_log2);
Tri Dao's avatar
Tri Dao committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
            flash::reduce_sum</*zero_init=*/true, /*warp_reduce=*/false>(scores, row_sum);
            cute::fill(scores_scale, 1.f);
            // if (cute::thread0()) { print_tensor(scores); printf("\n scale = %f\n", softmax_scale_log2); print_tensor(row_sum); }
        } else {
            // Tensor scores_max_prev = make_fragment_like(row_max);
            // cute::copy(row_max, scores_max_prev);
            // flash::template reduce_max</*zero_init=*/false>(scores, row_max);
            // // if (cute::thread0()) { print_tensor(scores); printf("\n"); print_tensor(row_max); printf("\n"); }
            // #pragma unroll
            // for (int mi = 0; mi < size(row_max); ++mi) {
            //     float scores_max_cur = !Check_inf
            //         ? row_max(mi)
            //         : (row_max(mi) == -INFINITY ? 0.0f : row_max(mi));
            //     scores_scale(mi) = exp2f((scores_max_prev(mi) - scores_max_cur) * softmax_scale_log2);
            //     row_sum(mi) *= scores_scale(mi);
            // }
193
            flash::template scale_apply_exp2</*Scale_max=*/true, Check_inf, Use_max_offset>(scores, row_max, softmax_scale_log2);
Tri Dao's avatar
Tri Dao committed
194
195
196
197
198
199
            // We don't do the reduce across threads here since we don't need to use the row_sum.
            // We do that reduce at the end when we need to normalize the softmax.
            flash::reduce_sum</*zero_init=*/false, /*warp_reduce=*/false>(scores, row_sum);
        }
        return scores_scale;
    };
200
    
Tri Dao's avatar
Tri Dao committed
201
202
    template<bool Is_dropout=false, bool Split=false, typename Tensor0>
    __forceinline__ __device__ TensorT finalize(Tensor0 &acc_s, float softmax_scale_log2, float rp_dropout=1.0) {
203
        constexpr static float max_offset_E = Use_max_offset ? 8.0f * float(M_LN2) : 0.0f;
Tri Dao's avatar
Tri Dao committed
204
205
206
207
208
209
210
211
212
213
        // Reshape acc_s from ((2, 2, V), MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, V, MMA_N))
        Tensor scores = make_tensor(acc_s.data(), flash::convert_layout_acc_rowcol(acc_s.layout()));
        static_assert(decltype(size<0>(scores))::value == kNRows);
        SumOp<float> sum_op;
        quad_allreduce_(row_sum, row_sum, sum_op);
        TensorT scores_scale;
        #pragma unroll
        for (int mi = 0; mi < size(row_max); ++mi) {
            float sum = row_sum(mi);
            float inv_sum = (sum == 0.f || sum != sum) ? 0.f : 1.f / sum;
214
            row_sum(mi) = (sum == 0.f || sum != sum) ? (Split ? -INFINITY : INFINITY) : (row_max(mi) * softmax_scale_log2) * float(M_LN2) - max_offset_E + __logf(sum);
Tri Dao's avatar
Tri Dao committed
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
            scores_scale(mi) = !Is_dropout ? inv_sum : inv_sum * rp_dropout;
        }
        return scores_scale;
    };

    template<typename Tensor1>
    __forceinline__ __device__ void rescale_o(Tensor1 &acc_o, TensorT const &scores_scale) {
        // Reshape acc_o from (MMA=4, MMA_M, MMA_K) to (nrow=(2, MMA_M), ncol=(2, MMA_K))
        Tensor acc_o_rowcol = make_tensor(acc_o.data(), flash::convert_layout_acc_rowcol(acc_o.layout()));
        static_assert(decltype(size<0>(acc_o_rowcol))::value == kNRows);
        #pragma unroll
        for (int mi = 0; mi < size(row_max); ++mi) {
            #pragma unroll
            for (int ni = 0; ni < size<1>(acc_o_rowcol); ++ni) { acc_o_rowcol(mi, ni) *= scores_scale(mi); }
        }
    };

};

}  // namespace flash