flash_fwd_launch_template.h 10.2 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
5
6
7
8
/******************************************************************************
 * Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
 ******************************************************************************/

#pragma once

#include "cute/tensor.hpp"

Tri Dao's avatar
Tri Dao committed
9
#include "cutlass/cutlass.h"
Tri Dao's avatar
Tri Dao committed
10
11
12
13
14
15
16
#include "cutlass/cluster_launch.hpp"

#include "static_switch.h"
#include "flash.h"
#include "tile_scheduler.hpp"
#include "flash_fwd_kernel.h"
#include "kernel_traits.h"
17
#include "seq_len.h"
18
#include "utils.h"
Tri Dao's avatar
Tri Dao committed
19
20


21
template<typename Kernel_traits, bool Is_causal, typename Seqlen_traits>
Tri Dao's avatar
Tri Dao committed
22
23
void run_flash_fwd(Flash_fwd_params &params, cudaStream_t stream) {
    using Element = typename Kernel_traits::Element;
24
    using OutputType = typename Kernel_traits::OutputType;
Tri Dao's avatar
Tri Dao committed
25
26
27
28
    using TileShape_MNK = typename Kernel_traits::TileShape_MNK;
    using ClusterShape = typename Kernel_traits::ClusterShape_MNK;

    // print(typename Kernel_traits::SmemLayoutVt{}); printf("\n"); print(typename Kernel_traits::SmemLayoutVt_tmp{});
29
30
31
32
33
34
35
    using CollectiveMainloop = flash::CollectiveMainloopFwd<Kernel_traits, Is_causal, Seqlen_traits>;
    using CollectiveEpilogue = flash::CollectiveEpilogueFwd<Kernel_traits, Seqlen_traits>;
    using Scheduler = std::conditional_t<
        Seqlen_traits::kUseVarSeqLen, 
        flash::SingleTileScheduler,
        std::conditional_t<!Is_causal,
            flash::StaticPersistentTileScheduler,
36
            flash::DynamicPersistentTileScheduler<Kernel_traits::kNThreads - cutlass::NumThreadsPerWarpGroup, Kernel_traits::NumProducerThreads>
37
38
39
40
41
42
    >>;
    // using Scheduler = flash::SingleTileScheduler;
    Seqlen_traits seqlen_traits_q(
        params.total_q, params.seqlen_q, params.cu_seqlens_q);
    Seqlen_traits seqlen_traits_k(
        params.total_k, params.seqlen_k, params.cu_seqlens_k, params.seqused_k);
Tri Dao's avatar
Tri Dao committed
43
44
45
    typename CollectiveMainloop::Params mainloop_params =
        CollectiveMainloop::to_underlying_arguments({
            static_cast<Element const*>(params.q_ptr),
46
47
48
49
            seqlen_traits_q.get_gmem_layout(
                params.seqlen_q, params.d, params.h, params.b, 
                params.q_row_stride, params.q_head_stride, params.q_batch_stride
            ),  // layout_Q
Tri Dao's avatar
Tri Dao committed
50
            static_cast<Element const*>(params.k_ptr),
51
52
53
54
            seqlen_traits_k.get_gmem_layout(
                params.seqlen_k, params.d, params.h_k, params.b, 
                params.k_row_stride, params.k_head_stride, params.k_batch_stride
            ),  // layout_K
Tri Dao's avatar
Tri Dao committed
55
            static_cast<Element const*>(params.v_ptr),
56
57
58
59
            seqlen_traits_k.get_gmem_layout(
                params.seqlen_k, params.d, params.h_k, params.b, 
                params.v_row_stride, params.v_head_stride, params.v_batch_stride
            ),  // layout_V
Tri Dao's avatar
Tri Dao committed
60
61
62
63
            params.scale_softmax_log2
        });
    typename CollectiveEpilogue::Params epilogue_params =
        CollectiveEpilogue::to_underlying_arguments({
64
            static_cast<OutputType*>(params.o_ptr),
65
66
67
68
            seqlen_traits_q.get_gmem_layout(
                params.seqlen_q, params.d, params.h, params.b,
                params.o_row_stride, params.o_head_stride, params.o_batch_stride
            ),  // layout_O
Tri Dao's avatar
Tri Dao committed
69
            static_cast<float*>(params.softmax_lse_ptr),
70
71
72
            seqlen_traits_q.get_lse_gmem_layout(
                params.seqlen_q, params.h, params.b
            )  // layout_LSE
Tri Dao's avatar
Tri Dao committed
73
74
75
76
        });

    int num_blocks_m = cutlass::ceil_div(params.seqlen_q, Kernel_traits::kBlockM);
    num_blocks_m = cutlass::ceil_div(num_blocks_m, size<0>(ClusterShape{})) * size<0>(ClusterShape{});
Tri Dao's avatar
Tri Dao committed
77
    typename Scheduler::Arguments scheduler_args = {num_blocks_m, params.h, params.b, params.tile_count_semaphore};
Tri Dao's avatar
Tri Dao committed
78
79
80
81
    typename Scheduler::Params scheduler_params = Scheduler::to_underlying_arguments(scheduler_args);

    // Get the ptr to kernel function.
    void *kernel;
82
83
84
85
    if constexpr(cutlass::sizeof_bits_v<Element> == 8)
        kernel = (void *)flash::compute_attn_ws_fp8<Kernel_traits, Is_causal, Scheduler, Seqlen_traits>;
    else
        kernel = (void *)flash::compute_attn_ws<Kernel_traits, Is_causal, Scheduler, Seqlen_traits>;
Tri Dao's avatar
Tri Dao committed
86
    int smem_size = sizeof(typename Kernel_traits::SharedStorage);
Tri Dao's avatar
Tri Dao committed
87
88
89
    // int smem_size_q = sizeof(decltype((typename Kernel_traits::SharedStorage{}).smem_q));
    // int smem_size_k = sizeof(decltype((typename Kernel_traits::SharedStorage{}).smem_k));
    // int smem_size_v = sizeof(decltype((typename Kernel_traits::SharedStorage{}).smem_v));
90
91
    // int smem_size_o = sizeof(decltype((typename Kernel_traits::SharedStorage{}).smem_o));
    // printf("smem_size = %d, q = %d, k = %d, v = %d, o = %d.\n", smem_size, smem_size_q, smem_size_k, smem_size_v, smem_size_o);
Tri Dao's avatar
Tri Dao committed
92
    if (smem_size >= 48 * 1024) {
93
       CHECK_CUDA(cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
Tri Dao's avatar
Tri Dao committed
94
95
    }

Tri Dao's avatar
Tri Dao committed
96
97
98
99
100
101
    int device;
    cudaGetDevice(&device);
    int multiprocessor_count;
    cudaError status_ = cudaDeviceGetAttribute(
        &multiprocessor_count, cudaDevAttrMultiProcessorCount, device);
    if (status_ != cudaSuccess) {
102
      CHECK_CUDA(status_);
Tri Dao's avatar
Tri Dao committed
103
104
    }
    dim3 grid_dims = Scheduler::get_grid_dim(scheduler_args, multiprocessor_count);
Tri Dao's avatar
Tri Dao committed
105
106
107
108
    static constexpr int ctaSize = Kernel_traits::kNWarps * 32;
    dim3 block_dims(ctaSize);
    dim3 cluster_dims(size<0>(ClusterShape{}), size<1>(ClusterShape{}), size<2>(ClusterShape{}));
    cutlass::ClusterLaunchParams launch_params{grid_dims, block_dims, cluster_dims, smem_size, stream};
109
110
111
    cutlass::launch_kernel_on_cluster(
        launch_params, kernel, mainloop_params, epilogue_params, 
        scheduler_params, seqlen_traits_q, seqlen_traits_k);
112
    CHECK_CUDA_KERNEL_LAUNCH();
Tri Dao's avatar
Tri Dao committed
113
114
115
116
117
118
}

template<typename T>
void run_mha_fwd_hdim64(Flash_fwd_params &params, cudaStream_t stream) {
    constexpr static int Headdim = 64;
    BOOL_SWITCH(params.is_causal, Is_causal, [&] {
119
120
121
122
123
124
        SEQLEN_SWITCH(params.cu_seqlens_q, Seqlen_traits, [&] {
            run_flash_fwd<
                Flash_fwd_kernel_traits<Headdim, 192, 128, 16, 2, false, 1, T>, 
                Is_causal, Seqlen_traits
            >(params, stream);
        });
Tri Dao's avatar
Tri Dao committed
125
126
127
128
129
130
131
    });
}

template<typename T>
void run_mha_fwd_hdim128(Flash_fwd_params &params, cudaStream_t stream) {
    constexpr static int Headdim = 128;
    BOOL_SWITCH(params.is_causal, Is_causal, [&] {
132
133
134
        SEQLEN_SWITCH(params.cu_seqlens_q, Seqlen_traits, [&] {
            // Only use Cluster if number of tiles along seqlen_q is even and not Is_causal
            BOOL_SWITCH(cutlass::ceil_div(params.seqlen_q, 128) % 2 == 0 && !Is_causal && !Seqlen_traits::kUseVarSeqLen, UseCluster, [&] {
Tri Dao's avatar
Tri Dao committed
135
136
137
138
                run_flash_fwd<
                    Flash_fwd_kernel_traits<Headdim, 128, Is_causal ? 128 : 176, 12, 2, false, UseCluster ? 2 : 1, T>, 
                    Is_causal, Seqlen_traits
                >(params, stream);
139
            });
Tri Dao's avatar
Tri Dao committed
140
        });
Tri Dao's avatar
Tri Dao committed
141
142
143
144
145
146
147
    });
}

template<typename T>
void run_mha_fwd_hdim256(Flash_fwd_params &params, cudaStream_t stream) {
    constexpr static int Headdim = 256;
    BOOL_SWITCH(params.is_causal, Is_causal, [&] {
148
149
150
        SEQLEN_SWITCH(params.cu_seqlens_q, Seqlen_traits, [&] {
            // Only use Cluster if number of tiles along seqlen_q is even
            BOOL_SWITCH(cutlass::ceil_div(params.seqlen_q, 128) % 2 == 0 && !Is_causal && !Seqlen_traits::kUseVarSeqLen, UseCluster, [&] {
Tri Dao's avatar
Tri Dao committed
151
152
153
154
                run_flash_fwd<
                    Flash_fwd_kernel_traits<Headdim, 128, 80, 12, 2, false, UseCluster ? 2 : 1, T>, 
                    Is_causal, Seqlen_traits
                >(params, stream);
155
            });
Tri Dao's avatar
Tri Dao committed
156
        });
Tri Dao's avatar
Tri Dao committed
157
158
    });
}
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

template<typename T>
void run_mha_fwd_hdim64_fp8(Flash_fwd_params &params, cudaStream_t stream) {
    constexpr static int Headdim = 64;
    constexpr static int kBlockM = 192;
    constexpr static int kBlockN = 128;
    constexpr static int kNWarps = 4 + kBlockM/16;
    constexpr static int kStages = 4;    
    BOOL_SWITCH(params.is_causal, Is_causal, [&] {
        SEQLEN_SWITCH(params.cu_seqlens_q, Seqlen_traits, [&] {
            // Only use Cluster if number of tiles along seqlen_q is even
            BOOL_SWITCH(cutlass::ceil_div(params.seqlen_q, kBlockM) % 2 == 0 && !Is_causal &&
                        !Seqlen_traits::kUseVarSeqLen, UseCluster, [&] {
                run_flash_fwd<Flash_fwd_kernel_traits_fp8<Headdim, kBlockM, kBlockN, kNWarps, kStages,
                              false, UseCluster ? 2 : 1, T>, Is_causal, Seqlen_traits>(params, stream);            
            });
        });
    });    
}

template<typename T>
void run_mha_fwd_hdim128_fp8(Flash_fwd_params &params, cudaStream_t stream) {
    constexpr static int Headdim = 128;
    constexpr static int kBlockM = 128;
    constexpr static int kBlockN = 256;
    constexpr static int kNWarps = 4 + kBlockM/16;
    constexpr static int kStages = 2;    
    BOOL_SWITCH(params.is_causal, Is_causal, [&] {
        SEQLEN_SWITCH(params.cu_seqlens_q, Seqlen_traits, [&] {
            // Only use Cluster if number of tiles along seqlen_q is even
            BOOL_SWITCH(cutlass::ceil_div(params.seqlen_q, kBlockM) % 2 == 0 && !Is_causal &&
                        !Seqlen_traits::kUseVarSeqLen, UseCluster, [&] {
                run_flash_fwd<Flash_fwd_kernel_traits_fp8<Headdim, kBlockM, kBlockN, kNWarps, kStages,
                              false, UseCluster ? 2 : 1, T>, Is_causal, Seqlen_traits>(params, stream);
            });
        });
    });    
}

template<typename T>
void run_mha_fwd_hdim256_fp8(Flash_fwd_params &params, cudaStream_t stream) {
    constexpr static int Headdim = 256; 
    constexpr static int kBlockM = 128;
    constexpr static int kBlockN = 128;
    constexpr static int kNWarps = 4 + kBlockM/16;
    constexpr static int kStages = 2;    
    BOOL_SWITCH(params.is_causal, Is_causal, [&] {
        SEQLEN_SWITCH(params.cu_seqlens_q, Seqlen_traits, [&] {
            // Only use Cluster if number of tiles along seqlen_q is even
            BOOL_SWITCH(cutlass::ceil_div(params.seqlen_q, kBlockM) % 2 == 0 && !Is_causal &&
                        !Seqlen_traits::kUseVarSeqLen, UseCluster, [&] {
                run_flash_fwd<Flash_fwd_kernel_traits_fp8<Headdim, kBlockM, kBlockN, kNWarps, kStages,
                              false, UseCluster ? 2 : 1, T>, Is_causal, Seqlen_traits>(params, stream);
            });
        });
    });    
}