bert_padding.py 9.31 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
5
6
7
8
9
10
11
# Adapted from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/padding.py

import torch
import torch.nn.functional as F
from einops import rearrange, repeat


class IndexFirstAxis(torch.autograd.Function):
    @staticmethod
    def forward(ctx, input, indices):
        ctx.save_for_backward(indices)
12
13
        assert input.ndim >= 2
        ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:]
Antoine Adam's avatar
Antoine Adam committed
14
        second_dim = other_shape.numel()
Tri Dao's avatar
Tri Dao committed
15
16
        # TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
        # return input[indices]
Tri Dao's avatar
Tri Dao committed
17
18
19
        return torch.gather(
            rearrange(input, "b ... -> b (...)"), 0, repeat(indices, "z -> z d", d=second_dim)
        ).reshape(-1, *other_shape)
Tri Dao's avatar
Tri Dao committed
20
21
22

    @staticmethod
    def backward(ctx, grad_output):
Tri Dao's avatar
Tri Dao committed
23
        (indices,) = ctx.saved_tensors
24
25
        assert grad_output.ndim >= 2
        other_shape = grad_output.shape[1:]
Tri Dao's avatar
Tri Dao committed
26
27
28
29
30
31
        grad_output = rearrange(grad_output, "b ... -> b (...)")
        grad_input = torch.zeros(
            [ctx.first_axis_dim, grad_output.shape[1]],
            device=grad_output.device,
            dtype=grad_output.dtype,
        )
Tri Dao's avatar
Tri Dao committed
32
33
        # TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing.
        # grad_input[indices] = grad_output
Tri Dao's avatar
Tri Dao committed
34
        grad_input.scatter_(0, repeat(indices, "z -> z d", d=grad_output.shape[1]), grad_output)
35
        return grad_input.reshape(ctx.first_axis_dim, *other_shape), None
Tri Dao's avatar
Tri Dao committed
36
37
38
39
40
41
42
43
44
45


index_first_axis = IndexFirstAxis.apply


class IndexPutFirstAxis(torch.autograd.Function):
    @staticmethod
    def forward(ctx, values, indices, first_axis_dim):
        ctx.save_for_backward(indices)
        assert indices.ndim == 1
46
        assert values.ndim >= 2
Tri Dao's avatar
Tri Dao committed
47
48
49
        output = torch.zeros(
            first_axis_dim, *values.shape[1:], device=values.device, dtype=values.dtype
        )
Tri Dao's avatar
Tri Dao committed
50
51
52
53
54
55
56
        # TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing.
        output[indices] = values
        # output.scatter_(0, repeat(indices, 'z -> z d', d=values.shape[1]), values)
        return output

    @staticmethod
    def backward(ctx, grad_output):
Tri Dao's avatar
Tri Dao committed
57
        (indices,) = ctx.saved_tensors
Tri Dao's avatar
Tri Dao committed
58
59
60
61
62
63
64
65
66
        # TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
        grad_values = grad_output[indices]
        # grad_values = torch.gather(grad_output, 0, repeat(indices, 'z -> z d', d=grad_output.shape[1]))
        return grad_values, None, None


index_put_first_axis = IndexPutFirstAxis.apply


67
68
69
70
71
72
class IndexFirstAxisResidual(torch.autograd.Function):
    @staticmethod
    def forward(ctx, input, indices):
        ctx.save_for_backward(indices)
        assert input.ndim >= 2
        ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:]
Antoine Adam's avatar
Antoine Adam committed
73
        second_dim = other_shape.numel()
74
75
76
77
78
79
80
81
82
        # TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
        output = input[indices]
        # We don't want to reshape input (b ... -> b (...)) since it could change the channel_last
        # memory format to channel_first. In other words, input might not be contiguous.
        # If we don't detach, Pytorch complains about output being a view and is being modified inplace
        return output, input.detach()

    @staticmethod
    def backward(ctx, grad_output, grad_residual):
Tri Dao's avatar
Tri Dao committed
83
        (indices,) = ctx.saved_tensors
84
85
86
87
88
89
90
91
92
93
94
95
96
97
        assert grad_output.ndim >= 2
        other_shape = grad_output.shape[1:]
        assert grad_residual.shape[1:] == other_shape
        grad_input = grad_residual
        # grad_input[indices] += grad_output
        indices = indices.reshape(indices.shape[0], *((1,) * (grad_output.ndim - 1)))
        indices = indices.expand_as(grad_output)
        grad_input.scatter_add_(0, indices, grad_output)
        return grad_input.reshape(ctx.first_axis_dim, *other_shape), None


index_first_axis_residual = IndexFirstAxisResidual.apply


Tri Dao's avatar
Tri Dao committed
98
99
100
def unpad_input(hidden_states, attention_mask):
    """
    Arguments:
101
        hidden_states: (batch, seqlen, ...)
Tri Dao's avatar
Tri Dao committed
102
103
        attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
    Return:
104
        hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
105
        indices: (total_nnz), the indices of non-masked tokens from the flattened input sequence.
Tri Dao's avatar
Tri Dao committed
106
107
108
109
110
111
112
113
114
115
        cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states.
        max_seqlen_in_batch: int
    """
    seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
    indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
    max_seqlen_in_batch = seqlens_in_batch.max().item()
    cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
    # TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the
    # bool mask, then call nonzero to get the indices, then index with those. The indices is @dim
    # times larger than it needs to be, wasting memory. It's faster and more memory-efficient to
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    # index with integer indices. Moreover, torch's index is a bit slower than it needs to be,
    # so we write custom forward and backward to make it a bit faster.
    return (
        index_first_axis(rearrange(hidden_states, "b s ... -> (b s) ..."), indices),
        indices,
        cu_seqlens,
        max_seqlen_in_batch,
    )


def unpad_input_for_concatenated_sequences(hidden_states, attention_mask_in_length):
    """
    Supports concatenating short samples in one sequence. The attention_mask_in_length is utilized to mask other short samples. It helps efficient training of variant lengths-based samples (e.g., the supervised fine-tuning task in large language model).
    The motivation for this function is explained [here](https://github.com/Dao-AILab/flash-attention/issues/432#issuecomment-1668822286).
    
    For example, if batch = 3 and seqlen = 6, the attention_mask_in_length is:
        ```
        [
          [2, 3, 0, 0, 0, 0],
          [3, 2, 0, 0, 0, 0],
          [6, 0, 0, 0, 0, 0]
        ]
        ```
    , which refers to the 3D-attention mask:
        ```
        [
          [
            [1, 0, 0, 0, 0, 0],
            [1, 1, 0, 0, 0, 0],
            [0, 0, 1, 0, 0, 0],
            [0, 0, 1, 1, 0, 0],
            [0, 0, 1, 1, 1, 0],
            [0, 0, 0, 0, 0, 1]
          ],
          [
            [1, 0, 0, 0, 0, 0],
            [1, 1, 0, 0, 0, 0],
            [1, 1, 1, 0, 0, 0],
            [0, 0, 0, 1, 0, 0],
            [0, 0, 0, 1, 1, 0],
            [0, 0, 0, 0, 0, 1]
          ],
          [
            [1, 0, 0, 0, 0, 0],
            [1, 1, 0, 0, 0, 0],
            [1, 1, 1, 0, 0, 0],
            [1, 1, 1, 1, 0, 0],
            [1, 1, 1, 1, 1, 0],
            [1, 1, 1, 1, 1, 1]
          ]
        ]
        ```.

    Arguments:
        hidden_states: (batch, seqlen, ...)
        attention_mask_in_length: (batch, seqlen), int, a nonzero number (e.g., 1, 2, 3, etc.) means length of concatenated sequence in b-th batch, and 0 means none.
    Return:
        hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
174
        indices: (total_nnz), the indices of non-masked tokens from the flattened input sequence.
175
176
177
178
179
180
181
182
183
184
185
186
187
188
        cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states.
        max_seqlen_in_batch: int
    """
    length = attention_mask_in_length.sum(dim=-1)
    seqlen = attention_mask_in_length.size(-1)
    attention_mask_2d = torch.arange(seqlen, device=length.device, dtype=length.dtype).expand(len(length), seqlen) < length.unsqueeze(1)
    real_indices_idx = torch.nonzero(attention_mask_in_length.flatten(), as_tuple=False).flatten()
    seqlens_in_batch = attention_mask_in_length.flatten()[real_indices_idx]
    indices = torch.nonzero(attention_mask_2d.flatten(), as_tuple=False).flatten()
    max_seqlen_in_batch = seqlens_in_batch.max().item()
    cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
    # TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the
    # bool mask, then call nonzero to get the indices, then index with those. The indices is @dim
    # times larger than it needs to be, wasting memory. It's faster and more memory-efficient to
Tri Dao's avatar
Tri Dao committed
189
190
    # index with integer indices. Moreover, torch's index is a bit slower than it needs to be,
    # so we write custom forward and backward to make it a bit faster.
Tri Dao's avatar
Tri Dao committed
191
192
193
194
195
196
    return (
        index_first_axis(rearrange(hidden_states, "b s ... -> (b s) ..."), indices),
        indices,
        cu_seqlens,
        max_seqlen_in_batch,
    )
Tri Dao's avatar
Tri Dao committed
197
198
199
200
201


def pad_input(hidden_states, indices, batch, seqlen):
    """
    Arguments:
202
        hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
203
204
205
        indices: (total_nnz), the indices that represent the non-masked tokens of the original padded input sequence.
        batch: int, batch size for the padded sequence.
        seqlen: int, maximum sequence length for the padded sequence.
Tri Dao's avatar
Tri Dao committed
206
    Return:
207
        hidden_states: (batch, seqlen, ...)
Tri Dao's avatar
Tri Dao committed
208
209
210
211
212
    """
    dim = hidden_states.shape[-1]
    # output = torch.zeros((batch * seqlen), dim, device=hidden_states.device, dtype=hidden_states.dtype)
    # output[indices] = hidden_states
    output = index_put_first_axis(hidden_states, indices, batch * seqlen)
Tri Dao's avatar
Tri Dao committed
213
    return rearrange(output, "(b s) ... -> b s ...", b=batch)